Loading [MathJax]/jax/output/HTML-CSS/jax.js

离子交换法改性的NaY分子筛对吸附含硫VOCs的性能提升

黄坚, 李先锋, 谢军, 陈瑶姬, 邓丽萍, 李超群, 徐文青. 离子交换法改性的NaY分子筛对吸附含硫VOCs的性能提升[J]. 环境工程学报, 2022, 16(10): 3335-3345. doi: 10.12030/j.cjee.202204053
引用本文: 黄坚, 李先锋, 谢军, 陈瑶姬, 邓丽萍, 李超群, 徐文青. 离子交换法改性的NaY分子筛对吸附含硫VOCs的性能提升[J]. 环境工程学报, 2022, 16(10): 3335-3345. doi: 10.12030/j.cjee.202204053
HUANG Jian, LI Xianfeng, XIE Jun, CHEN Yaoji, DENG Liping, LI Chaoqun, XU Wenqing. Improvement of the adsorption performance of sulfur-containing VOCs by NaY zeolite modified by ion exchange method[J]. Chinese Journal of Environmental Engineering, 2022, 16(10): 3335-3345. doi: 10.12030/j.cjee.202204053
Citation: HUANG Jian, LI Xianfeng, XIE Jun, CHEN Yaoji, DENG Liping, LI Chaoqun, XU Wenqing. Improvement of the adsorption performance of sulfur-containing VOCs by NaY zeolite modified by ion exchange method[J]. Chinese Journal of Environmental Engineering, 2022, 16(10): 3335-3345. doi: 10.12030/j.cjee.202204053

离子交换法改性的NaY分子筛对吸附含硫VOCs的性能提升

    作者简介: 黄坚(1968—),男,大学本科,中级工程师,653800672@qq.com
    通讯作者: 徐文青(1983—),女,博士,研究员,wqxu@ipe.ac.cn
  • 基金项目:
    企业合作项目-焦化行业挥发性有机废气燃烧控制技术与装备开发 (ZNKJ-2020-164) ;
  • 中图分类号: X511

Improvement of the adsorption performance of sulfur-containing VOCs by NaY zeolite modified by ion exchange method

    Corresponding author: XU Wenqing, wqxu@ipe.ac.cn
  • 摘要: 为解决分子筛在含湿条件下对小分子含硫VOCs吸附性能差的问题,并实现高效捕集,采用液相离子交换法选取不同金属离子 (Ag、Cu、Mg、Zn、Ce、Ca等) 对NaY和USY-3分子筛进行改性,以二甲基硫醚 (DMS) 作为模型物,考察2种改性分子筛对高湿度含硫VOCs脱除效果,进而优选性能优异的改性分子筛,再通过多组分VOCs竞争吸附实验来模拟实际应用效果。结果表明,NaY和USY-3分子筛改性后均可保持结构稳定,NaY型分子筛较USY-3分子筛具有更高的离子交换容量,改性后吸附性能提升更明显,CuY、AgY分子筛的DMS吸附性能优异 (CuY的穿透吸附量为203 mg·g−1,AgY的穿透吸附量为132 mg·g−1) 。然而,仅有Ag离子交换可提高NaY分子筛的抗水性,在1.5%水蒸气存在时,DMS穿透吸附量最高可达99 mg·g−1,且5次循环再生后吸附容量仍在90%。在对二甲苯 (PX) 存在时,分子筛对2种VOCs的吸附量均高于80 mg·g−1,且DMS具有绝对的竞争吸附优势。本研究表明AgY分子筛具有优异的抗水性和吸附选择性,可为其在含湿条件下对VOCs中小分子硫化物的吸附净化应用提供参考。
  • 挥发性有机物 (volatile organic compounds, VOCs) 是光化学烟雾和二次有机气溶胶 (SOAs) 的重要前体物[1],易引发大气污染如臭氧污染及PM2.5[2]。VOCs会导致人体内肿瘤的形成[3]。2020年,我国工业源VOCs的排放量约为217.1×104 t,占总排放量的35.6%。其中,石油、煤炭及其他燃料加工业为52.79×104 t,化学原料和化学制品制造业为42.77×104 t,橡胶和塑料制品业为13.46×104 t,其他行业为108.12×104 t[4]。为进一步改善环境空气质量,应全面加强重点行业VOCs的综合治理。

    吸附技术具有能耗低、操作简单、运行成本低等优点,广泛应用于低浓度含VOCs废气的净化中[5]。活性炭是最为常用的吸附剂,具有良好的物理化学性质,但在温度较高时易自燃存在安全隐患[6]。分子筛不易燃,其煅烧再生性能优异,在干燥条件下对VOCs吸附性能良好而成为替代活性炭的吸附材料[7]。在实际工业过程中,VOCs中往往含有水分,将与VOCs发生竞争吸附,从而导致吸附剂的吸附容量下降,尤其在高湿度环境下,吸附容量将急剧下降[8-10]。YIN等[11]采用高温水热法对NaY分子筛疏水改性,未改性的NaY分子筛在干燥条件下对甲苯的吸附量为178.6 mg·g−1,在相对湿度 (relative humidity,RH) 为50%时对甲苯的吸附量为11.26 mg·g−1,对水的吸附量为237.24 mg·g−1。LI等[12]在不同湿度下,研究了10种商业吸附剂在碱改性前后对VOCs的吸附解吸特性,发现在加入湿度后的体系中,大部分分子筛对二甲苯的吸附能力几乎下降到零。因此,提高水分存在条件下分子筛吸附剂的吸附性能是吸附工艺实际应用面临的关键问题。

    分子筛的亲疏水性程度与SiO2/AlO3和表面极性羟基有关,故分子筛疏水改性的方法通常包括脱铝和覆硅改性[13-14]。常用的脱铝方法有水热脱铝、酸处理、EDTA处理,但其对材料的晶体结构有影响,会降低材料结晶度[15]。覆硅法有接枝法、共缩合法、有序介孔有机硅法,其中接枝法和共缩合法这2种方法研究较多[16-17]。LU等[18]通过苯基硅烷的架桥作用合成了具有高疏水性和热稳定性的Y@St-DVB复合材料,在RH为60%和90%条件下分别是Y沸石的1.97和1.96倍,对甲苯的吸附量分别为131.9 mg·g−1和118.3 mg·g−1。李承龙等[19]利用正辛基三乙氧基硅烷改性,成功地将—Si(CH2)7CH3基团接枝到ZSM-5分子筛表面,改性后的分子筛水接触角增大到152°,静态水吸附量下降了26.4%,实现了超疏水性,但由于改性后分子筛的孔容减小,对正己烷静态吸附量由8.60%降至7.45%。张媛媛等[20]采用3种不同硅烷试剂对NaY分子筛进行改性,改性后的样品在RH为80%条件下甲苯的吸附量都得到了增加,其中三甲基氯硅烷 (TMCS) 增加量最大为78%,由12.2 mg·g−1增至21.1 mg·g−1

    汽车涂装行业废气湿度高、成分复杂,亟需根据涂装行业环境条件,研究相关污染物的排放特征及吸附过程特点,并开展相应的分子筛疏水改性研究。然而,相关成果尚未见报道。本研究以汽车涂装行业VOCs污染物为对象,选取甲苯、二甲苯、乙酸丁酯为代表污染物,对NaY分子筛进行覆硅改性研究,结合分子筛结构表征和疏水测定,获取有效的疏水改性方法,制备用于汽车涂装高湿度环境的疏水性强且吸附性能佳的改性NaY分子筛,以期为涂装行业分子筛转轮VOCs吸附的工业应用提供参考。

    NaY、13X、5A、10A分子筛购置于南开催化剂,其参数见表1。甲苯、二甲苯、乙酸丁酯购置于阿拉丁生化科技有限公司均为分析纯,动力学直径和沸点见表2。正硅酸乙酯、正己烷、无水乙醇购置于科密欧化学试剂有限公司均为分析纯。盐酸购置于国药集团化学试剂有限公司均为分析纯。氨水、三甲基氯硅烷购置于阿拉丁生化科技有限公司均为分析纯。

