-
随着我国城市化进程的加速,产生的城镇污水逐渐增加,导致污水处理之后产生的污泥量也大幅提升。据统计,至2 020年底,我国城镇污泥的排放量达到了5 130×104 t (以含水率80%计) [1],预计到2025年底,全国污泥的产量大约在9 000×104 t左右 (以含水率80%计) [2]。这些污泥不仅量多,而且含水率高,还含有较高浓度的有机物。若不对污泥进行处理而排入环境中,会对环境产生二次污染,危害人体健康,且国内关于污泥的最终处理处置的方式要求污泥的含水率小于60%[3],然而由于污泥EPS中蛋白多糖通过氢键等作用力使得部分水分与EPS结合,导致传统的污泥脱水技术只能将含水率降到80%左右[4-5],因此对污泥调理降低其含水率是污泥减量化以及处置的必不可少的一环。
絮凝剂调理由于其价格低廉和调理效果好在污泥调理领域使用较为广泛[6]。目前使用最多的絮凝剂是无机高分子絮凝剂和有机高分子絮凝剂。最常见的无机高分子絮凝剂是聚合氯化铝 (PAC),CAO等[7]合成了不同种类PAC,并将其调理污泥之后认为,Alb (中等聚合态铝) 和Alc (高度聚合态铝) 比Ala (单体铝或低聚合态铝) 更稳定且带的正电荷更多,其形成的絮体强度更高,污泥调理效果更好。有机高分子絮凝剂主要是聚丙烯酰胺 (PAM) ,邹鹏等[8]比较了壳聚糖和阳离子型聚丙烯酰胺 (CPAM) 对污泥脱水性能的影响,结果表明CPAM对污泥的絮凝效果比壳聚糖好。微生物絮凝剂和复合絮凝剂也逐渐加入了污泥调理,LEE等[9]从秋葵中提取出了一种生物絮凝剂,发现当其用量为商业絮凝剂的2倍时,2者脱水性能相当;WEI[10]等将3-氯-2-羟丙基三甲基铵氯化物 (CTA) 接枝到淀粉上获得了6种不同聚合度的淀粉基絮凝剂,调理污泥后发现电荷密度越高的絮凝剂电中和及吸附架桥能力越强,脱水效果更好。
然而,不同的絮凝剂也有着各自的缺点。无机絮凝剂虽然价格便宜,但是会导致污泥量增加,泥饼和滤液中铁铝等金属含量增加且脱水性能受pH影响较大;有机絮凝剂价格比无机絮凝剂高,生物毒性未知[11- 12]。聚合硅酸铝絮凝剂作为一种复合絮凝剂,同时结合了铝盐的电中和能力和聚硅酸的吸附架桥功能,受pH影响小、价格低廉、且研究证明聚硅酸用于污水混凝处理时效果好,在污水处理方面具有良好的前景[13-14]。但是,有关将其改性作为絮凝剂用于污泥脱水方面的研究却不多见。
本研究以硅酸钠和十八水硫酸铝为原材料,通过共聚反应制得了PASS。以某市市政厌氧污水厂剩余污泥为研究对象,探讨了不同PASS投量对污泥脱水性能的影响,包括SRF和CST;同时,研究了不同投量下污泥EPS中蛋白多糖的变化,结合污泥的脱水效果,深入分析了影响污泥脱水的因素。
-
偏硅酸钠九水化合物 (Na2SiO3·9H2O) 和PAC均为实验纯;考马斯亮蓝G250、葡萄糖 (C6H12O6)、苯酚 (C6H6O) 和十八水硫酸铝 (Al2(SO4)3·18H2O) 均为分析纯;牛白蛋白为生化试剂;硫酸 (H2SO4) 为优级纯。
-
实验中的活性污泥取自某市污水处理厂厌氧消化池污泥。污泥由污水处理厂取回后,测得含水率及各项指标,剩余污泥于4 oC低温保存,并在7 d内用完。初始污泥的各项指标如表1。
-
1) PASS的制备。PASS根据MA等[15]的方法制备。首先在磁力搅拌下,通过注射泵将47 mL的 0.5 mol·L−1硅酸钠溶液以0.2 mL·min−1的速率注射进20%的硫酸溶液中,使混合溶液pH达到3.5,将所得的混合溶液室温下活化9 h得到聚硅酸溶液。继续在磁力搅拌条件下,再用注射泵以0.2 mL·min−1的速率将0.5 mol·L−1的十八水硫酸铝溶液以硅铝比为1∶1和1∶2的量缓慢注射入活化的聚硅酸溶液中,混合后的溶液室温下活化24 h,然后放入烘箱中65 oC烘至恒重,将得到的固体研磨成粉末以备后续检测。
2) 污泥调理试验方法。取200 mL污泥于300 mL烧杯中,置于电动搅拌器 (HD2004W,上海司乐) 上,向污泥中投入一定量浓度为300 g·mL−1的PASS以及PAC溶液,在250 r·min−1下快速搅拌3 min,使絮凝剂充分混匀,然后再80 r·min−1下慢搅30 min,发生絮凝反应。絮凝结束后取污泥样品进行后续指标测定。
-
1) PASS的结构表征。采用傅里叶红外 (FTIR,Spectrum Two,PerkinElmer, 美国) 表征PASS的分子结构,红外光谱波数扫描范围为2 000~400 cm−1,扫描速度为4 cm−1,扫描3次样品,取均值。
2) 污泥比阻测定。SRF采用CAO等[7]所描述的方法。取50 mL污泥于超滤杯 (Amicon8400,Millipore,美国) 中在0.2 MPa外加气压下过滤,并使用电子天平 (AX523ZH,OHAUS,美国) 每隔10 s记录过滤时滤液的重量,直至污泥表面开裂。SRF通过式 (1) 计算。
式中:P为过滤压强,Pa;A为过滤面积,m2;b为过滤时t/V和V作图时直线的斜率,其中t为过滤时间,s,V为对应时间下过滤的体积,mL;μ为滤液的粘度,Pa·S;ω为过滤介质上单位体积的干污泥质量,kg·m−3。
3) 污泥CST检测。CST采用污泥CST测定仪 (304M,Triton,英国) 测量。
4) 污泥泥饼含水率的检测。采用超滤杯 (Millipore,美国) 将污泥预压为泥饼后,采用活塞装置模拟的板框压滤机 (天津津冠) 对污泥进行脱水,将所得泥饼放入105 ℃烘箱 (PH-030A,上海一恒) 烘至恒重,通过烘干前后泥饼的重量测量泥饼含水率。
5) 污泥表面形貌检测。调理后的污泥冷冻干燥后,通过扫描电子显微镜 (JSM7401F,JEDL,日本) 观察污泥表面的形貌。
