-
塑料的商业生产始于20世纪50年代[1],现广泛应用于包装、医疗、农业等行业,仅2019年全球塑料产量就高达3.68亿吨[2]。塑料在光照辐射、机械磨损、风化侵蚀、动物和微生物的作用下,可逐渐分解成粒径更小的塑料颗粒[3]。微塑料(microplastics, MPs)的概念最早出现在2004年Science发表的一篇文章[4],定义为粒径小于5 mm的塑料颗粒[5],粒径小于100 nm的被称为“纳米塑料”(nanoplastics, NPs)[6]。MPs通过大气、洋流等作用在全球范围内长距离运输[7],并在环境中持续存在和积累。水体[8]、沉积物[9]、土壤[10]、大气[11]甚至深海和极地都能检测到MPs[7]。尽管多项研究回顾了MPs在水环境中的发生、分布、生态风险及水体MPs与其他污染物的环境地球化学行为[8, 12-13],但关于陆地MPs的综述论文却很少[14-15]。陆地MPs是海洋MPs的主要来源,其MPs污染程度可能是海洋的4—23倍[16]。土壤作为陆地系统中MPs的汇[17],对MPs的储存和转移起着至关重要的作用[18]。因此,充分认识MPs在土壤环境中的丰度、来源、迁移和生态毒性对于科学评估和源头控制土壤MPs污染十分关键。
在Web of Science核心数据库中以“microplastics”和“soil”为关键词进行了搜索(截至2021年8月21日),产生了608篇文献。通过共现网络分析(图1),发现土壤环境MPs的研究始于2016年,相关研究主要包括:1)土壤类型,全球学者普遍注重农田土壤MPs的研究;2)MPs的来源,包括未合理处置的塑料垃圾、污泥堆肥、有机肥料的施用、污水灌溉和地膜覆盖等;3)MPs的分析方法,包括采样、分离(筛分、密度分离、消解等)、鉴定(目检法、光谱法、热解质谱分析法等);4)土壤MPs的丰度、类型(如聚丙烯(PP)、聚乙烯(PE)、聚苯乙烯(PS))、形状(如纤维、薄膜、碎片、颗粒等);5)MPs的生物效应,包括对植物、动物和微生物的影响。由此可见,MPs的来源、种类、分布、检测方法及生态健康风险是当前土壤MPs污染研究的热点方向。已发表的文献中,Praveena等[19]、陈雅兰等[20]较为全面的综述了土壤中MPs的提取与鉴定方法,郝爱红等[14]、Zhao等[15]从土壤中MPs的来源、迁移、分析方法、污染特征和生态风险等方面入手,揭示了土壤MPs的归宿和生态风险,但有关土壤MPs与多种有害污染物共同暴露的生物毒性、土壤中老化或降解MPs的生态风险鲜有报道。有学者对全球土壤MPs污染做了简单的总结[17, 21],但所收集的数据不够全面。因此,本文在总结最新国内外研究进展的基础上,从土壤环境中MPs的来源、丰度、迁移及其生态健康风险方面进行了综述,并提出了相关领域未来的研究重点。相比先前的研究,本文更加全面的总结了土壤中MPs的丰度,通过绘制分布图以更加直观的形式展现了全球土壤MPs污染,并将土壤老化/降解MPs的生态风险以及MPs的复合污染毒性和潜在生态风险展开了系统地回顾和展望,填补该领域综述论文的空白。本文将为评估土壤MPs潜在的生态健康风险提供有价值的参考。
土壤微塑料污染与生态健康风险
Microplastics pollution in soil and the potential ecological health risks
-
摘要: 微塑料(microplastics, MPs)广泛存在于各种环境介质中。与水生系统相比,土壤作为MPs在陆地系统中重要的长期的汇,MPs污染更为复杂,为全面了解土壤MPs污染现状,加强土壤MPs污染的风险管控,本文概述了土壤MPs的来源、丰度、迁移及潜在生态风险。土壤MPs主要来源于未合理处置的塑料垃圾、污泥堆肥、有机肥料施用等;MPs可能在全球土壤环境中普遍存在,多数地区土壤MPs丰度在0—5×103 个·kg−1之间,PE、PP、PS是土壤中最常见的MPs类型,频繁的农业活动导致农田土壤MPs污染尤为严重;MPs会对土壤生物的生长产生不同影响,并威胁人类健康,还会与其他污染物形成复合污染或发生老化/降解,对土壤生态系统构成更大的威胁。最后,从土壤MPs溯源、深层土壤中MPs检测、MPs与其他污染物复合污染毒性以及生态健康的风险等几方面提出了未来可能的研究方向,以期为进一步评估土壤MPs的环境行为和生态风险提供参考。Abstract: Microplastics (MPs) are ubiquitous in various environmental media such as ocean, sediment, soil and atmosphere. Currently, the fate and ecological effect of MPs has been extensively studied in aquatic environments, but few focus on soils. Compared to the aquatic environment, MPs pollution in soil, an important long-term sink for MPs in terrestrial