    表 1  分子筛参数
    Table 1.  Parameters of molecular sieve
    分子筛 BET比表面积/(m2·g−1) 孔容/(cm3·g−1) 孔径/nm 静态水吸附量 Si/Al
    NaY 390.233 0.947 9.706 25.74% 5.2
    13X 297.347 0.444 7.976 21.42% 4.8
    5A 203.873 0.277 5.429 18.46% 3
    10A 289.237 0.642 8.878 21.85% 2.5
     | Show Table
    DownLoad: CSV
    表 2  VOCs的物性参数
    Table 2.  Physical parameters of VOCs
    VOCs 分子式 分子量/(g·mol−1) 沸点/ ℃ 动力学直径/nm
    甲苯 C7H8 92.14 110.6 0.67
    二甲苯 C8H10 106.17 138.5 0.70
    乙酸丁酯 C6H12O2 116.16 126.6 1.20
     | Show Table
    DownLoad: CSV

    分子筛在实验前置于马弗炉中500 ℃下活化5 h。首先,对NaY分子筛进行预处理,将正硅酸乙酯 (tetraethyl orthosilicate,TEOS) 、无水乙醇、水混合,并用1 mol·L−1的盐酸调节pH到2~3,促进TEOS水解;在6 h后,缓慢加入质量分数为5%氨水调节pH至7配制好老化液,将10 g分子筛加入老化液中,在室温下静置12 h;加入50 mL正己烷及不同体积 (0、2.5、5、7.5、10、12.5 mL) 的三甲基氯硅烷 (trimethylchlorosilane,TMCS) 静置24 h,正己烷淋洗3遍后,于60 ℃下干燥12 h,再在200 ℃下干燥12 h,得到不同TMCS/正己烷比例的材料,并分别记为NaY-1 (无TMCS)、NaY-2 (1∶20)、NaY-3 (1∶10)、NaY-4 (1∶7)、NaY-5 (1∶5)、NaY-6 (1∶4)。

    采用比表面积测试仪 (V-Sorb 2800P) 对分子筛比表面积孔径分布进行表征;X射线衍射仪 (UItima Ⅳ) 对分子筛晶体结构进行表征;傅里叶红外光谱仪 (Vertex 70) 对分子筛表面官能团进行表征;采用能量色散光谱 (JEOL Corp) 对分子筛中的所有元素种类和含量进行测定;NH3-TPD (ChemiSorb 2720) 对分子筛表面Lewis酸位点和Brønsted酸位点进行表征;水接触角测试仪 (JYC-8) 对分子筛亲疏水性进行表征。

    吸附实验在常温常压下进行,实验系统如图1所示。由注射泵 (LSP02-D) 将VOCs液体精准注入置于恒温水浴锅 (50 ℃) 中的烧瓶内,由质量流量计 (北京七星CS-200D,10 L) 控制经硅胶除湿后的总空气流量为3 L·min−1。一路空气进入水浴锅内三颈烧瓶,另一路空气进入水蒸气发生器,通过鼓泡法控制湿度,两路气体共同进入缓冲瓶内,浓度、湿度稳定的VOCs模拟废气经分子筛吸附后排出。吸附器内径为10 mm,长度120 mm,分子筛装填量3.20 g。吸附器置于恒温水浴锅 (温度为30 ℃) 中。在吸附器进、出口使用气相色谱仪 (福立GC9700Ⅱ) 测定VOCs质量浓度,得到穿透曲线。当吸附反应器VOCs出口浓度为进口浓度的95%时认为吸附达到饱和,即可结束实验。尾气经净化后排出。

    图 1  吸附实验系统图
    Figure 1.  System diagram for adsorption experiments

    以吸附时间 (t) 为横坐标,以i分钟时进出口VOCs质量浓度之比 (Ci/C0) 为纵坐标,得到VOCs的吸附穿透曲线。通过式 (1) 对吸附穿透曲线进行积分计算,得到VOCs的平衡吸附容量。

    Q=F×C0×106W×(titi0CiC0dt) (1)

    式中:Q为平衡吸附容量,mg·g−1F为气流速度,mL·min−1C0为进口VOCs质量浓度,mg·m−3Ci为i分钟时吸附器出口VOCs质量浓度,mg·m−3W为吸附剂装填量,g;ti为吸附平衡时间,min。

    分子筛静态水吸附实验按照国标GB/T 6287-2021《分子筛静态水吸附测定方法》测定计算。具体操作步骤为:试料550 ℃焙烧1 h,取出瓷坩埚,放入真空干燥器内,冷却至室温;取出瓷坩埚,将样品倒入质量为m1的称量瓶内;随后立即在分析天平上称重m2;将装有试样的称量瓶置于盛有饱和氯化钠溶液的干燥器中;将干燥器放在鼓风干燥箱内,开启鼓风机,箱温控制在 (35±1) ℃,恒温吸附24 h;取出称量瓶称重m3。再按式 (2) 计算静态水吸附量。

    X=m3m2m2m1×100% (2)

    式中:m3为称量瓶加吸水后材料的质量,g;m2为称量瓶加焙烧后材料的质量,g;m1为称量瓶的质量,g。

    将筛选出的疏水性最佳的分子筛进行重复吸脱附实验,以二甲苯、甲苯、乙酸丁酯为吸附质,在相对湿度RH为0%和65%的条件下,采用热脱附的方式在250 ℃下脱附2 h,对脱附后的样品进行动态吸附测试。

    在温度为30 ℃、RH为0%、进气量为3 L·min−1的条件下,测定3种VOCs在NaY、13X、10A、5A这4种分子筛上的饱和吸附量,结果如图2所示。乙酸丁酯、甲苯、二甲苯在NaY分子筛上的平衡吸附量分别为236.43、144.6、327.64 mg·g−1,均大于其他3种分子筛,而乙酸丁酯、甲苯、二甲苯在5A分子筛上吸附量最小。分析原因为NaY分子筛的比表面积、孔容、孔径均大于其他3种,可为VOCs的吸附提供更多吸附位点,而乙酸丁酯、甲苯、二甲苯的动力学直径均大于5A分子筛的有效孔径 (0.5 nm) 。因此,5A分子筛的吸附量最小,故选用NaY分子筛进行后续研究。

    图 2  乙酸丁酯、甲苯、二甲苯在不同吸附剂上的吸附量
    Figure 2.  Adsorption capacity of butyl acetate, toluene and xylene on different adsorbents

    在保证两路气流的总体积流速为3L·min−1的前提下,通过质量流量计控制气流速度从而控制鼓泡速率来调节湿度。NaY分子筛在温度为30 ℃,RH分别为0%、25%、45%、65%、85%这5个不同湿度条件下的乙酸丁酯、甲苯,以及二甲苯,3种污染物的吸附穿透曲线如图3所示。

    图 3  不同湿度下VOCs的吸附穿透曲线
    Figure 3.  The adsorption breakthrough curves of VOCs at different humidity

    图3 (a) 和 (b) 表明,H2O-二甲苯、H2O-甲苯在NaY分子筛上的二元吸附过程存在竞争吸附行为。在吸附开始时,H2O和污染物均能被吸附在NaY上,在吸附器的出口污染物浓度为零。随着吸附的进行,污染物的Ci/C0从零逐渐增加,当NaY表面吸附位点被吸附物占据时,H2O的进一步吸附会取代已被吸附的污染物,导致出口污染物的浓度大于初始质量浓度。如在H2O-二甲苯体系中,二甲苯被取代,在H2O-甲苯体系中,甲苯被取代,被取代组分穿透曲线出现驼峰 (Ci/C0≥1) 。导致这一现象的原因是NaY表面存在亲水性Si—OH键,水分子因具有—OH键比甲苯和二甲苯更易吸附。VOCs吸附以物理吸附为主,与吸附剂的比表面积密切相关[21]。与VOCs在吸附剂上的吸附机制不同,水分子首先在较低的相对压力下通过H键牢牢地吸附在含氧基团上,然后再进一步吸附在之前吸附的水分子上形成水簇,最终在较高相对压力下被填充到孔隙中[22-23]。随着吸附的进行,污染物质量浓度最终趋于稳定,达到吸附平衡,Ci/C0接近1。图3 (c) 表明,H2O-乙酸丁酯在NaY分子筛上的二元吸附过程与前2种不太相同。随着吸附的进行,穿透曲线上并未出现H2O取代已经被吸附的乙酸丁酯的驼峰。分析其原因,是由于乙酸丁酯因具有酯基故具有极性,水分子也是极性的,因此H2O-乙酸丁酯在极性NaY分子筛上的吸附并未表现出竞争取代现象。

