-
分子印迹技术(MIT)是一种模拟了酶—底物或者抗原—抗体识别体系,使用特定的化学方法在载体的空间结构和结合位点上构建具有特异性结合特定分子聚合物的方法. 自1993年瑞典Lund大学的Mosbach等[1] 在Nature上研究报道以后,便成为国内外的研究热点. 分子印迹材料(MIPs)具有识别性强、物化性质稳定、制备简便、溶剂消耗量小、可重复使用等优点,在物质分离纯化、仿生传感、药物分析、环境治理等多个领域均具有广阔的应用前景. 分子印迹技术在小分子领域已经趋于成熟,而生物大分子(如蛋白质、多糖和核酸等)具有大分子量和复杂的表面结构等原因,导致其印迹具有很大的挑战性. 传统的MIPs由于具有固液分离复杂、难回收等问题,在发展和应用上受到了一定的限制,而磁性材料具有易回收分离、超顺磁性等特点,将磁性材料引入到MIPs的制备中不仅可以保留其对目标分子的高选择性与高识别性的特性,还可以赋予其超顺磁性,为材料的分离、回收和新性能的应用与拓展提供了可能,因此,磁性分子印迹材料(MMIPs)受到了广泛关注.
本文综述了生物大分子磁性分子印迹材料(BMMIPs)的制备原理及其方法、生物大分子分离领域取得的成就,并对其在生物大分子领域的发展现状及问题进行了阐述,最后讨论了该领域未来发展趋势和存在的挑战.
磁性分子印迹材料在生物大分子分离方面的研究及应用
Study and application of magnetic molecularly imprinted polymers in the separation of biomacromolecules
-
摘要: 磁性分子印迹材料(MMIPs)具有识别性强、化学和物理稳定性高、生物兼容性好、回收简单、可重复使用等优点,已发展成为高亲和性、高选择性分离小分子物质的重要手段. 生物大分子,如糖类、蛋白质和核酸等,因其传质阻力大、结构复杂,MMIPs在生物大分子分离方面的研究和应用相对滞后. 本文简要介绍了MMIPs技术的原理、制备方法及其在生物医药、环境监测、环境治理等领域的应用现状,并重点综述了MMIPs分离生物大分子方面的最新进展和有待解决的问题,以期为MMIPs在生物大分子分离领域的发展和应用提供参考.Abstract: Magnetic molecularly imprinted polymers (MMIPs) have been developed as an important method to separate small molecules with high affinity and good selectivity due to their specific recognition, high physical-chemical stability, good biological compatibility, easy recovery and perfect reusability. However, the study and application of MMIPs in the separation of biological macromolecules is behind that of small molecular substances. As the biological macromolecules such as polysaccharides, proteins and nucleic acids, have the high mass transfer resistance and complex structure. In this paper, the principle, the preparation methods and applications of MMIPs are briefly introduced. Following, the latest developments and present problems in the field of biomacromolecule separation by MMIPs are critically reviewed. It is expected to provide references for the development and application of MMIPs in the separation of biological macromolecules.
-
Key words:
- magnetic molecular imprinting polymers /
- biomacromolecules /
- separation /
- protein /
- polysaccharide /
- nanomaterials.