systems, are more complex. To obtain a comprehensive understanding on MPs pollution and strengthen its risk control in soil, this article summarizes the source, abundance, migration and potential ecological risks of MPs in soil. First, the widely source of MPs in soil environment were illustrated. Which mainly including plastic waste, sludge compost, organic fertilizer application, agricultural irrigation, and plastic film mulching. Second, MPs may be widespread in soil around the world, with MPs abundance in most regions ranging from 0—5×103 kg−1. PE, PP and PS are the most common types of MPs in soils, and the frequent agricultural activities result in high MPs contamination in farmland soils. Moreover, the ecological risks of MPs in terrestrial ecosystems, such as their different effect on the growth of soil organisms and the potential health risk to humans, are reviewed and analyzed. MPs could form combined pollution with other pollutants or undergo aging/degradation, posing a significant threat to soil ecosystems. Finally, research perspectives for soil MPs traceability, MPs detection in deep soil, the transfer of soil MPs in the food chain, combined pollution toxicity of MPs with other pollutants, and the risks of ecological health are suggested. This study will help to further understand the environmental behavior and ecological risks of soil MPs.
-
Key words:
- microplastics /
- soil /
- source /
- abundance /
- migration /
- ecological risk
-
图 1 已发表论文中以“微塑料”、“土壤”为关键词的共现网络分析图[22]。
Figure 1. Co-occurrence network analysis of published research papers with “microplastics” and “soil” as keywords
-
[1] LEBRETON L, ANDRADY A. Future scenarios of global plastic waste generation and disposal [J]. Palgrave Communications, 2019, 5: 1-11. doi: 10.1057/s41599-018-0199-0 [2] PLASTICS EUROPE. Plastics-The Facts 2020, An analysis of European plastics production, demand and waste data[EB/OL]. 2020. [2021-6-16].https://www.plasticseurope.org/en/resources/market-data [3] 骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究 防范生态与食物链风险 [J]. 中国科学院院刊, 2018, 33(10): 1021-1030. LUO Y M, ZHOU Q, ZHANG H B, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1021-1030(in Chinese).