6) 污泥EPS提取。污泥EPS提取参考ZHANG等的方法[16]。取50 mL调理污泥于离心管中,使用离心机在3 000 r·min−1下离心10 min,所得上清液为SEPS;向离心管中加入0.05% NaCl溶液定容到50 mL,采用漩涡振荡器 (Vortex-Genie 2,Scientific industries,美国) 混匀样品,用超声于20 kHz下超声10 min,随后置于摇床150 rpm摇匀10 min,再超声3 min,最后于5 000 g下离心10 min,提取上清液为LBEPS;继续向离心管中加入0.05% NaCl溶液定容到50 mL,使用漩涡振荡器 (Vortex-Genie 2,Scientific industries,美国) 混匀样品,先于20 kHz下超声3 min,然后放入水浴机中于60 ℃水浴30 min,随即再5 000 g下离心10 min,上清液即TBEPS。提取后的EPS采用0.45 μm滤膜过滤后以备后续检测。
7) 污泥EPS检测。通过分光光度法测量提取后EPS的多糖与蛋白含量。以牛血清蛋白为标样,采用考马斯亮蓝G-250法测得[17];以葡萄糖为标样,通过硫酸-苯酚法测出多糖含量[18]。
-
图1为PASS的FTIR谱图,1 050 cm−1处的特征峰符合Al-O-Si键的伸缩振动[19],表示聚硅酸和Al3+发生了络合反应;974 cm−1处的吸收峰表示的是Al-OH-Al不对称的拉伸振动[20],605 cm−1处的吸收峰表示的式Al-OH的伸缩振动[21];454 cm−1处的吸收峰代表Si-O,H-O键的弯曲振动[22]。Si/Al摩尔比为1∶1的PASS在605、454 cm−1处的红外吸收峰高于1∶2时,说明此时PASS中产生较多的Si-O,H-O以及Al-OH基团,其吸附架桥效果可能较好;而在974 cm−1处时Si/Al摩尔比为1∶1的PASS红外吸收峰低于Si/Al摩尔比为1∶2的PASS,说明Si/Al摩尔比为1∶2的PASS具有更多的Al-OH-Al键,此时电中和作用可能较强。
-
图2是不同投加量下SRF和CST随PASS及PAC投加量的变化情况。3种材料调理后污泥的SRF和CST都随着投加量的增加逐渐减小。这是因为,污泥表面带有负电荷,当带有正电荷的絮凝剂投入污泥中时,会与污泥发生电中和反应,使得污泥脱稳聚集,释放污泥中的束缚水[23];同时PASS的长链结构会进一步架桥脱稳的污泥从而形成更大的絮体,提高污泥的过滤性能,降低污泥的SRF与CST。当Si/Al摩尔比为1∶1时,PASS调理后污泥的SRF由6.15×1011 m·kg−1下降到了2.91×1011 m·kg−1,CST由954.1 s下降到了601.1 s;PAC调理后污泥的SRF由6.15×1011 m·kg−1下降到了3.39×1011 m·kg−1,CST由954.1 s下降到了638 s,高于前者。这说明,Si/Al摩尔比为1∶1时的PASS的调理效果高于PAC。改变Si/Al摩尔比为1∶2时,PASS调理后污泥的SRF与CST都比摩尔比为1∶1时高,这是因为当Si/Al摩尔比较低时,由于Al3+的增加导致共聚的Al越多,电中和能力较强,吸附架桥能力较弱[24]。也可能是因为当Si/Al摩尔比较低时,PASS的中等聚合态Alb较少,而当Si/Al摩尔比适中时,中等聚合态Alb为PASS的主要部分[25]。
-
图3为泥饼含水率随着PAC和不同Si/Al摩尔比PASS投量的变化。当Si/Al摩尔比为1∶1时,PASS和PAC调理后的泥饼含水率都是随着投量的增加先减小后增大。当PASS的投量为100 mg·g−1 TSS时,泥饼含水率达到最小,为61.21%,PAC在40 mg·g−1 TSS时达到最小值63.68%,且所有投量下PAC的泥饼含水率都高于Si/Al摩尔比为1∶1时PASS,说明Si/Al摩尔比为1∶1时,PASS对污泥水分的去除效果更好,这是因为PASS不仅有电中和作用,还有吸附架桥作用,而PAC以电中和作用为主[26]。而当Si/Al摩尔比为1∶2时,PASS在200 mg·g−1 TSS时含水率最低,为61.72%,且当投量较低时,其泥饼含水率高于Si/Al摩尔比为1∶1时PASS调理的污泥。当絮凝剂投加过量时,污泥颗粒被絮凝剂完全包裹,此时污泥絮体表面开始带正电荷,污泥絮体之间出现排斥力,污泥重新到达稳定状态,污泥脱水效果变差[27]。
-
EPS作为污泥重要的一部分,占总有机质的50%~90%,且EPS中大部分有机物为亲水性的蛋白多糖,这些亲水物质与水分紧密结合从而影响了污泥的脱水性能[28]。图4为不同Si/Al摩尔比的PASS及PAC调理后污泥EPS蛋白多糖的变化规律。当Si/Al摩尔比为1∶1时,随着PASS投加量的增加,SEPS蛋白和多糖浓度先上升后下降,LBEPS蛋白和多糖浓度逐渐下降,而TBEPS则是先上升后下降,这是因为PASS压缩了污泥的EPS,使得LBEPS部分蛋白和多糖向TBEPS转移[29]。SEPS蛋白多糖先上升的原因可能是初始时絮凝剂加入污泥中时先与污泥LBEPS的蛋白多糖反应,压缩LBEPS的结构,导致一部分蛋白转移到SEPS,同时释放LBEPS里的结合水,这与WANG等的研究一致[30]。随着投量继续增加,LBEPS结构被絮凝剂压缩破坏,絮凝剂开始压缩TBEPS的蛋白多糖。Si/Al摩尔比为1∶2时的PASS与PAC调理后污泥SEPS和LBEPS蛋白多糖的变化与Si/Al摩尔比为1∶1时相似,但是Si/Al摩尔比为1∶2时TBEPS蛋白浓度先下降后上升, PAC调理后的污泥TBEPS蛋白浓度逐渐减小。这可能是因为,Si/Al摩尔比为1∶2时的PASS及PAC中低聚合态Ala占主体,此时絮凝剂的电中和能力强于吸附架桥能力,对EPS的压缩能力更强。
-