    图3还表明,随着湿度增加,乙酸丁酯、甲苯和二甲苯的穿透曲线均向左移动,穿透时间急剧缩短,如RH由0%增至85%时,NaY分子筛对二甲苯的穿透时间由485 min缩短至12 min,对甲苯的穿透时间由410 min缩短至11 min,对乙酸丁酯的穿透时间由350 min缩短至35 min。由图3 (a) 、 (b) 还发现,随着湿度的增加,Ci/C0的最大值不断增加,这说明水分对VOCs在NaY分子筛上的取代作用增强。

    图4表明,对于H2O-VOCs在NaY分子筛的二元吸附体系,湿度对吸附过程影响显著。随着湿度的增加,NaY分子筛对污染物的饱和吸附量急剧降低。相对湿度由0%增至85%时,NaY分子筛对二甲苯的吸附量由327.64 mg·g−1降至5.3 mg·g−1 (下降98.38%) ,对甲苯的吸附量由144.6 mg·g−1降至1.13 mg·g−1 (下降99.22%) ,对乙酸丁酯的吸附量由236.43 mg·g−1降至6.36 mg·g−1 (下降97.31%) 。乙酸丁酯相对于其他2种污染物来说减低幅度相对较小,分析原因为水和乙酸丁酯均为极性吸附质,吸附表现为共吸附,取代作用不显著,该结果与图3 (c) 的穿透曲线一致。二甲苯、甲苯这2种污染物都是随着湿度的增加而减小,该结果与图3 (a) 和 (b) 的穿透曲线结果一致,且随着湿度的增加取代作用增强,驼峰越来越高,即Ci/C0的最大值随着湿度的增加愈来愈大。因此,当吸附系统存在水分时,随着湿度的增加会显著降低吸附剂对VOCs的饱和吸附量。

    图 4  湿度对不同VOCs吸附量的影响
    Figure 4.  Influence of humidity on the adsorption capacity of different VOCs

    因汽车涂装车间要求维持相对湿度在 (65±5) %,制备不同TMCS投加量的改性分子筛,即不同TMCS/正己烷比例的NaY-1、NaY-2、NaY-3、NaY-4、NaY-5、NaY-6,研究在温度为30 ℃、RH为65%的湿度条件吸附剂对甲苯的吸附性能,以确定适宜的TMCS投加量,结果如图5图6所示。

    图 5  不同比例TMCS/正己烷改性NaY分子筛的吸附穿透曲线
    Figure 5.  The adsorption breakthrough curves of NaY molecular sieves modified with different ratios of TMCS/hexane
    图 6  不同比例TMCS/正己烷改性NaY分子筛的饱和吸附量
    Figure 6.  Saturation adsorption capacity of NaY molecular sieves modified with different ratios of TMCS/hexane

    图6表明,在H2O-甲苯的二元体系中,随着浸渍分子筛的TMCS/正己烷比例的增加,改性分子筛对甲苯的吸附量呈现先增加后减小的趋势。在TMCS/正己烷比例为1∶7时,即NaY-4对甲苯的吸附量最大,为7.15 mg·g−1,是原始NaY分子筛的吸附量 (2.77 mg·g−1) 的1.95倍。这说明通过正硅酸乙酯、无水乙醇、水混合老化液预处理后再经不同比例的TMCS/正己烷对NaY分子筛进行疏水改性是可行的,其中最佳的TMCS/正己烷体积比为1∶7。

    改性前后样品的XRD谱图如图7所示。所有改性后样品的谱图均与NaY分子筛的谱图极为相似,峰的位置及衍射角几乎相同,没有其他杂质峰,改性后的分子筛保留了NaY分子筛的衍射峰特征,这表明TMCS疏水改性并未破坏分子筛的结构。与此同时,衍射峰的强度虽有所下降,但并未出现其他杂质峰,则说明其结构并未受到很大影响。因此,经预处理的样品及预处理后再经不同比例TMCS/正己烷改性的方法,能在不损坏分子筛结构的前提下对其完成改性。

    图 7  不同比例TMCS/正己烷改性样品的XRD谱图
    Figure 7.  XRD spectra of samples modified with different ratios of TMCS/hexane

    改性前后样品的FTIR谱图如图8所示。1 000~1 100 cm−1附近的吸收峰代表为Si—O—Si,1 600~1 670 cm−1附近的吸收峰代表为Si—OH,2 940~3 000 cm−1附近的吸收峰代表为Si—CH3[24-25]。对比NaY分子筛和改性后样品的谱图发现,NaY-1 (老化液预处理但无TMCS添加) 样品Si—OH振动峰强度增强,峰形变窄。这可能是由于预处理的老化液生成的SiO2气凝胶会在分子筛表面形成羟基 (—OH) ;再经不同比例TMCS/正己烷改性后样品,Si—CH3、Si—O—Si振动峰强度增强,峰形变窄。这可能是由于TMCS的—Si(CH3)3将NaY-1分子筛表面的 (—OH) 取代。疏水性的Si—CH3及Si—O—Si官能团的增多,使得改性后的材料具有良好的疏水性。这也解释了在同一湿度下NaY-1对甲苯的吸附量减少,与原始NaY分子筛相比NaY-1表面亲水的Si—OH官能团增多,H2O会占据甲苯吸附位点。随着TMCS的引入,表面的疏水官能团的引入,对甲苯的吸附也逐渐增多。

    图 8  不同比例TMCS/正己烷改性样品的FTIR谱图
    Figure 8.  FTIR spectra of samples modified with different ratios of TMCS/hexane

    表3为改性前后样品的比表面积、孔容、孔径以及静态水吸附量。再结合表1的内容,改性后样品的比表面积、孔容、孔径均较原始NaY分子筛有所减小;NaY-1的静态水吸附量较NaY的25.74%增加到35.93%,但随着TMCS的引入,样品的静态水吸附量逐渐减小,由35.93%减小到0.53%。分析原因为,预处理的老化液生成的SiO2气凝胶会在分子筛表面形成沉积堵塞孔道使得分子筛的比表面积、孔容、孔径均有所减小,NaY-1分子筛表面亲水的羟基使得其静态水吸附量增大;而经不同比例TMCS/正己烷处理是在预处理后形成的羟基上接枝—Si(CH3)3会使得比表面积等减小,但疏水的Si—O—Si以及Si—CH3增加,使得其静态水吸附量减小。

    表 3  不同比例TMCS/正己烷改性分子筛的比表面积、孔结构及静态水吸附量
    Table 3.  Specific surface area, pore structure and static water adsorption of molecular sieves modified with different ratios of TMCS/hexane
    分子筛比表面积/(m2·g−1)孔容/(cm3·g−1)孔径/nm静态水吸附量
    NaY-1310.530.5369.03435.93%
    NaY-2270.3930.34038.7933.86%
    NaY-3172.4250.31438.0392.18%
    NaY-4167.6090.2817.6721.36%
    NaY-5153.1880.2587.3020.95%
    NaY-6149.1660.2367.0460.53%
     | Show Table
    DownLoad: CSV

    改性前后样品的NH3-TPD谱图如图9所示,主要用于了解分子筛表面酸度。样品分别在100 ℃以下和500 ℃以上有2个NH3的解吸峰,100 ℃以下的为弱酸位点,500 ℃以上的为强酸位点。经过预处理及预处理后再经不同体积比的TMCS/正己烷改性的分子筛在500 ℃以上的NH3解吸峰峰面积和峰值都得到增强,峰的强度由原来的0.003增至0.023,峰面积由原来的3.19增至3.76。研究表明,VOCs污染物会优先吸附在酸性更强的位置,且在环境温度下很难从强酸位点脱附,故随着TMCS的引入,在相同湿度下与未改性的分子筛相比吸附甲苯的Ci/C0的最大值减小 (图5) [26]

    图 9  不同比例TMCS/正己烷改性样品的NH3-TPD谱图
    Figure 9.  NH3-TPD spectra of samples modified with different ratios of TMCS/hexane

    改性前后样品的EDS谱图以及改性后各样品的Si/Al计算结果如图10所示,主要用于了解分子筛中Si和Al的含量。未改性分子筛的Si/Al为5.2 (图10 (a) ) ,NaY-1的Si/Al为6.3 (图10 (b) ),NaY-1的Si/Al相对稍有增加。这是由于预处理的老化液会在分子筛表面生成SiO2气凝胶,但其形成的Si—OH官能团是亲水的,故Si/Al的增加并不能增强其疏水性;预处理后再利用TMCS/正己烷改性。随着TMCS投加量的增加—Si(CH3)3引入,使Si元素的峰增强,导致Si/Al逐渐增大。这说明TMCS的投加会使得NaY分子筛表面Si元素增加,增大的Si/Al使得分子筛具有良好的疏水性。由表3可知,Si/Al虽是影响分子筛亲疏水性的主要因素,但Si/Al的增加会导致比表面积、孔容、孔径的减小,VOCs在吸附剂上的吸附以物理吸附为主,比表面积等的减小会降低对VOCs的吸附量。