[4] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [5] FRIAS J P G L, NASH R. Microplastics: Finding a consensus on the definition [J]. Marine Pollution Bulletin, 2019, 138: 145-147. doi: 10.1016/j.marpolbul.2018.11.022 [6] CAO J H, ZHAO X N, GAO X D, et al. Extraction and identification methods of microplastics and nanoplastics in agricultural soil: A review [J]. Journal of Environmental Management, 2021, 294: 112997. doi: 10.1016/j.jenvman.2021.112997 [7] BERGMANN M, WIRZBERGER V, KRUMPEN T, et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory [J]. Environmental Science & Technology, 2017, 51(19): 11000-11010. [8] WANG Y H, YANG Y N, LIU X, et al. Interaction of microplastics with antibiotics in aquatic environment: Distribution, adsorption, and toxicity [J]. Environmental Science & Technology, 2021, 55(23): 15579-15595. [9] LIU D T, ZHENG Y H, CHEN L J, et al. Prevalence of small-sized microplastics in coastal sediments detected by multipoint confocal micro-Raman spectrum scanning [J]. Science of the Total Environment, 2022, 831: 154741. doi: 10.1016/j.scitotenv.2022.154741 [10] ZHOU Y F, HE G, JIANG X L, et al. Microplastic contamination is ubiquitous in riparian soils and strongly related to elevation, precipitation and population density [J]. Journal of Hazardous Materials, 2021, 411: 125178. doi: 10.1016/j.jhazmat.2021.125178 [11] BATOOL I, QADIR A, LEVERMORE J M, et al. Dynamics of airborne microplastics, appraisal and distributional behaviour in atmosphere;a review[J]. The Science of the Total Environment, 2022, 806(Pt 4): 150745. [12] UZUN P, FARAZANDE S, GUVEN B. Mathematical modeling of microplastic abundance, distribution, and transport in water environments: A review [J]. Chemosphere, 2022, 288: 132517. doi: 10.1016/j.chemosphere.2021.132517 [13] YUSUF A, SODIQ A, GIWA A, et al. Updated review on microplastics in water, their occurrence, detection, measurement, environmental pollution, and the need for regulatory standards [J]. Environmental Pollution, 2022, 292: 118421. doi: 10.1016/j.envpol.2021.118421 [14] 郝爱红, 赵保卫, 张建, 等. 土壤中微塑料污染现状及其生态风险研究进展 [J]. 环境化学, 2021, 40(4): 1100-1111. doi: 10.7524/j.issn.0254-6108.2020083102 HAO A H, ZHAO B W, ZHANG J, et al. Research progress on pollution status and ecological risk of microplastics in soil [J]. Environmental Chemistry, 2021, 40(4): 1100-1111(in Chinese). doi: 10.7524/j.issn.0254-6108.2020083102
[15] ZHAO S L, ZHANG Z Q, CHEN L, et al. Review on migration, transformation and ecological impacts of microplastics in soil [J]. Applied Soil Ecology, 2022, 176: 104486. doi: 10.1016/j.apsoil.2022.104486 [16] LUO H W, LIU C Y, HE D Q, et al. Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions [J]. Journal of Hazardous Materials, 2022, 423: 126915. doi: 10.1016/j.jhazmat.2021.126915 [17] YANG L, ZHANG Y L, KANG S C, et al. Microplastics in soil: A review on methods, occurrence, sources, and potential risk [J]. Science of the Total Environment, 2021, 780: 146546. doi: 10.1016/j.scitotenv.2021.146546 [18] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities [J]. Science of the Total Environment, 2017, 586: 127-141. doi: 10.1016/j.scitotenv.2017.01.190 [19] PRAVEENA S M, ARIS A Z, SINGH V. Quality assessment for methodological aspects of microplastics analysis in soil [J]. Trends in Environmental Analytical Chemistry, 2022, 34: e00159. doi: 10.1016/j.teac.2022.e00159 [20] 陈雅兰, 孙可, 韩兰芳, 等. 土壤中微塑料的分离及检测方法研究进展 [J]. 土壤学报, 2022, 59(2): 364-380. CHEN Y L, SUN K, HAN L F, et al. Separation, identification, and quantification methods in soil microplastics analysis: A review [J]. Acta Pedologica Sinica, 2022, 59(2): 364-380(in Chinese).
[21] YA H B, JIANG B, XING Y, et al. Recent advances on ecological effects of microplastics on soil environment [J]. Science of the Total Environment, 2021, 798: 149338. doi: 10.1016/j.scitotenv.2021.149338 [22] CHEN C M. Science mapping: A systematic review of the literature [J]. Journal of Data and Information Science, 2017, 2(2): 1-40. doi: 10.1515/jdis-2017-0006 [23] BLÄSING M, AMELUNG W. Plastics in soil: Analytical methods and possible sources [J]. Science of the Total Environment, 2018, 612: 422-435. doi: 10.1016/j.scitotenv.2017.08.086 [24] CORRADINI F, MEZA P, EGUILUZ R, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal [J]. Science of the Total Environment, 2019, 671: 411-420. doi: 10.1016/j.scitotenv.2019.03.368 [25] HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment [J]. Environmental Pollution, 2020, 260: 114096. doi: 10.1016/j.envpol.2020.114096 [26] WEITHMANN N, MÖLLER J N, LÖDER M G J, et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment [J]. Science Advances, 2018, 4(4): eaap8060. doi: 10.1126/sciadv.aap8060 [27] 杨杰, 李连祯, 周倩, 等. 土壤环境中微塑料污染: 来源、过程及风险 [J]. 土壤学报, 2021, 58(2): 281-298. YANG J, LI L Z, ZHOU Q, et al. Microplastics contamination of soil environment: Sources, processes and risks [J]. Acta Pedologica Sinica, 2021, 58(2): 281-298(in Chinese).