图5为不同絮凝剂调理后污泥EPS的蛋白多糖含量与污泥脱水指标SRF、CST和泥饼含水率之间的相关性。经过3种絮凝剂调理后,SRF和CST均与SEPS和LBEPS蛋白多糖含量呈现正相关性,且SRF和CST与LBEPS蛋白多糖有较强的相关性,这可能是因为污泥EPS中的蛋白多糖为亲水性物质,EPS中蛋白多糖的降低意味着污泥的亲水性和粘性降低,提高了污泥的脱水性能[31, 32]。然而三种材料调理后污泥TBEPS蛋白多糖与三种脱水指标的相关性却不同。当PASS的Si/Al摩尔比为1∶1时,TBEPS多糖与SRF和CST表现为负相关,Si/Al摩尔比为1∶2时PASS和PAC调理后TBEPS多糖与SRF、CST以及泥饼含水率却为正相关关系;当Si/Al摩尔比为1∶2时,TBEPS蛋白与SRF、CST和泥饼含水率呈负相关,PAC调理后TBEPS蛋白与SRF和CST呈现正相关性,原因可能是相较于PAC,PASS有较强的吸附架桥能力,且Si/Al摩尔比为1∶2时PASS的电中和作用强于Si/Al摩尔比为1∶1。
-
图6为不同絮凝剂调理后的污泥SEM图。原泥具有松散结构,表面较为平滑,孔隙较少,导致脱水困难。而经过PASS和PAC调理之后的污泥表面变得粗糙且多孔,形成了致密结构,这有助于机械压缩时自由水的去除[32]。当投药量为40 mg·g−1 TSS时,Si/Al摩尔比为1∶1的PASS所调理的污泥表面的孔隙以及大孔径的孔隙所占的比例多,且孔径也大,而PAC调理后的污泥表面的孔隙率较少,Si/Al摩尔比为1∶2时的PASS调理的污泥表面孔隙多但大孔径少,说明Si/Al摩尔比为1∶1的PASS调理后的污泥脱水通道多,导致其脱水效果最好。而当絮凝剂投量上升到100 mg·g−1 TSS时,Si/Al摩尔比为1∶1的PASS以及PAC调理的污泥表面的孔隙率减少,孔径也下降,污泥表面脱水通道减少,使得其含水率上升,而Si/Al摩尔比为1∶2时PASS调理的污泥表面孔径增大,孔隙率基本不变,污泥脱水通道扩大,导致泥饼含水率下降。这与泥饼含水率的变化一致。
-
表2为制备PASS所需的工业级药剂以及工业级PAC的价格。通过表3计算可算得,在不包括机械和电力消耗的前提下,不同Si/Al摩尔比PASS的价格核算。合成1 t Si/Al摩尔比为1∶1的PASS大约需要1 988元,而1 t Si/Al摩尔比为1∶2的PASS的合成价格在1 814元左右,而工业级PAC的价格为2 400元∙t−1,高于2种Si/Al摩尔比的PASS,其脱水性能比Si/Al摩尔比为1∶1的PASS差,这说明所制材料在污泥脱水方面具有实际意义。
-
1) 通过FTIR证实成功制作了聚硅酸硫酸铝絮凝剂并用于污泥脱水领域,发现其具有压缩双电层和吸附架桥的功能。将所制PASS与PAC比较后发现,Si/Al摩尔比为1∶1时,PASS调理后污泥的SRF与CST比PAC低,脱水性能比PAC好。
2) 测定污泥泥饼含水率后发现与PAC相比,Si/Al摩尔比为1∶1时PASS调理效果较好。且在低投加量的情况下,Si/Al摩尔比为1∶1时PASS的调理效果也比1∶2时好。
3) 通过相关性分析发现,PASS和PAC调理后LBEPS和SEPS蛋白多糖的浓度与SRF和CST均表现为正相关,且LBEPS蛋白多糖与脱水指标相关性更强,而调理后TBEPS与SRF和CST的相关性均不同。
4) 通过观察调理后污泥的SEM发现,经过PASS及PAC调理后,污泥絮体表面从光滑变成了粗糙多孔。当Si/Al摩尔比为1∶1且絮凝剂投量较低时,污泥絮体表面大孔径的孔隙和孔隙率均最多。对所制PASS的价格核算以及与PAC的工程价格比较发现,不包括动力和设备损耗的前提下,所制2种Si/Al摩尔比PASS的造价比PAC少,在工程应用上具有实际意义。
聚硅酸硫酸铝强化污水厂污泥脱水效能
Effectiveness and feasibility of enhanced sludge dewatering in wastewater plants with PASS
-
摘要: 以硅酸盐和铝盐为原料,通过共聚反应制备了2种Si/Al摩尔比的聚硅酸硫酸铝 (PASS) 絮凝剂。以某市政污水厂污泥为研究对象,比较了PAC和PASS调理后污泥比阻 (SRF) 、毛细吸水时间 (CST) 和泥饼含水率,并分析了胞外聚合物 (EPS) 的蛋白和多糖变化规律分析。结果表明,PASS能够有效的降低SRF、CST和泥饼含水率,且PASS的Si/Al摩尔比为1∶1时,脱水效果最好。经过PASS以及PAC调理后,溶解性EPS (SEPS) 和松散附着EPS (LBEPS) 的蛋白多糖的含量均有下降,而PAC调理后紧密附着层EPS (TBEPS) 下降,PASS调理后却存在上升阶段。通过污泥扫描电子显微镜 (SEM) 发现,污泥絮体表面由光滑、均匀分布变成了粗糙多孔,且Si/Al摩尔比为1∶1时孔隙率及孔径最大。SEPS和LBEPS蛋白多糖与CST和SRF具有正相关性。所制PASS的不计动力和设备损耗的工程成本比PAC要低。本研究结果可为PASS用于污泥脱水提供参考。Abstract: Two Si/Al molar ratios PASS flocculants were prepared by copolymerization reaction with silicate and aluminium salts. The sludge specific resistance (SRF), capillary suction time (CST) and moisture content of sludge cake after flocculating with PAC and PASS were compared, and the changes of protein and polysaccharide of extracellular polymers (EPS) was analyzed. The results showed that PASS could effectively reduce SRF, CST and moisture content of sludge cake, and the best dewatering effect was achieved when the Si/Al