    图 10  不同比例TMCS/正己烷疏水改性样品的EDS谱图
    Figure 10.  EDS spectra of samples modified with different ratios of TMCS/hexane

    改性前后样品的水接触角如图11所示,用于判断改性前后吸附剂的疏水性的变化。通常对于水接触角>90°的样品被认为是疏水性的,对于水接触角˂90°的样品被认为是亲水性的[27]。经预处理后的分子筛的水接触角由原来的13.2°降至0°,亲水性增强,这是因为表面接枝了亲水的Si—OH官能团所致;但再经TMCS改性的分子筛的水接触角由原来的13.2°增至121.6°,疏水性增强,这是由于表面接枝了疏水的—Si(CH3)3官能团所致。同时,TMCS接枝在分子筛上后,使得分子筛的比表面积、孔径等减小,增加水分子进入分子筛的困难度,故分子筛的疏水性增强。但随着TMCS/正己烷的体积比的继续增大,分子筛的水接触角稍有下降,但变化不大。故NaY-4,即TMCS/正己烷的体积比为1∶7的改性分子筛效果最佳。

    图 11  不同比例TMCS/正己烷改性样品的水接触角图
    Figure 11.  Water contact angle of samples modified with different ratios of TMCS/hexanee

    对改性后的NaY-4分子筛进行重复吸脱附实验,以二甲苯、甲苯、乙酸丁酯为吸附质,在RH为65%的条件下吸附VOCs,采用热脱附的方式在250 ℃下脱附2 h,后对样品进行动态吸附脱附循环实验,以吸附量和循环使用率 (循环使用后的VOCs吸附量与首次使用的吸附量的比值) 表征吸附剂的吸附脱附性能,结果如图12所示。

    图 12  NaY-4对VOCs的饱和吸附量及循环使用率 (RH=65%)
    Figure 12.  Saturation adsorption capacity and cyclic utilization rate of VOCs by NaY-4 (RH=65%)

    在RH为65%的条件下,NaY-4分子筛经5次吸附脱附循环实验后吸附容量稍有下降。其中,二甲苯由11.69 mg·g−1降至10.82 mg·g−1,降低了7.44%;甲苯由7.15 mg·g−1降至6.84 mg·g−1,降低了4.34%;乙酸丁酯由35.69 mg·g−1降至35.26 mg·g−1,降低了1.20%;但下降幅度较小,约为1.20%~7.44%。这表明NaY-4分子筛在高湿度条件下 (RH为65%) 吸附性能较为稳定。同时,经5次吸附脱附循环实验后循环使用率仍保持在92.56%以上,这表明改性的NaY-4分子筛再生性能良好。

    1) TMCS/正己烷比例为1∶7是NaY分子筛疏水改性的最佳比例,在RH为65%时对甲苯的吸附量为7.15 mg·g-1,是未改性分子筛的2.58倍。2) BET、XRD、NH3-TPD、EDS、水接触角等表征结果表明,改性并未对分子筛的晶型结构造成影响。随着TMCS/正己烷比例的增加,NaY分子筛的比表面积减小,只经预处理的样品会在分子筛表面形成羟基(—OH);而再经不同比例TMCS/正己烷改性后样品羟基会被—Si(CH3)3取代。疏水的Si—CH3及Si—O—Si官能团的增多,使得改性后的材料具备良好疏水性。3) 对NaY-4分子筛进行5次连续吸附脱附,改性后分子筛吸附脱附性能较为稳定,在RH为65%时对VOCs的吸附量仍可保持在92.56%以上。

  • 图 1  实验装置图

    Figure 1.  Diagram of experimental devices

    图 2  分子筛离子交换前后的XRD图谱

    Figure 2.  XRD patterns of the zeolites before and after the ion exchange modification

    图 3  离子交换分子筛的XPS图

    Figure 3.  XPS images of ion exchange zeolites

    图 4  离子交换分子筛的SEM图像和EDS剖面

    Figure 4.  SEM images and EDS profilesof the zeolites

    图 5  离子交换前后分子筛二甲基硫醚穿透吸附量对比

    Figure 5.  Comparision of penetration adsorption capacities of dimethyl thioether before and after the ion exchange

    图 6  离子交换分子筛二甲基硫醚吸附饱和的脱附TG曲线

    Figure 6.  Desorption TG curves for the ion exchange zeolites after saturated adsorption of dimethyl sulfide

    图 7  不同再生气氛下分子筛的脱附产物

    Figure 7.  Desorption products for dimethyl sulfide adsorption on zeolites under different desorption atmosphere.

    图 8  离子交换分子筛再生循环穿透吸附量

    Figure 8.  Regeneration cycle penetration adsorption capacity of ion exchange molecular sieve

    图 9  NaY分子筛二甲基硫醚/对二甲苯竞争吸附穿透曲线

    Figure 9.  Competitive adsorption penetration curve of dimethyl sulfide and p-xylene on NaY zeolite

    图 10  AgY分子筛二甲基硫醚/对二甲苯竞争吸附穿透曲线

    Figure 10.  Competitive adsorption penetration curve of dimethyl sulfide and p-xylene on AgY zeolite

    表 1  离子交换改性前后分子筛结构参数

    Table 1.  Textural parameters for the zeolite before and after ion exchange modification

    分子筛样品种类Stotal/(m2·g−1)Smicro/(m2·g−1)Smeso/(m2·g−1)Vpore/(cm3·g−1)Vmicro/(cm3·g−1)Vmeso/(cm3·g−1)Si/Al比
    XRFICP
    NaY856.6806.150.50.410.320.093.42.7
    CuY851.7802.848.90.360.270.093.42.7
    AgY603.4550.852.60.310.200.113.72.7
    MgY754.3703.251.10.370.270.103.52.8
    ZnY719.9674.245.70.330.250.083.42.8
    CaY745.8702.443.40.370.290.083.12.7
    CeY718.2669.648.60.350.270.083.32.7
    USY-3879.3731.6147.70.610.340.2725.520.5
    CuUSY-3807.8652.8155.90.520.240.2825.420.0
    AgUSY-3767.4611.7155.70.510.240.2726.220.8
    MgUSY-3678.8494.6183.90.510.180.3325.820.6
    ZnUSY-3809.2660.7148.50.510.240.2724.920.6
    CaUSY-3794.1643.4150.70.520.240.2825.420.0
    CeUSY-3766.2599.6166.60.570.230.3425.721.2
    分子筛样品种类Stotal/(m2·g−1)Smicro/(m2·g−1)Smeso/(m2·g−1)Vpore/(cm3·g−1)Vmicro/(cm3·g−1)Vmeso/(cm3·g−1)Si/Al比
    XRFICP
    NaY856.6806.150.50.410.320.093.42.7
    CuY851.7802.848.90.360.270.093.42.7
    AgY603.4550.852.60.310.200.113.72.7
    MgY754.3703.251.10.370.270.103.52.8
    ZnY719.9674.245.70.330.250.083.42.8
    CaY745.8702.443.40.370.290.083.12.7
    CeY718.2669.648.60.350.270.083.32.7
    USY-3879.3731.6147.70.610.340.2725.520.5
    CuUSY-3807.8652.8155.90.520.240.2825.420.0
    AgUSY-3767.4611.7155.70.510.240.2726.220.8
    MgUSY-3678.8494.6183.90.510.180.3325.820.6
    ZnUSY-3809.2660.7148.50.510.240.2724.920.6
    CaUSY-3794.1643.4150.70.520.240.2825.420.0
    CeUSY-3766.2599.6166.60.570.230.3425.721.2
    下载: 导出CSV

    表 2  离子交换改性前后分子筛结构组成

    Table 2.  Structual composition of molecular sieves before and after ion-exchanged modification