-
表 1 MMIPs研究现状
Table 1. Research status of MMIPs
表 2 新型载体在生物大分子分子印迹上的应用
Table 2. Application of novel carriers in molecular imprinting of biomacromolecules
表 3 以生物大分子为模板的MMIPs应用
Table 3. Application of MMIPs targeting biomacromolecules
-
[1] VLATAKIS G, ANDERSSON L I, MÜLLER R, et al. Drug assay using antibody mimics made by molecular imprinting [J]. Nature, 1993, 361(6413): 645-647. doi: 10.1038/361645a0 [2] HU T L, CHEN R, WANG Q, et al. Recent advances and applications of molecularly imprinted polymers in solid-phase extraction for real sample analysis [J]. Journal of Separation Science, 2021, 44(1): 274-309. doi: 10.1002/jssc.202000832 [3] FUCHS Y, SOPPERA O, HAUPT K. Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—A review [J]. Analytica Chimica Acta, 2012, 717: 7-20. doi: 10.1016/j.aca.2011.12.026 [4] HUANG C, WANG H W, MA S J, et al. Recent application of molecular imprinting technique in food safety [J]. Journal of Chromatography A, 2021, 1657: 462579. doi: 10.1016/j.chroma.2021.462579 [5] JIA X P, XU M L, WANG Y Z, et al. Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin [J]. The Analyst, 2013, 138(2): 651-658. doi: 10.1039/C2AN36313E [6] NGUYEN H T, VUONG BUI N T, KANHOUNNON W G, et al. Co-precipitation polymerization of dual functional monomers and polystyrene-co-divinylbenzene for ciprofloxacin imprinted polymer preparation [J]. RSC Advances, 2021, 11(54): 34281-34290. doi: 10.1039/D1RA05505D [7] 鹿现永, 黄达, 杨新林, 等. 蒸馏沉淀聚合法制备窄分散聚二乙烯基苯-co-丙烯腈功能聚合物微球 [J]. 高分子学报, 2007(2): 103-107. doi: 10.3321/j.issn:1000-3304.2007.02.002 LU X Y, HUANG D, YANG X L, et al. Preparation of monodisperse poly(divinylbenzene-co-acrylonitrile) microspheres by distillation precipitation polymerization [J]. Acta Polymerica Sinica, 2007(2): 103-107(in Chinese). doi: 10.3321/j.issn:1000-3304.2007.02.002
[8] ROSSETTI C, ŚWITNICKA-PLAK M A, GRØNHAUG HALVORSEN T, et al. Automated protein biomarker analysis: On-line extraction of clinical samples by molecularly imprinted polymers [J]. Scientific Reports, 2017, 7: 44298. doi: 10.1038/srep44298 [9] 赖家平, 孙慧, 陈芳, 等. 分子印迹微米微球的合成方法及在固相萃取中的应用研究进展 [J]. 分析测试学报, 2012, 31(9): 1161-1169. doi: 10.3969/j.issn.1004-4957.2012.09.024 LAI J P, SUN H, CHEN F, et al. Progresses on synthesis methods of molecularly imprinted microspheres and their applications in solid-phase extraction [J]. Journal of Instrumental Analysis, 2012, 31(9): 1161-1169(in Chinese). doi: 10.3969/j.issn.1004-4957.2012.09.024
[10] YU J H, WAN F W, ZHANG C C, et al. Molecularly imprinted polymeric microspheres for determination of bovine serum albumin based on flow injection chemiluminescence sensor [J]. Biosensors and Bioelectronics, 2010, 26(2): 632-637. doi: 10.1016/j.bios.2010.07.009 [11] DADASHI-SILAB S, LORANDI F, FANTIN M, et al. Redox-switchable atom transfer radical polymerization [J]. Chemical Communications, 2019, 55(5): 612-615. doi: 10.1039/C8CC09209E [12] GAI Q Q, QU F, LIU Z J, et al. Superparamagnetic lysozyme surface-imprinted polymer prepared by atom transfer radical polymerization and its application for protein separation [J]. Journal of Chromatography A, 2010, 1217(31): 5035-5042. doi: 10.1016/j.chroma.2010.06.001 [13] GAI Q Q, QU F, ZHANG T, et al. The preparation of bovine serum albumin surface-imprinted superparamagnetic polymer with the assistance of basic functional monomer and its application for protein separation [J]. Journal of Chromatography A, 2011, 1218(22): 3489-3495. doi: 10.1016/j.chroma.2011.03.069 [14] FENG Y G, LIU Q, YE L F, et al. Ordered macroporous quercetin molecularly imprinted polymers: Preparation, characterization, and separation performance [J]. Journal of Separation Science, 2017, 40(4): 971-978. doi: 10.1002/jssc.201601011 [15] MOEIN M M. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: A review of the last decade [J]. Talanta, 2021, 224: 121794. doi: 10.1016/j.talanta.2020.121794 [16] QIN Y P, JIA C, HE X W, et al. Thermosensitive metal chelation dual-template epitope imprinting polymer using distillation-precipitation polymerization for simultaneous recognition of human serum albumin and transferrin [J]. ACS Applied Materials & Interfaces, 2018, 10(10): 9060-9068. [17] QU X, WANG F F, SUN Y, et al. Selective extraction of bioactive glycoprotein in neutral environment through Concanavalin A mediated template immobilization and dopamine surface imprinting [J]. RSC Advances, 2016, 6(89): 86455-86463. doi: 10.1039/C6RA11040A [18] YANG Z T, WANG J Q, SHAH T, et al. Development of surface imprinted heterogeneous nitrogen-doped magnetic carbon nanotubes as promising materials for protein separation and purification [J]. Talanta, 2021, 224: 121760. doi: 10.1016/j.talanta.2020.121760 [19] FAN J P, YU J X, YANG X M, et al. Preparation, characterization, and application of multiple stimuli-responsive rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres (Fe3O4@void@PILMIP) for specific recognition of protein [J]. Chemical Engineering Journal, 2018, 337: 722-732. doi: 10.1016/j.cej.2017.12.159 [20] KUHN J, AYLAZ G, SARI E, et al. Selective binding of antibiotics using magnetic molecular imprint polymer (MMIP) networks prepared from vinyl-functionalized magnetic nanoparticles [J]. Journal of Hazardous Materials, 2020, 387: 121709. doi: 10.1016/j.jhazmat.2019.121709 [21] 焦琳娟, 徐先燕, 吴晓莹, 等. 基于SI-ATRP技术制备磁性甲基对硫磷分子印迹聚合物及其吸附性能 [J]. 环境化学, 2020, 39(1): 89-100. doi: 10.7524/j.issn.0254-6108.2019070503 JIAO L J, XU X Y, WU X Y, et al. Synthesis of methyl-parathion molecularly imprinted magnetic nanoparticles via surface-initiated atom transfer radical polymerization (SI-ATRP) and its adsorption properties [J]. Environmental Chemistry, 2020, 39(1): 89-100(in Chinese). doi: 10.7524/j.issn.0254-6108.2019070503
[22] 张鑫, 李彦松, 汤波, 等. 磁性分子印迹微球的制备及其对熊果酸的选择性分离 [J]. 分析化学, 2021, 49(4): 628-635. doi: 10.19756/j.issn.0253-3820.201603 ZHANG X, LI Y S, TANG B, et al. Preparation of magnetic molecularly imprinted microspheres for selective separation of ursolic acid [J]. Chinese Journal of Analytical Chemistry, 2021, 49(4): 628-635(in Chinese). doi: 10.19756/j.issn.0253-3820.201603
[23] KONG D L, QIAO N, WANG N, et al. Facile preparation of a nano-imprinted polymer on magnetite nanoparticles for the rapid separation of lead ions from aqueous solution [J]. Physical Chemistry Chemical Physics:PCCP, 2018, 20(18): 12870-12878. doi: 10.1039/C8CP01163J [24] LI W, SUN Y, YANG C C, et al. Fabrication of surface protein-imprinted nanoparticles using a metal chelating monomer via aqueous precipitation polymerization [J]. ACS Applied Materials & Interfaces, 2015, 7(49): 27188-27196. [25] YANG Z T, YANG K, CUI Y H, et al. Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA [J]. Journal of Materials Science & Technology, 2021, 74: 203-215. [26] WU X, CHEN X M, ZHONG G Q, et al. A novel Wulff-type boronate acid-functionalized magnetic metal-organic framework imprinted polymer for specific recognition of glycoproteins under physiological pH [J]. Journal of Separation Science, 2020, 43(19): 3785-3792. doi: 10.1002/jssc.202000437 [27] ZHAO Y J, CHEN Y J, FANG M Y, et al. Silanized carbon dot-based thermo-sensitive molecularly imprinted fluorescent sensor for bovine hemoglobin detection [J]. Analytical and Bioanalytical Chemistry, 2020, 412(23): 5811-5817. doi: 10.1007/s00216-020-02803-5 [28] HASHEMI M, NAZARI Z. Preparation