molar ratio was 1:1. The contents of protein and polysaccharide in soluble EPS (SEPS) and loosely bound layer EPS (LBEPS) reduced after PASS and PAC flocculation. The contents in tightly bound EPS (TBEPS) also decreased after PAC conditioning, but after PASS conditioning, the contents exerted an increasing trend. The sludge scanning electron microscope (SEM) image revealed that the sludge floc changed from smooth and uniform distribution to rough and porous, and the porosity and pore size reached the maximum at Si/Al molar ratio of 1:1. Additionally, correlation analysis concluded that protein and polysaccharide in SEPS and LBEPS were positively correlated with CST and SRF. Finally, as to economic evaluation, it is found that the cost of PASS without power and equipment considerations was lower than that of PAC, which laid the engineering significance for the application of PASS for sludge dewatering.
-
Key words:
- PASS /
- EPS /
- sludge dewatering /
- dewatering performance /
- correlation analysis
-
污泥未经处理随意排放堆置,会造成严重的环境污染问题。国际上污泥主要有土地利用、卫生填埋、焚烧和投海等4种处置方式[1]。其中,填埋处置对技术指标要求相对宽松、运行成本低,是现阶段我国污泥处置的主要方式,且为简易的单独填埋,即污泥经过脱水消化后,直接倾倒于事先设置好的填埋坑中,并采用膜或土覆盖进行封场。由于我国污水处理厂对污泥处理的重视度不高,技术资金投入力度也不够,导致污泥的含水率高、物理力学性质差,不仅达不到市政污泥的填埋标准,而且造成填埋场库容的日益紧张,更严重的是会埋下安全隐患[2],如深圳下坪垃圾填埋场和山西太原垃圾填埋场均发生过填埋体的滑坡事故。为此,在《城镇污水处理厂污泥处理处置技术指南》[3]的国家规范中对填埋污泥的各项指标做出了明确规定。与此同时,我国的污泥产量也在逐年增加,目前,国内上海老港、成都长安、深圳下坪、杭州天子岭等填埋库区库容已经出现严重不足。因此,污泥填埋场内坑体加固与库内污泥深度脱水减量成为目前多数填埋场所面临的问题。
现阶段常用机械压滤方式对污泥进行深度脱水。从机械脱水原理来看,机械压滤的过程实质上就是污泥的排水固结过程,即在总应力作用下孔隙水不断被排出的过程。孙政等[4]对污水处理厂脱水污泥的固结特性进行了研究,发现污泥的固结规律与一般黏土差别较大,超孔隙水压力的消散较慢。朱婧等[5]对污泥、淤泥、粘土的压缩特性进行了对比研究,认为污泥与淤泥的固结不同,在外力荷载下其固结过程可以分多个阶段。王鹏等[6]采用纤维加筋技术,研究了不同掺量下加筋污泥的固结压缩特性。范惜辉等[7]选用普通硅酸盐水泥和硫铝酸盐水泥作为固化材料,研究了固化污泥在不同应力下的压缩、渗透规律。机械压滤技术一般是先采用化学药剂预调质,使污泥颗粒的结合水释放出来之后,再其进行深度脱水,将湿基含水率降至60%以下。采用药剂真空预压法处理污泥也是如此,调质改性后的污泥与工程废浆类似,在真空预压过程中存在流固的两相转变,并在大部分时间里处于弹塑性状态,此时需要采用土力学中的固结理论进行分析[8]。武亚军课题组[9][10]对于无机药剂调质过的新鲜污泥的真空固结特性进行了研究,由于暂存库区污泥与新鲜污泥性质不同,固结特性也必然有差异,而目前关于这方面的研究并未见有所报道。此外,FeCl3是比较常用的一种调质药剂,而芬顿试剂在污水处理中应用较多,但不常用于污泥调质,因此,一方面为了对新鲜污泥与暂存库污泥进行对比,另一方面为了对FeCl3和芬顿试剂的调质效果进行对比,本研究采用土力学中的固结实验对分别采用2种不同药剂调质过的填埋污泥的压缩固结特性进行了研究,研究结果可为机械压滤和真空预压处理填埋污泥的工程实践提供参考。
1. 实验材料与方法
1.1 试剂和仪器
实验选用的药剂分别为FeCl3·6H2O、FeSO4、浓硫酸,以上药剂均为分析纯(AR)。实验所需H2O2通过40%的双氧水颗粒(昌乐鑫富强商贸有限公司)按浓度比例添加。实验仪器主要包括中压固结仪和电子天平等。
1.2 污泥基本物理性质
对暂存库区填埋污泥与新鲜污泥的各项物理指标进行了测试,其中比重采用比重瓶法测试;密度采用环刀法测试;含水率采用低温烘干法测试;有机物采用灼失量法测试。结果表明,填埋污泥与新鲜污泥的含水率分别为74.1%和82.17%,有机质含量分别为40.9%和64.9%,比重分别为1.87和1.57,密度分别为1.2 g·cm−3和1.02 g·cm−3。由此可见,填埋污泥具有比新鲜污泥含水率低、有机物含量低、比重和密度大等特点。
1.3 实验方法