    分子筛样品种类化学组成离子交换量/%离子交换度/%
    USY-3Na0.004Al0.116Si2.404O7.476
    CuUSY-3Na0.053Cu0.036Al0.175Si2.498O7.2390.3641.4
    AgUSY-3Na0.001Ag0.105Al0.159Si2.690O7.0451.0566.1
    NaYNa0.652Al0.825Si2.175O6.348
    CuYNa0.293Cu0.269Al1.035Si2.375O6.0282.6951.9
    AgYNa0.070Ag0.889Al1.013Si2.366O5.6618.8987.8
    分子筛样品种类化学组成离子交换量/%离子交换度/%
    USY-3Na0.004Al0.116Si2.404O7.476
    CuUSY-3Na0.053Cu0.036Al0.175Si2.498O7.2390.3641.4
    AgUSY-3Na0.001Ag0.105Al0.159Si2.690O7.0451.0566.1
    NaYNa0.652Al0.825Si2.175O6.348
    CuYNa0.293Cu0.269Al1.035Si2.375O6.0282.6951.9
    AgYNa0.070Ag0.889Al1.013Si2.366O5.6618.8987.8
    下载: 导出CSV

    表 3  离子交换改性分子筛对PX和DMS的穿透吸附量

    Table 3.  Penetration adsorption capacity of PX and DMS on ion-exchange modified molecular sieves

    分子筛水蒸气含量VOCs穿透吸附量/(mg·g−1)DMS穿透吸附量/(mg·g−1)PX穿透吸附量/(mg·g−1)
    NaY024159182
    AgY01698881
    NaY1.5%000
    AgY1.5%968115
    分子筛水蒸气含量VOCs穿透吸附量/(mg·g−1)DMS穿透吸附量/(mg·g−1)PX穿透吸附量/(mg·g−1)
    NaY024159182
    AgY01698881
    NaY1.5%000
    AgY1.5%968115
    下载: 导出CSV
  • [1] 荀志萌, 李照海, 何娇, 等. 大风量低浓度VOCs气体二次吸附浓缩净化技术开发[J]. 环境工程学报, 2016, 10(1): 283-288. doi: 10.12030/j.cjee.20160146
    [2] 党小庆, 王琪, 曹利, 等. 吸附法净化工业VOCs的研究进展[J]. 环境工程学报, 2021, 15(11): 3479-3492. doi: 10.12030/j.cjee.202011052
    [3] 李晓宁. 煤化工企业污水处理站异味治理工艺方案设计 [D]. 济南: 山东大学, 2018.
    [4] 刘星园, 张永锋, 肖凯, 等. 分子筛材料在VOCs吸附中的研究进展[J]. 化工进展, 2021, 41(5): 2504-2510. doi: 10.16085/j.issn.1000-6613.2021-0958
    [5] LI X, ZHANG L, YANG Z, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review[J]. Separation and Purification Technology, 2020, 235: 116213. doi: 10.1016/j.seppur.2019.116213
    [6] 李照海, 羌宁, 刘涛, 等. 活性炭和沸石分子筛处理非稳定排放VOCs气体的性能比较[J]. 环境工程学报, 2017, 11(5): 2933-2939. doi: 10.12030/j.cjee.201611026
    [7] 梁欣欣, 卜龙利, 刘嘉栋, 等. 分子筛负载型吸附剂对典型VOCs的吸附行为特性[J]. 环境工程学报, 2016, 10(6): 3152-3160. doi: 10.12030/j.cjee.201501108
    [8] SHEN X, DU X, YANG D, et al. Influence of physical structures and chemical modification on VOCs adsorption characteristics of molecular sieves[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106729. doi: 10.1016/j.jece.2021.106729
    [9] 李智, 王建英, 王勇, 等. NaY沸石分子筛在VOCs处理中的应用[J]. 环境工程学报, 2020, 14(8): 2211-2221. doi: 10.12030/j.cjee.201910071
    [10] 吴琼, 栾志强, 崔振, 等. Y型蜂窝分子筛疏水改性及对二甲苯吸附性能研究[J]. 应用化工, 2021, 50(06): 1495-1498. doi: 10.3969/j.issn.1671-3206.2021.06.009
    [11] 周瑛, 卢晗锋, 王稚真, 等. VOCs和水在Y型分子筛表面的竞争吸附[J]. 环境工程学报, 2012, 6(5): 1653-1657.
    [12] 姚露露, 周燕芳, 郭珊珊, 等. Y型与ZSM-5型分子筛吸附VOCs性能的对比[J]. 环境工程学报, 2022, 16(1): 182-189. doi: 10.12030/j.cjee.202104061
    [13] 赵亚伟, 沈本贤, 孙辉, 等. 过渡金属改性Y型分子筛吸附脱除低碳烃中二甲基二硫醚[J]. 化工进展, 2017, 36(6): 2190-2196. doi: 10.16085/j.issn.1000-6613.2017.06.032
    [14] 周广林, 蒋晓阳, 周红军. 吸附法脱除液化石油气中的二甲基二硫醚[J]. 现代化工, 2014, 34(1): 72-74. doi: 10.16606/j.cnki.issn0253-4320.2014.01.027
    [15] 吕梦颖, 李芹, 王晓胜, 等. 改性ZSM-5分子筛吸附脱除甲基叔丁基醚中的二甲基二硫醚[J]. 天然气化工(C1化学与化工), 2018, 43(3): 15-19.
    [16] SONG H, CUI X H, SONG H L, et al. Characteristic and adsorption desulfurization performance of Ag–Ce bimetal ion-exchanged Y zeolite[J]. Industrial & Engineering Chemistry Research, 2014, 53(37): 14552-14557.
    [17] RUI J, LIU F, WANG R, et al. Adsorptive desulfurization of model gasoline by using different Zn sources exchanged NaY zeolites[J]. Molecules, 2017, 22(2): 305. doi: 10.3390/molecules22020305
    [18] 陈晓陆, 张朋, 高爽, 等. 改性Y型分子筛对硫化物吸附脱除规律的研究进展[J]. 山东化工, 2018, 47(18): 45-47. doi: 10.3969/j.issn.1008-021X.2018.18.020
    [19] SATOKAWA S, KOBAYASHI Y, FUJIKI H. Adsorptive removal of dimethylsulfide and t-butylmercaptan from pipeline natural gas fuel on Ag zeolites under ambient conditions[J]. Applied Catalysis B Environmental, 2005, 56(1-2): 51-56. doi: 10.1016/j.apcatb.2004.06.022
    [20] DEZHI Y, HUAN H, XUAN M, et al. Adsorption–desorption behavior and mechanism of dimethyl disulfide in liquid hydrocarbon streams on modified Y zeolites[J]. Applied Catalysis B:Environmental, 2014, 148-149: 377-386. doi: 10.1016/j.apcatb.2013.11.027
    [21] LIDAN L, JIE Z, CHONGPIN H, et al. Adsorptive separation of dimethyl disulfide from liquefied petroleum gas by different zeolites and selectivity study via FT-IR[J]. Separation and Purification Technology, 2014, 125: 247-255. doi: 10.1016/j.seppur.2014.02.002
    [22] CHEN X, SHEN B, SUN H, et al. Ion-exchange modified zeolites X for selective adsorption desulfurization from Claus tail gas: Experimental and computational investigations[J]. Microporous and Mesoporous Materials, 2018, 261: 227-236. doi: 10.1016/j.micromeso.2017.11.014
    [23] DEHGHANI M, TADJARODI A. Formation and characterization of zeolite Y-platinum nanoparticles by rapid method of ultrasonic irradiation and investigation of its electrochemical property[J]. Journal of Nanostructures, 2020, 10(3): 486-496.
    [24] MENG B, REN S, LI Z, et al. Intra-crystalline mesoporous zeolite [Al, Zr]-Y for catalytic cracking[J]. ACS Applied Nano Materials, 2020, 3(9): 9293-9302. doi: 10.1021/acsanm.0c01925
    [25] MENG F, DING Y, MENG W, et al. Modification of molecular sieves USY and their application in the alkylation reaction of benzene with cyclohexene[J]. ChemistrySelect, 2020, 5(29): 8935-8941. doi: 10.1002/slct.202002320
    [26] KAREN M G-R, BETHZAELY F-R, FéLIX R R, et al. A hierarchical porous carbon – Mn+ FAU (Mn+=Ni2+ or Cu2+) adsorbent: Synthesis, characterization and adsorption of salicylic acid from water[J]. Microporous and Mesoporous Materials, 2014, 200: 225-234. doi: 10.1016/j.micromeso.2014.08.055
    [27] SONG H, CUI X H, SONG H L, et al. Characteristic and adsorption desulfurization performance of Ag-Ce bimetal ion-exchanged Y zeolite[J]. Industrial & Engineering Chemistry Research, 2015, 53(37): 14552-14557.
    [28] LEE D, KO E Y, LEE H C, et al. Adsorptive removal of tetrahydrothiophene (THT) and tert-butylmercaptan (TBM) using Na-Y and AgNa-Y zeolites for fuel cell applications[J]. Applied Catalysis A General, 2008, 334(1/2): 129-136.
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 1.4 %DOWNLOAD: 1.4 %HTML全文: 89.6 %HTML全文: 89.6 %摘要: 9.0 %摘要: 9.0 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 80.2 %其他: 80.2 %Beijing: 9.5 %Beijing: 9.5 %Chang'an: 0.4 %Chang'an: 0.4 %Gaocheng: 0.8 %Gaocheng: 0.8 %Jinan Shi: 0.4 %Jinan Shi: 0.4 %Shenyang: 0.4 %Shenyang: 0.4 %Suzhou: 0.4 %Suzhou: 0.4 %Tianjin: 0.8 %Tianjin: 0.8 %XX: 6.7 %XX: 6.7 %济南: 0.4 %济南: 0.4 %其他BeijingChang'anGaochengJinan ShiShenyangSuzhouTianjinXX济南Highcharts.com
图( 10) 表( 3)
计量
  • 文章访问数:  5628
  • HTML全文浏览数:  5628
  • PDF下载数:  109
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-04-08
  • 录用日期:  2022-07-15
  • 刊出日期:  2022-10-31
黄坚, 李先锋, 谢军, 陈瑶姬, 邓丽萍, 李超群, 徐文青. 离子交换法改性的NaY分子筛对吸附含硫VOCs的性能提升[J]. 环境工程学报, 2022, 16(10): 3335-3345. doi: 10.12030/j.cjee.202204053
引用本文: 黄坚, 李先锋, 谢军, 陈瑶姬, 邓丽萍, 李超群, 徐文青. 离子交换法改性的NaY分子筛对吸附含硫VOCs的性能提升[J]. 环境工程学报, 2022, 16(10): 3335-3345. doi: 10.12030/j.cjee.202204053
HUANG Jian, LI Xianfeng, XIE Jun, CHEN Yaoji, DENG Liping, LI Chaoqun, XU Wenqing. Improvement of the adsorption performance of sulfur-containing VOCs by NaY zeolite modified by ion exchange method[J]. Chinese Journal of Environmental Engineering, 2022, 16(10): 3335-3345. doi: 10.12030/j.cjee.202204053
Citation: HUANG Jian, LI Xianfeng, XIE Jun, CHEN Yaoji, DENG Liping, LI Chaoqun, XU Wenqing. Improvement of the adsorption performance of sulfur-containing VOCs by NaY zeolite modified by ion exchange method[J]. Chinese Journal of Environmental Engineering, 2022, 16(10): 3335-3345. doi: 10.12030/j.cjee.202204053