of molecularly imprinted polymer based on the magnetic multiwalled carbon nanotubes for selective separation and spectrophotometric determination of melamine in milk samples [J]. Journal of Food Composition and Analysis, 2018, 69: 98-106. doi: 10.1016/j.jfca.2018.02.010 [29] LI J Y, WANG Y R, YU X X. Magnetic molecularly imprinted polymers: Synthesis and applications in the selective extraction of antibiotics [J]. Frontiers in Chemistry, 2021, 9: 706311. doi: 10.3389/fchem.2021.706311 [30] SUN X Y, MA R T, SHI Y P. Preparation and analysis of glycoprotein magnetic imprinted particles in weak acid environment [C]. Proceedings of the 22nd National Chromatography Academic Report and Instrument Exhibition of Chinese Chemical Society (Volume 1), 2012: 202-203. [31] DONG C Y, SHI H X, HAN Y R, et al. Molecularly imprinted polymers by the surface imprinting technique [J]. European Polymer Journal, 2021, 145: 110231. doi: 10.1016/j.eurpolymj.2020.110231 [32] WANG X D, CHEN G, ZHANG P, et al. Advances in epitope molecularly imprinted polymers for protein detection: A review [J]. Analytical Methods:Advancing Methods and Applications, 2021, 13(14): 1660-1671. [33] 杨开广, 李森武, 刘路宽, 等. 抗原决定基印迹材料及其应用 [J]. 科学通报, 2019, 64(13): 1368-1379. doi: 10.1360/N972018-01033 YANG K G, LI S W, LIU L K, et al. Recent advances and application of epitope imprinted materials [J]. Chinese Science Bulletin, 2019, 64(13): 1368-1379(in Chinese). doi: 10.1360/N972018-01033
[34] LI S W, YANG K G, LIU J X, et al. Surface-imprinted nanoparticles prepared with a His-tag-anchored epitope as the template [J]. Analytical Chemistry, 2015, 87(9): 4617-4620. doi: 10.1021/ac5047246 [35] XING R R, MA Y Y, WANG Y J, et al. Specific recognition of proteins and peptides via controllable oriented surface imprinting of boronate affinity-anchored epitopes [J]. Chemical Science, 2018, 10(6): 1831-1835. [36] HUANG W, HOU X Y, TONG Y K, et al. Determination of sialic acid in serum samples by dispersive solid-phase extraction based on boronate-affinity magnetic hollow molecularly imprinted polymer sorbent [J]. RSC Advances, 2019, 9(10): 5394-5401. doi: 10.1039/C9RA00511K [37] LEE M H, LIN C C, THOMAS J L, et al. Epitope recognition of magnetic peptide-imprinted chitosan composite nanoparticles for the extraction of CRISPR/dCas9a proteins from transfected cells [J]. Nanotechnology, 2021, 32(18): 18LT02. doi: 10.1088/1361-6528/abde00 [38] BIE Z J, CHEN Y, YE J, et al. Boronate-affinity glycan-oriented surface imprinting: A new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments [J]. Angewandte Chemie International Edition, 2015, 54(35): 10211-10215. doi: 10.1002/anie.201503066 [39] CHEN G N, SHU H, LU W, et al. A surfactant-mediated Sol-gel method for the preparation of molecularly imprinted polymers and its application in a biomimetic immunoassay for the detection of protein [J]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 190: 113511. doi: 10.1016/j.jpba.2020.113511 [40] CHEN F F, MAO M, WANG J Y, et al. A dual-step immobilization/imprinting approach to prepare magnetic molecular imprinted polymers for selective removal of human serum albumin [J]. Talanta, 2020, 209: 120509. doi: 10.1016/j.talanta.2019.120509 [41] FANG X W, WANG Z D, SUN N R, et al. Magnetic metal oxide affinity chromatography-based molecularly imprinted approach for effective separation of serous and urinary phosphoprotein biomarker [J]. Talanta, 2021, 226: 122143. doi: 10.1016/j.talanta.2021.122143 [42] LI G Z, ROW K H. Magnetic molecularly imprinted polymers for recognition and enrichment of polysaccharides from seaweed [J]. Journal of Separation Science, 2017, 40(24): 4765-4772. doi: 