固结实验的药剂调质方案中氯化铁的添加量分别为0%、10%、20%、30%和40%;芬顿试剂的添加方案如表1所示。装入烧杯中置于常温下放置24 h,待污泥与药剂充分反应后,再均匀装填入固结仪,每个实验组别设置2组平行实验。由于污泥含水率较高,初级固结应力较大时容易发生冒浆,选取初级固结应力为3.125 kPa,加荷比为1,将最大固结应力增加至400 kPa。根据《土工试验方法标准》(GB/T50123-1999),加载过程中按规定时间记录百分表读数,由于污泥稳定达到稳定标准时间较长,每级加载48 h。第1级固结应力p设置为3.125 kPa,之后按6.25、12.5、25、50、100 kPa依次加载,以沉降量小于0.005 mm·h−1为沉降稳定的标准。
表 1 污泥固结实验芬顿试剂调质方案Table 1. Consolidation test plan of sludge conditioned by Fenton reagent编号 Fe2+/% H2O2/% H2O2/Fe2+ 1 4 4 1 2 4 6 1.5 3 4 8 2 4 8 8 1.5 5 8 12 2 6 8 16 3 注:添加量表示占污泥干基的质量比。 2. 结果与讨论
2.1 孔隙比
添加药剂之后污泥的孔隙比e (指污泥中孔隙体积与固体体积的比值,初始孔隙比e0采用含水率和比重进行换算,压缩过程中的孔隙比根据压缩量测试)会发生较大的变化,不同种类的药剂添加量与初始孔隙比的关系如图1所示。由图1可知,经过药剂调质改性后,e均有不同程度的增大。采用FeCl3调质后(图1(a)),污泥的初始孔隙比e0变化明显,从原始污泥的4.098上升至6.681,但随着药剂掺量的增加,污泥的孔隙变化较为平缓,最终达到7.244。采用芬顿改性后(图1(b)),当Fe2+的掺量为4%时,污泥孔隙比随着H2O2掺量的增加变化明显,由4.802上升至7.092;当Fe2+的掺量为8%时,污泥孔隙比随着H2O2掺量的增加变化较为缓慢,最终达到4.908。这是由于在药剂调质过程中产生了大量气体,这些气体不能完全从污泥中排出,而是积存分布在污泥内部,导致污泥的空隙变多,从而使得孔隙比增大。
2.2 压缩特性
压缩实验每级荷载的加载周期为48 h,不同FeCl3添加量下改性污泥的孔隙比e与荷载p的关系如图2(a)所示。污泥初始孔隙比为4.098,略大于常规的软黏土,经过药剂调质后,污泥的初始孔隙比随着药剂添加量的增加逐渐变大,当药剂添加量为40%时,孔隙比达到7.244。不同芬顿配比掺量下改性污泥的e-p关系如图2(b)所示。由图2(b)可知,对比2种药剂调质后的污泥发现,在初级荷载作用下,样品的孔隙比迅速减小。通过对固结应力为100 kPa时的孔隙比变化量进行了分析,发现调质污泥的压缩量基本均达到总压缩量的70%以上。这是因为在前期压缩过程中,调质污泥较原始污泥颗粒间的空隙总量更多,颗粒间没有形成骨架,强度较低,在较低应力作用下,孔隙水排出顺畅,压缩量大,孔隙比减小幅度大。经过3.125、6.25、12.5、25、50 kPa荷载作用下,芬顿改性污泥的沉降量较大,孔隙被大幅压缩;当荷载大于50 kPa时,污泥沉降速率逐渐减慢,沉降幅度逐渐减小,污泥孔隙比被压缩幅度也逐渐减小。由于原始污泥中有机质含量较高,存在大量具有一定承载力的微生物残体和胶结絮状有机物,通过添加FeCl3与芬顿试剂可以一定程度上破坏微生物残体和胞外聚合物,减少了有机物的含量,样品更容易发生固结压缩。
将调质污泥的孔隙比e与固结应力p之间的关系可以绘制成半对数坐标曲线 (e-lgp),如图3所示。由图3(a)可知,孔隙比e与固结压力lgp之间呈明显的线性关系,这一结果与常规淤泥类似。填埋污泥的压缩指数为0.64,调质污泥的压缩指数在0.776~0.795,跟新鲜脱水污泥差别较大,且与常规淤泥在数值上也较为接近[1, 5]。由图3(a)可知,污泥初始孔隙比的拟合值要略大于实验实测值。这是由于污泥的机械脱水和长期填埋类似于加卸载过程,压缩之后产生不仅存在塑形变形,而且也会发生一定程度的回弹。污泥的实际孔隙比和理论孔隙比的差值在一定程度上反映了不可恢复的塑形变形。同时,重塑制样及拟合精度也会对该结果产生一定影响。由于污泥中含有凝胶状结构,颗粒接触点处有一定的胶结力,能承受一定的压力而变形较小,使得在初期加荷阶段曲线平缓。此外,一般的原状土由于前期固结应力的存在会发生自重应力下的固结。其压缩曲线会出现屈服应力的折点,污泥的e-lgp曲线近似为一条直线,由此可知,调质污泥不存在应力屈服点,属于欠固结土。不同芬顿配比掺量下改性污泥的e-lgp曲线如图3(b)所示。污泥孔隙比随固结应力增大基本呈线性减小,压缩指数Cc为0.444~0.591,整体上小于原始污泥和经FeCl3调质后的污泥,和常规淤泥土较为接近,但仍属于高压缩性土。
2.3 固结特性
固结系数Cv是表示孔隙水压力消散快慢的物理量,固结系数越大,固结速度越快,反之越慢。采用时间平方根法可得到调质污泥固结系数Cv与固结应力p之间的关系。图4(a)为采用FeCl3在各级压力下的固结系数变化结果。由图4(a)可知,在初级压力下,调质污泥的固结系数在10−3 cm2·s−1数量级变化,随着固结应力的增大,污泥的固结系数逐渐减小。此外,随着FeCl3掺量的增大,固结系数也越大,且在前几级固结应力下固结系数的减小幅度也越来越明显。由各条固结系数曲线关系可以说明在每一级固结应力下,随着FeCl3添加量的增加,污泥的固结系数增大,即FeCl3掺量越多,固结过程中孔隙水压力消散越快,这一点与新鲜脱水污泥固结系数的变化规律一致[9]。