离子交换法改性的NaY分子筛对吸附含硫VOCs的性能提升

    通讯作者: 徐文青(1983—),女,博士,研究员,wqxu@ipe.ac.cn
    作者简介: 黄坚(1968—),男,大学本科,中级工程师,653800672@qq.com
  • 1. 浙江天地环保科技股份有限公司,杭州 310013
  • 2. 中国科学院过程工程研究所,北京 100190
基金项目:
企业合作项目-焦化行业挥发性有机废气燃烧控制技术与装备开发 (ZNKJ-2020-164) ;

摘要: 为解决分子筛在含湿条件下对小分子含硫VOCs吸附性能差的问题,并实现高效捕集,采用液相离子交换法选取不同金属离子 (Ag、Cu、Mg、Zn、Ce、Ca等) 对NaY和USY-3分子筛进行改性,以二甲基硫醚 (DMS) 作为模型物,考察2种改性分子筛对高湿度含硫VOCs脱除效果,进而优选性能优异的改性分子筛,再通过多组分VOCs竞争吸附实验来模拟实际应用效果。结果表明,NaY和USY-3分子筛改性后均可保持结构稳定,NaY型分子筛较USY-3分子筛具有更高的离子交换容量,改性后吸附性能提升更明显,CuY、AgY分子筛的DMS吸附性能优异 (CuY的穿透吸附量为203 mg·g−1,AgY的穿透吸附量为132 mg·g−1) 。然而,仅有Ag离子交换可提高NaY分子筛的抗水性,在1.5%水蒸气存在时,DMS穿透吸附量最高可达99 mg·g−1,且5次循环再生后吸附容量仍在90%。在对二甲苯 (PX) 存在时,分子筛对2种VOCs的吸附量均高于80 mg·g−1,且DMS具有绝对的竞争吸附优势。本研究表明AgY分子筛具有优异的抗水性和吸附选择性,可为其在含湿条件下对VOCs中小分子硫化物的吸附净化应用提供参考。

English Abstract

  • 挥发性有机物 (volatile organic compounds,VOCs) 是PM2.5和O3的重要前体物,因此,成为影响大气环境的主要污染物及防控防治的重点[1-2]。焦化行业是重要的VOCs排放源,其排放呈现点位多、成分复杂、浓度不一的特征,且往往混杂多种类型污染物,治理较为困难。以焦化废水VOCs排放为代表,其来源覆盖焦化生产所有用水环节,通过无组织形式逸散的VOCs废气浓度低、含湿量高、成分复杂,往往存在含硫的硫醇、硫醚等小分子VOCs组分[3]。针对焦化行业复杂的VOCs排放体系,吸附浓缩+后处理的组合工艺逐渐成为主流技术之一。在常见吸附剂中,分子筛具备比表面积大、孔道结构均一、孔容高、热稳定性好等优点,已成为现阶段工业VOCs吸附浓缩处理领域的研究热点[4-7]

    目前,有关分子筛吸附VOCs的报道集中于合成方法、吸附机理和控制吸附过程的关键因素等方面。现有研究表明,分子筛孔道尺寸与VOCs分子大小接近时具有较好的吸附性能[8],Y型分子筛的孔隙结构适合苯系物的吸附净化[9],但Y型分子筛硅铝比低,亲水性强,在废气湿度较高时水分子具有竞争吸附作用,对有机物的吸附能力较低[10-12]。而常规高硅分子筛 (如USY分子筛) 抗水性能强,但由于孔道尺寸大,吸附脱除小分子含硫VOCs效率不高。因此,从工业适用性出发,含湿条件下分子筛对小分子含硫VOCs (如硫醇、硫醚等) 的吸附性能仍有待提高。

    对分子筛进行离子交换改性后,通过金属离子与含硫VOCs中S原子的相互作用,可提高吸附材料对含硫VOCs的吸附性能。改性分子筛常见应用于石油化工生产的燃料油和重烃液相中含硫化合物的脱除[13-15]。交换离子可通过π络合吸附或S-M机理作用吸附硫化物分子[16-18],从而对含硫化合物进行脱除。而对分子筛在管道天然气吸附脱硫的应用研究表明,不同交换离子对分子筛脱硫性能的影响不同,部分离子交换分子筛能显著提升气相有机硫的脱除性能[19-22]。但目前对于分子筛吸附脱除气相含硫VOCs的研究相对较少,且水分对于气相含硫VOCs吸附的影响尚无报道。而实际上焦化VOCs废气往往含有一定湿度,且组分复杂,主要含有苯、甲苯、二甲苯等苯系物和硫醇、硫醚等含硫有机物。

    基于此,本研究选取不同金属离子 (Ag、Cu、Mg、Zn、Ce、Ca等) ,采用液相离子交换法对NaY和USY-3分子筛进行改性,并以二甲基硫醚 (DMS) 和对二甲苯 (PX) 分别作为小分子含硫VOCs和普通VOCs模型物,考察改性分子筛在对含硫VOCs的吸脱附性能及循环再生性能,并研究多组份VOCs的竞争吸附,以探究其在含湿条件下吸附含硫VOCs的应用可能性。

    • 1) 材料。沸石分子筛包括NaY分子筛 (卓然环保科技(大连)有限公司) 和USY-3分子筛 (卓然环保科技(大连)有限公司) 2种。其他材料有高纯N2、高纯O2、二甲基硫醚 (DMS) 、对二甲苯 (PX) 。