10.1002/jssc.201700947 [43] DINC M, ESEN C, MIZAIKOFF B. Recent advances on core-shell magnetic molecularly imprinted polymers for biomacromolecules [J]. TrAC Trends in Analytical Chemistry, 2019, 114: 202-217. doi: 10.1016/j.trac.2019.03.008 [44] WANG S S, YE J, BIE Z J, et al. Affinity-tunable specific recognition of glycoproteins via boronate affinity-based controllable oriented surface imprinting [J]. Chemical Science, 2014, 5(3): 1135. doi: 10.1039/c3sc52986j [45] DAR K K, SHAO S N, TAN T W, et al. Molecularly imprinted polymers for the selective recognition of microorganisms [J]. Biotechnology Advances, 2020, 45: 107640. doi: 10.1016/j.biotechadv.2020.107640 [46] ZHOU J, GAN N, LI T H, et al. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes [J]. Biosensors & Bioelectronics, 2014, 54: 199-206. [47] TIAN X, SONG H J, WANG Y, et al. Hydrophilic magnetic molecularly imprinted nanobeads for efficient enrichment and high performance liquid chromatographic detection of 17beta-estradiol in environmental water samples [J]. Talanta, 2020, 220: 121367. doi: 10.1016/j.talanta.2020.121367 [48] MING W N, WANG X Y, LU W H, et al. Magnetic molecularly imprinted polymers for the fluorescent detection of trace 17β-estradiol in environmental water [J]. Sensors and Actuators B:Chemical, 2017, 238: 1309-1315. doi: 10.1016/j.snb.2016.09.111 [49] TAN F, LIU M, REN S. Preparation of polydopamine-coated graphene oxide/Fe3O4 imprinted nanoparticles for selective removal of fluoroquinolone antibiotics in water [J]. Scientific Reports, 2017, 7: 5735. doi: 10.1038/s41598-017-06303-y [50] 张王超, 郭洪成, 郭冀峰, 等. 微纳米磁性粒子对膜生物反应器运行效能的影响 [J]. 环境工程学报, 2020, 14(10): 2719-2727. doi: 10.12030/j.cjee.201910144 ZHANG W C, GUO H C, GUO J F, et al. Effect of magnetic microparticles and nanoparticles on the performance of membrane bioreactor [J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2719-2727(in Chinese). doi: 10.12030/j.cjee.201910144
[51] GUO H C, HU J J, LI J X, et al. Systematic insight into the short-term and long-term effects of magnetic microparticles and nanoparticles on critical flux in membrane bioreactors [J]. Journal of Membrane Science, 2019, 582: 284-288. doi: 10.1016/j.memsci.2019.04.015 [52] LIU Y, LIU Q, LI J X, et al. Effect of magnetic powder on membrane fouling mitigation and microbial community/composition in membrane bioreactors (MBRs) for municipal wastewater treatment [J]. Bioresource Technology, 2018, 249: 377-385. doi: 10.1016/j.biortech.2017.10.027 [53] LIU Y, LI J X, GUO W S, et al. Use of magnetic powder to effectively improve the performance of sequencing batch reactors (SBRs) in municipal wastewater treatment [J]. Bioresource Technology, 2018, 248: 135-139. doi: 10.1016/j.biortech.2017.06.069 [54] ZHANG X, TANG B, LI Y S, et al. Molecularly imprinted magnetic fluorescent nanocomposite-based sensor for selective detection of lysozyme [J]. Nanomaterials (Basel, Switzerland), 2021, 11(6): 1575. doi: 10.3390/nano11061575 [55] LIANG A X, TANG B, HOU H P, et al. A novel CuFe2O4 nanospheres molecularly imprinted polymers modified electrochemical sensor for lysozyme determination [J]. Journal of Electroanalytical Chemistry, 2019, 853: 113465. doi: 10.1016/j.jelechem.2019.113465 [56] LI H H, AHMAD W, RONG Y W, et al. Designing an aptamer based magnetic and upconversion nanoparticles conjugated fluorescence sensor for screening Escherichia coli in food [J]. Food Control, 2020, 107: 106761. doi: 10.1016/j.foodcont.2019.106761 [57] ARABI M, OSTOVAN A, BAGHERI A R, et al. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis [J]. TrAC Trends in Analytical Chemistry, 2020, 128: 115923. doi: 10.1016/j.trac.2020.115923