对比芬顿调质的实验结果(图4(b))可知:当Fe2+的添加量为4%时,样品的固结系数随着H2O2添加量的增加而增大,当H2O2的掺量为8%时达到最大;当Fe2+的添加量为8%时,样品的固结系数随着H2O2掺量的增大呈现先增大后减小的趋势。这是由于当H2O2添加量过多时,不仅不能分解产生更多的羟基自由基,反而会使最初产生的羟基自由基发生泯灭[11]。就初级固结应力下的固结系数而言,芬顿试剂改性后初级固结应力下Cvmax=9.88×10−3 cm2·s−1,当固结应力增大到400 kPa时,Cv=1.85×10−3 cm2·s−1;经过40%的FeCl3调质后Cvmax=2.91×10−3 cm2·s−1,随着固结应力的增大,Cv减小至4.98×10−4 cm2·s−1。因此,当Fe2+添加量为4%、H2O2掺量为8%时,在固结应力作用下污泥的孔压消散最快。
污泥与淤泥、黏土最大的区别是污泥的固体物质中存在40%~60%的有机物,这些有机物大多数是生物处理过程中的微生物残体[12]。因此,污泥中的水分赋存状态非常特殊,除了具有孔隙水、表面结合水以外,存在絮凝体内部的结合水和细胞颗粒内部的细胞水(或称为生物水)[13]。这些水赋存于可以承载一定压力的有机物絮体中,这使污泥中水分难以快速排出,因此,孔隙水压力消散时间非常漫长[14]。添加药剂在一定程度上使得微生物残体胞内水以及有机絮体中的结合水释放,从而大大缩短了固结时间。
2.4 渗透特性
如图5所示,通过固结系数可以推演出污泥在各级固结压力下的渗透系数k。由图5(a)可知:k和固结应力的规律与固结系数Cv和固结应力的规律相似,受固结应力影响较大;在0~25 kPa阶段,污泥的渗透系数下降明显,渗透性变差,这是因为大孔隙被压缩成小孔隙或密闭孔隙,孔隙比迅速减小导致排水困难。经过试剂调质后,长期填埋污泥的渗透系数增大,初级固结应力下的k从10−7 cm·s−1数量级增大到10−6 cm·s−1数量级,随着压力的增大,k减小为10−8 cm·s−1数量级;当FeCl3的掺量为40%时,样品在初级固结应力下的k=4.439×10−6 cm·s−1,随着固结应力的增加,k减小至3.796×10−8 cm·s−1;采用芬顿试剂调质的污泥在初级固结应力下的k=6.48×10−6 cm·s−1 (图5(b)),随着固结应力的增大k则下降至9.94×10−8 cm·s−1。若以固结系数和渗透系数作为污泥固结效果好坏的指标,芬顿试剂的效果更佳。
此外,土体渗透性与其孔隙比密切相关。有研究[5]表明,土体孔隙比e与lgk存在一定的关系。图6为在不同FeCl3掺量下调质污泥渗透系数与孔隙比关系曲线。由图6可知,随着孔隙比的减小,渗透系数也逐渐减小,反之,渗透性增大,e与lgk之间的线性关系近似成立。在一定孔隙比范围内,相同孔隙比下10%添加量的污泥渗透系数一直小于同样孔隙比的其他掺量污泥,20%、30%和40%添加量下的污泥在孔隙比为5~7时渗透系数较为接近,但是随着孔隙比减小,实验组污泥的渗透系数出现差异,且随着药剂掺量减小而递减,添加量为20%的实验组渗透系数接近于10%添加量的实验组。
对比调质污泥和原始污泥可以发现,在重合的孔隙比区间内,相同孔隙比下对照组的渗透系数要大于添加药剂的实验组。这是因为与天然细粒土一样,污泥由于初期的加药絮凝和板框压滤,其初始状态的结构也很复杂,一旦扰动,原有的过水通道的形状、大小及其分布都会改变,故渗透系数也不同。这一点与普通的性质相近,相同孔隙比时扰动土样的渗透系数通常小于原状土样[15]。实际加药时由于搅拌分散以及药剂的作用导致污泥颗粒分散变小,絮状结构一定程度上被破坏,使得调质后的污泥在相同孔隙比下的k小于原始污泥。
3. 结论
1)污泥经试剂调质后能在较短时间内排水固结稳定;调质污泥在低荷载水平下沉降量较大,在高荷载水平下沉降逐渐平稳,孔隙变化不大;经过FeCl3调质后的污泥压缩性增大,压缩指数由0.64增大至0.776~0.795。
2)在初级固结应力下,调质污泥的固结系数在10−3 cm2·s−1数量级内变化。添加FeCl3的实验组Cv,max=2.91×10−3 cm2·s−1;芬顿调质实验组Cv,max=9.88×10−3 cm2·s−1。比阻和固结系数并不是简单呈负相关性,两者之间的定量关系还需要进一步研究。
3)渗透系数受固结应力影响较大。当FeCl3的掺量为40%时,样品在初级固结应力下的渗透系数为4.439×10−6 cm·s−1,在400 kPa下,渗透系数减小为3.796×10−8 cm·s−1;采用芬顿试剂调质的污泥在初级固结应力下,k=6.48×10−6 cm·s−1,在400 kPa下,k=9.94×10−8 cm·s−1。
4)在芬顿试剂最小添加量时(4% Fe2++4% H2O2)的调质效果均比FeCl3最大添加量40%时的调质效果要好,因此,建议在工程实践中采用芬顿试剂进行调质污泥。
-
表 1 原始污泥的性质
Table 1. Properties of raw sludge
含水率/% SRF/(×1012 m·kg−1) pH TSS/(g·L−1) CST/s TOC/(mg·L−1) 94.31±0.025 0.958±0.06 7.71±0.02 56.95±0.25 954±9.3 2 336±14 表 2 制备PASS所需的工业级药剂的单价
Table 2. The unit price of the industrial-grade agent required to prepare PASS
药剂 价格/ (元∙t-1) 硫酸 1 200 九水硅酸钠 2 000 十八水硫酸铝 800 聚合氯化铝 2 400 表 3 不同Si/Al摩尔比的PASS的价格核算
Table 3. Price calculation of PASS with different Si/Al molar ratio
元∙t−1 (以制备1 t PASS计) 絮凝剂 硫酸 九水硅酸钠 十八水硫酸铝 1∶1 PASS 133 1 262 593 1∶2 PASS 93 888 833 注:未包括机械和电力损耗。 -