      2) 试剂。氢氧化钠 (NaOH,98%,AR) 和硝酸铜 (Cu(NO3)2,99.99%) 购于上海麦克林生化科技有限公司。四基氢氧化铵 (C12H29NO,50% in H2O) 、硝酸银 (AgNO3,99.8%,AR) 、乙酸镁 (C4H6O4Mg,99.99%) 、六水合硝酸锌 (Zn(NO3)2∙6H2O,99%,AR) 、六水合硝酸铈 (Ce(NO3)3∙6H2O,99.95%) 、二水合硝酸钙 (Ca(NO3)2∙2H2O,99%,AR) 均购于阿拉丁试剂 (上海) 有限公司。

    • 采用液相离子交换法对分子筛进行改性,制备离子交换分子筛。以硝酸铜溶液处理NaY分子筛为例:取一定量分子筛,加入0.5 mol·L−1硝酸铜溶液中 (每克分子筛加20 mL溶液) ,在80 ℃水浴条件下持续搅拌交换24 h。然后用去离子水洗涤、过滤,并在110 ℃下干燥12 h。干燥产物在500 ℃煅烧4 h获得样品,所得材料记为CuY。同理,Ag、Mg、Zn、Ce、Ca交换样品依次记为AgY、MgY、ZnY、CeY、CaY;USY-3分子筛交换样品记为xUSY-3 (x为交换离子) 。

    • 采用X射线衍射仪 (X'Pert PRO MPD,PANalytical) 对分子筛的晶体结构进行表征,分子筛的孔径分布信息采用物理吸附仪 (Autosorb iQ,Quanta Chrome) 进行表征。采用X射线荧光光谱仪 (ZSX 100e,Rigaku) 、电感耦合等离子体发射光谱仪 (Optima 5300DV,PerkinElmer) 对分子筛Si/Al比进行分析测定。采用X射线光电子能谱仪 (ESCAlab 250,Thermo) 对分子筛元素价态进行分析。采用扫描电镜 (S-4800 Hitachi,Japan) 和透射电镜 (Tecnai G2 F20,FEI) 对分子筛的微观形貌进行分析。

    • 1) 分子筛吸附性能测定实验方法。采用固定床—气相色谱评价装置测定分子筛吸附性能,实验装置如图1所示。

      吸附过程中将100 mg吸附剂 (40-60目) 装入石英反应管 (内径4 mm) 中,在300 ℃N2气氛下预处理1 h,以去除水和其他吸附杂质。吸附实验在35 ℃下进行,N2、O2、VOCs为钢瓶气,H2O采用注射泵和加热炉发生,并通过N2吹入气体管路,采用质量流量计对各路气体进行精确控制和调节 (控制精度满足设定值的±0.35%) ,气体组成 (体积分数) 为:0.005% VOC+20% O2+N2 (平衡气) ,保持通入气体总流量为100 mL·min−1,体系中需通入水蒸气时,体积分数为1.5%。用气相色谱仪 (GC7890A,Agilent) 和定量气体分析仪 (Hiden QGA,北京英格海德分析技术有限公司) 在线检测出口VOCs质量浓度,获得穿透吸附曲线。吸附剂的VOCs吸附容量计算如下:

      式中:q为分子筛的吸附量,mg·g−1F为气体流速,mL·min−1m为吸附剂用量,g;t为吸附时间,min;C0为入口VOCs质量浓度,mg·m−3Ct为吸附t min后出口VOCs质量浓度,mg·m−3tsCt达到某一特定值所需的时间,min。特定地,当Ct降至C0的10%时,定义此时达到穿透吸附;当Ct稳定且等于C0时,定义此时达到饱和吸附。

      2) 分子筛VOCs脱附及分子筛循环再生性能实验。分子筛样品用量取5~10 mg,分别在N2气氛和N2+O2气氛下 (气体总流量均为50 mL·min−1,需要通入O2时,设定其体积分数为20%) ,对VOCs吸附饱和的吸附剂进行程序升温脱附 (30~800 ℃,升温速率为10 ℃·min−1) ,获得TG曲线,以TG一阶导绘制样品的DTG曲线,评价吸附剂脱附性能。此外,在固定床反应器中对VOCs吸附饱和的分子筛进行程序升温脱附 (0~600 ℃,升温速率10 ℃·min−1) ,通过质谱在线检测分析吸附剂热脱附产物。同时,为探究吸附剂的循环再生吸附性能,对VOCs吸附饱和吸附剂在300 ℃空气吹扫下热再生,对吸附剂进行多次吸附再生循环实验。通过气相色谱在线检测计算每次再生吸附量,以评价分子筛吸附的稳定性。

    • 1) 孔结构形貌表征。取50~100 mg待测粉末样品置于脱气管中,在300 ℃下真空脱气3 h,然后在-186 ℃ (87 K) 条件下进行Ar吸附/脱附测试。用Brunauer-Emmett-Teller (BET) 方法由吸附等温线计算样品总比表面积 (Vtotal) 。通过t-plot法计算样品的微孔表面积 (Smicro) 和微孔体积 (Vmicro) ,Stotal减去Smicro是介孔表面积 (Smeso) 。样品的总孔体积 (Vpore) 和介孔体积 (Vmeso) 通过脱附等温线使用Barrett-Joyner-Halenda (BJH) 方法测定。测试结果如表1所示。经离子交换后,所有改性NaY、USY-3分子筛的Si/Al均未发生明显变化,但总比表面积、孔体积均减小,分子筛微孔面积及体积明显降低,尤其是AgY分子 (微孔面积806.1 m2·g−1降至550.8 m2·g−1) 和AgUSY-3 (微孔面积由731.6 m2·g−1降至611.7 m2·g−1) 。这说明离子交换改性在一定程度上对微孔结构造成破坏。

      2) XRD表征。离子交换改性前后分子筛的XRD结果如图2所示。USY-3及NaY分子筛特征峰对应的 (111) 、 (220) 、 (311) 、 (331) 、 (533) 、 (642) 等特征晶面,均可归属于FAU型分子筛的典型晶体衍射峰[23-25]。不同离子交换后,USY-3分子筛 (图2(a)) 特征峰的强度变化较小,这说明分子筛的结晶度及晶体结构稳定性基本未发生太大变化。除AgY分子筛外,不同离子交换的NaY分子筛特征峰强度均有稍微下降 (图2(b)) 。这说明离子交换在一定程度上降低了结晶度,这可能是由于NaY分子筛离子交换容量大于USY-3分子筛,其离子交换程度大,对晶体结构影响更大,但其晶体结构仍保持稳定。

      3) XPS表征。Cu、Ag离子交换的分子筛XPS分析如图3所示。由Cu 2p图可知,CuUSY-3及CuY在结合能933.4 eV和934.9 eV的峰为Cu 2p3/2的特征峰,对应表现出二价Cu2+的特性。特别地,分子筛中一价Cu+的XPS峰结合能为932~933 eV,无任何震动,配位的Cu2+则为933~936 eV[26]。由Ag 3d图可知,在AgUSY-3及AgY结合能为369.6 eV和369.7 eV处检测出Ag 3d特征峰[27]。这表明Ag元素均以一价Ag+离子存在于离子交换分子筛中。

      4) 微观形貌表征。离子交换分子筛的SEM图及EDS剖面如图4所示。改性前后USY-3和NaY分子筛均呈规则正八面体形状,其晶体结构完整,这与XRD表征结果一致。离子交换后分子筛EDS剖面 (图4(b)、(c)、(e)、(f)) 出现了Cu、Ag的能量峰,且CuY、AgY分子筛信号较CuUSY-3、AgUSY-3强,说明NaY分子筛的离子交换量更大。

      5) 离子交换分子筛的组成表征。如表2所示,经过离子交换改性,Cu2+和Ag+均被引入USY-3和NaY分子筛骨架中,但NaY比USY-3分子筛的离子交换度高,这说明NaY具有更高的离子交换容量。此外,与Cu2+相比,更多的Ag+离子交换到分子筛上。如AgY分子筛中Ag+离子摩尔含量达8.89%,离子交换度为87.8%,CuY分子筛中Cu2+离子摩尔含量和离子交换度分别为2.69%及51.9%。