[1] 肖琼, 赵喜亮, 傅涛. 中国污泥处理处置行业市场分析报告[R]. 中国水网/中国固废网研究, 2020. [2] 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34. [3] 郑志坤. 城市污泥处置方法的研究及建议[C]//以供给侧结构性改革引领能源转型与创新—第十三届长三角能源论坛论文集. 中国浙江杭州: 2016: 168-172. [4] 董立文, 张鹤清, 汪诚文, 等. 造纸污泥的电渗透脱水效果[J]. 环境工程学报. 2012, 6(11): 4185-4190. [5] 王杰, 陈钰, 赵玉婷, 等. 芬顿氧化钙体系联合DDBAC对污泥脱水性能的影响[J]. 环境工程学报, 2021, 15(4): 1424-1431. doi: 10.12030/j.cjee.202009033 [6] WEI H, GAO B Q, REN J, et al. Coagulation/flocculation in dewatering of sludge: A review[J]. Water Research, 2018, 143: 608-631. doi: 10.1016/j.watres.2018.07.029 [7] CAO B D, ZHANG W J, Wang Q D, et al. Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning: Role of aluminum speciation[J]. Water Research, 2016, 105: 615-624. doi: 10.1016/j.watres.2016.09.016 [8] 邹鹏, 宋碧玉, 王琼. 壳聚糖絮凝剂的投加量对污泥脱水性能的影响[J]. 工业水处理, 2005, 25(5): 35-37. doi: 10.3969/j.issn.1005-829X.2005.05.010 [9] LEE C S, CHONG M F, ROBINSON J, et al. Optimisation of extraction and sludge dewatering efficiencies of bio-flocculants extracted from Abelmoschus esculentus (okra)[J]. Journal of Environmental Management, 2015, 157: 320-325. doi: 10.1016/j.jenvman.2015.04.028 [10] WEI H, REN J, LI A M, et al. Sludge dewaterability of a starch-based flocculant and its combined usage with ferric chloride[J]. Chemical Engineering Journal[J], 2018, 349: 737-747. doi: 10.1016/j.cej.2018.05.151 [11] 王鑫, 易龙生, 王浩. 污泥脱水絮凝剂研究与发展趋势[J]. 给水排水, 2012, 48(S1): 155-159. doi: 10.13789/j.cnki.wwe1964.2012.s1.047 [12] 田玲, 何芳. 无 机高分子絮凝剂的研究进展[J]. 化工设计通讯, 2016, 42(5): 143. doi: 10.3969/j.issn.1003-6490.2016.05.112 [13] 江露英, 刘红, 朱小丽, 等. 聚硅酸金属盐复合絮凝剂形貌结构及性能研究[J]. 环境科学与技术, 2013, 36(6): 128-133. doi: 10.3969/j.issn.1003-6504.2013.06.025 [14] 李剑锋, 刘信源, 孙慧芳, 等. 聚硅酸盐类絮凝剂改性及在水处理中的应用研究进展[J]. 水处理技术, 2016, 42(7): 12-16. doi: 10.16796/j.cnki.1000-3770.2016.07.003 [15] MA J, WANG R N, WANG X Y, et al. Drinking water treatment by stepwise flocculation using polysilicate aluminum magnesium and cationic polyacrylamide[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103049. doi: 10.1016/j.jece.2019.103049 [16] ZHANG W J, CAO B D, WANG D S, et al. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS)[J]. Water Research, 2016, 88: 728-739. doi: 10.1016/j.watres.2015.10.049 [17] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254. [18] FROLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1 [19] 熊丽丽, 高丽, 秦冬玲, 等. 聚硅酸铝、聚硅酸铁和聚硅酸铝铁的制备及离子残留分析[J]. 南京工业大学学报(自然科学版), 2017, 39(4): 150-156. [20] YANG S, LI W, ZHANG H J, et al. Treatment of paper mill wastewater using a composite inorganic coagulant prepared from steel mill waste pickling liquor[J]. Separation and Purification Technology, 2019, 209: 238-245. doi: 10.1016/j.seppur.2018.07.049 [21] LI J F, LIU X Y, CHENG F Q. Bio-refractory organics removal and floc characteristics of poly-silicic-cation coagulants in tertiary-treatment of coking wastewater[J]. Chemical Engineering Journal, 2017, 324: 10-18. doi: 10.1016/j.cej.2017.04.142 [22] 高丽, 熊丽丽, 朱超, 等. 硅溶胶-聚硅酸铝锌复合絮凝剂的制备及应用[J]. 南京工业大学学报(自然科学版), 2018, 40(2): 65-70. [23] HU P, ZHUNG S H, SHEN S H, et al. Dewaterability of sewage sludge conditioned with a graft cationic starch-based flocculant: Role of structural characteristics of flocculant[J]. Water Research, 2021, 189: 116578. doi: 10.1016/j.watres.2020.116578 [24] SUN T, SUN C H, ZHU G L, et al. Preparation and coagulation performance of poly-ferric-aluminum-silicate-sulfate from fly ash[J]. Desalination, 2011, 268(1-3): 270-275. doi: 10.1016/j.desal.2010.10.023 [25] 高宝玉, 刘总纲, 岳钦艳. 聚合硅酸硫酸铝溶液中铝的形态分布及转化规律[J]. 环境化学, 2004(2): 208-212. doi: 10.3321/j.issn:0254-6108.2004.02.017 [26] LI L X, PENG C, DENG L H, et al. Understanding the synergistic mechanism of PAM-FeCl3 for improved sludge dewaterability[J]. Journal of Environmental Management, 2022, 301: 113926. doi: 10.1016/j.jenvman.2021.113926 [27] LIN Q T, PENG H L, ZHONG S X, et al. Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon-aluminum-iron-starch flocculant[J]. Journal of Hazardous Materials, 2015, 285: 199-206. doi: 10.1016/j.jhazmat.2014.12.005 [28] 周俊, 周立祥, 黄焕忠. 污泥胞外聚合物的提取方法及其对污泥脱水性能的影响[J]. 环境科学, 2013, 34(7): 2752-2757. doi: 10.13227/j.hjkx.2013.07.056 [29] YANG P, LI D D, ZHANG W J, et al. Flocculation-dewatering behavior of waste activated sludge particles under chemical conditioning with inorganic polymer flocculant: Effects of typical sludge properties[J]. Chemosphere, 2019, 218: 930-940. doi: 10.1016/j.chemosphere.2018.11.169 [30] WANG H F, HU H, WANG H J, et al. Impact of dosing order of the coagulant and flocculant on sludge dewatering performance during the conditioning process[J]. Science of The Total Environment, 2018, 643: 1065-1073. doi: 10.1016/j.scitotenv.2018.06.161 [31] QIAN X, WANG Y L, ZHENG H L. Migration and distribution of water and organic matter for activated sludge during coupling magnetic conditioning-horizontal electro-dewatering (CM-HED)[J]. Water Research, 2016, 88: 93-103. doi: 10.1016/j.watres.2015.10.001 [32] PENG H L, ZHONG S X, XIANG J X, et al. Characterization and secondary sludge dewatering performance of a novel combined aluminum-ferrous-starch flocculant (CAFS)[J]. Chemical Engineering Science, 2017, 173: 335-345. doi: 10.1016/j.ces.2017.08.005 -