      式中:IE Ag为Ag离子交换度,%;X Ag为Ag的摩尔分数,%;XAl为Al的摩尔分数,IECu为Cu离子交换度,%;X Cu为Cu的摩尔分数,%。

    • 固定吸附温度35 ℃,分子筛用量100 mg,通入总流量为100 mL·min−1的混合气 (体积分数) :0.005% VOC (0.005% DMS)+20% O2+N2 (平衡气) 。通过固定床吸附实验得出Y型分子筛的DMS穿透吸附量如图5所示。在无水蒸气存在时,Y型分子筛DMS吸附能力比较结果为NaY>USY-3分子筛。Cu、Ag离子交换改性后,NaY及USY-3分子筛的DMS穿透吸附量大幅提升,其中Cu-Y及CuUSY-3分子筛的DMS穿透吸附量均提高了约130% (CuY穿透吸附量为203 mg·g−1,CuUSY-3穿透吸附量为64 mg·g−1) 。其他离子交换分子筛的吸附性能均下降,这可能与分子筛改性后微孔面积下降有关 (表1) 。Cu、Ag离子交换分子筛的微孔面积降低,但DMS吸附性能提高。这说明Cu、Ag离子可与DMS进行配位络合,将对DMS的物理吸附转变为化学吸附,结合更加牢固,从而提升吸附性能。CuUSY-3、AgUSY-3分子筛的DMS穿透吸附量 (64 mg·g−1、56 mg·g−1) 较CuY、AgY分子筛 (203 mg·g−1、132 mg·g−1) 更低。结合分子筛组成结果分析认为,这是由于NaY较USY-3分子筛离子交换容量高,Cu、Ag离子占比高,可为DMS提供更多吸附位点。

      当体系中通入1.5%的水蒸气时,CuUSY-3及CuY分子筛的DMS吸附量几乎为0,而AgY、AgUSY-3分子筛可保持较高的DMS吸附性能 (AgY的穿透吸附量为99 mg·g−1,AgUSY-3的穿透吸附量为53 mg·g−1) 。这说明Ag离子交换可提高分子筛的DMS吸附性能,同时削弱水的竞争吸附影响。这与前人研究报道的结果一致,Ag离子的存在可避免H2O与分子筛的相互作用,抑制H2O的竞争吸附效应[19]

    • AgY、CuY分子筛不同脱附气氛下的脱附TG曲线如图6所示。其中,30~500 ℃内的失重归因于吸附在分子筛中DMS的解吸。由图6(a)可知,当AgY分子筛吸附饱和后,在N2、N2+O2两种气氛下脱附失重速率几乎相同,但N2脱附较N2+O2脱附失重略早达到平衡,分子筛失重百分比分别为N2脱附的13.5%及N2+O2脱附的16.0%,这基本对应吸附DMS在分子筛上的质量占比 (11.7%)。对比图6(b),CuY分子筛不同气氛脱附失重曲线几乎保持一致,失重速率及最终失重百分比基本相同,保持在约22.0%,对应吸附DMS在分子筛上的质量占比 (17.6%)。此外,CuY分子筛较AgY分子筛脱附曲线斜率更大,且更早达到平衡,这表明DMS在CuY分子筛中更易脱附。

      离子交换分子筛脱附产物结果如图7所示。在N2及N2+O2脱附气氛下 (图7(a)) ,AgY分子筛的DMS脱附曲线均在150、350 °C左右有两个明显脱附峰,说明在这两个温度范围内吸附的DMS脱附速率最快。温度继续升高,曲线逐渐下降趋于平缓,DMS的解吸在450 ℃后才逐渐完成,与TG曲线结果一致。此外,体系中还检测到部分H2O的信号 (约200 ℃) ,说明程序升温过程中有H2O从分子筛中解吸 (可能与低硅分子筛亲水,且配气中不可避免的含有微量H2O有关) 。应特别注意,在N2+O2气氛下,AgY分子筛在TPD过程中峰强度较弱,这可能是由于DMS分解为H2S和C2H4[28],但由于浓度较低,没有检测到明显信号。CuY分子筛脱附时 (图7(b)) ,DMS均只有一个主要的脱附峰 (200 °C左右) ,且相对AgY分子筛而言,DMS解吸信号下降得更早更快,在400 ℃后逐渐解吸完全。这说明DMS在CuY分子筛上解吸更加容易。此外,在N2与N2+O2的气氛下,脱附产物会存在差别。在N2脱附条件下,脱附产物中仅有DMS和H2O,而在N2+O2气氛下同时还检测出了CO2及SO2的信号。这说明通入O2后,吸附的DMS在脱附过程中发生反应,产生CO2及SO2等产物。

    • 以DMS为模型物,对吸附饱和的AgY及CuY分子筛进行循环动态吸脱附实验。脱附在300 ℃下通入N2+O2的气氛下进行吹扫热再生。如图8所示,经5次循环再生后,CuY分子筛环DMS穿透吸附性能可稳定维持在97%以上,具备良好的热稳定性和再生性能。与CuY分子筛相比,AgY分子筛对DMS络合吸附作用更强,吸附分子更难从AgY分子筛中脱除,所以热脱附并不彻底。AgY分子筛 (133 mg·g−1) 再生一次穿透吸附量降低21% (105 mg·g−1) ,可能归因于活性Ag物种形貌分布在热再生过程中产生了某些变化,但经5次循环再生后,穿透吸附性能又逐渐恢复至约90% (122 mg·g−1) 。这说明AgY分子筛可恢复并保持稳定吸附。

    • NaY分子筛对双组分 (体积分数) VOCs (0.005% PX+0.005% DMS) 的吸附穿透如图9所示。无水蒸气存在时下,PX穿透慢 (约730 min) ,DMS穿透快 (约430 min) ,且吸附470 min后DMS的C/C0>1.0,直至PX吸附饱和才逐渐趋于平衡。这说明NaY分子筛对PX吸附能力远优于DMS,PX对分子筛吸附位点的竞争力更强,且穿透后部分吸附的DMS逐渐被PX取代。这主要归因于与较DMS相比,PX的分子大小更接近分子筛孔道尺寸,故更易被吸附。而当存在1.5%水蒸气时,NaY分子筛对PX和DMS吸附能力均为0,吸附曲线均迅速穿透。这说明H2O在分子筛上的竞争吸附能力最强,可优先VOCs占据吸附位点。

      AgY分子筛对PX、DMS的混合体系的竞争吸附穿透曲线如图10所示。无水蒸气存在时,PX比DMS提前300 min穿透,在吸附460 min后PX的C/C0>1.0,直至DMS吸附饱和才趋于平衡。这说明混合气氛下,AgY分子筛具有优异的DMS吸附性能,DMS比PX具有竞争吸附优势,可优先占据吸附位点。而当1.5% 水蒸气存在时,由于DMS及H2O的竞争吸附,PX的附性能更差,穿透时间缩短 (约145 min) 。而DMS穿透时间依然可维持在600 min以后,吸附性能受H2O影响较小。这可能是由于DMS小分子在微孔AgY分子筛内部快速扩散,与Ag离子络合形成Ag—S键,从而被优先吸附抑制H2O的竞争吸附[19]

      AgY分子筛对VOCs (PX、DMS) 的竞争吸附穿透吸附量总结如表3所示。无水蒸气存在时,NaY分子筛仅能有效吸附PX,对DMS的吸附量相对较低。AgY分子筛总VOCs吸附量略低,但能同时吸附两种VOCs,且吸附量均高于80 mg·g−1。而当1.5% 水蒸气存在时,NaY分子筛对VOCs的吸附能力为0,而AgY分子筛对VOCs总吸附量保持在96 mg·g−1,且对DMS具有绝对的竞争吸附优势。结果表明,Ag离子交换改性可提高NaY分子筛的抗水性,将其使用范围拓宽至含湿条件,同时可提高对DMS等小分子硫化物的吸附选择性。

    • 1) Cu及Ag离子交换分子筛的DMS吸附量显著提升。无水蒸气存在时,CuY分子筛的DMS穿透吸附量最高 (203 mg·g−1) ,穿透吸附量提升130%。1.5% 水蒸气存在时,只有Ag离子能抑制H2O的竞争吸附,AgY分子筛的DMS穿透吸附量最高 (99 mg·g−1) 。两种分子筛多次循环再生后吸附容量无明显下降。

      2) 分子筛DMS吸附性能的提升主要受Cu、Ag离子交换容量的影响,Cu、Ag离子交换分子筛的微孔面积降低,物理吸附性能减弱。然而,Cu、Ag离子可与DMS进行配位络合,化学吸附增强,从而提升吸附性能。NaY较USY-3分子筛具有更高的离子交换容量,可为DMS提供更多吸附位点,故其改性后吸附性能更优。

      3) AgY分子筛可同时吸附PX、DMS两种VOCs,且具有较好地抗水性和循环再生性能,可用于含湿条件下VOCs中小分子硫化物的吸附净化。

    参考文献 (28)

返回顶部

目录

/

返回文章
返回