[28] ALLEN S, ALLEN D, PHOENIX V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment [J]. Nature Geoscience, 2019, 12(5): 339-344. doi: 10.1038/s41561-019-0335-5 [29] ASTNER A F, HAYES D G, O'NEILL H, et al. Mechanical formation of micro- and nano-plastic materials for environmental studies in agricultural ecosystems [J]. Science of the Total Environment, 2019, 685: 1097-1106. doi: 10.1016/j.scitotenv.2019.06.241 [30] REN Z F, GUI X Y, XU X Y, et al. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants - A critical review [J]. Journal of Hazardous Materials, 2021, 419: 126455. doi: 10.1016/j.jhazmat.2021.126455 [31] ZHANG K, SHI H H, PENG J P, et al. Microplastic pollution in China's inland water systems: A review of findings, methods, characteristics, effects, and management [J]. Science of the Total Environment, 2018, 630: 1641-1653. doi: 10.1016/j.scitotenv.2018.02.300 [32] WANG J, LIU X H, LI Y, et al. Microplastics as contaminants in the soil environment: A mini-review [J]. Science of the Total Environment, 2019, 691: 848-857. doi: 10.1016/j.scitotenv.2019.07.209 [33] BONDAROFF TP C S. Masks on the Beach : The impact of Covid-19 on Marine Palstic Pollution[R]. OceansAsia, 2020 [34] CHEN X C, CHEN X F, LIU Q, et al. Used disposable face masks are significant sources of microplastics to environment [J]. Environmental Pollution, 2021, 285: 117485. doi: 10.1016/j.envpol.2021.117485 [35] LI X W, CHEN L B, MEI Q Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in China [J]. Water Research, 2018, 142: 75-85. doi: 10.1016/j.watres.2018.05.034 [36] WILLÉN A, JUNESTEDT C, RODHE L, et al. Sewage sludge as fertiliser - environmental assessment of storage and land application options [J]. Water Science and Technology, 2017, 75(5/6): 1034-1050. [37] LEBRETON L C M, van der ZWET J, DAMSTEEG J W, et al. River plastic emissions to the world's oceans [J]. Nature Communications, 2017, 8: 15611. doi: 10.1038/ncomms15611 [38] CARR S A, LIU J, TESORO A G. Transport and fate of microplastic particles in wastewater treatment plants [J]. Water Research, 2016, 91: 174-182. doi: 10.1016/j.watres.2016.01.002 [39] NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin? [J]. Environmental Science & Technology, 2016, 50(20): 10777-10779. [40] ZUBRIS K A V, RICHARDS B K. Synthetic fibers as an indicator of land application of sludge [J]. Environmental Pollution, 2005, 138(2): 201-211. doi: 10.1016/j.envpol.2005.04.013 [41] GUO T, LOU C L, ZHAI W W, et al. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure [J]. Science of the Total Environment, 2018, 635: 995-1003. doi: 10.1016/j.scitotenv.2018.04.194 [42] YANG J, LI R J, ZHOU Q, et al. Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure [J]. Environmental Pollution, 2021, 272: 116028. doi: 10.1016/j.envpol.2020.116028 [43] WU R T, CAI Y F, CHEN Y X, et al. Occurrence of microplastic in livestock and poultry manure in South China [J]. Environmental Pollution, 2021, 277: 116790. doi: 10.1016/j.envpol.2021.116790 [44] T G. Analysis of Plastic Residues in Commercial Compost[D]. Nova Gorica: University of Nova Gorica, 2016. [45] UDDIN S, FOWLER S W, BEHBEHANI M. An assessment of microplastic inputs into the aquatic environment from wastewater streams [J]. Marine Pollution Bulletin, 2020, 160: 111538. doi: 10.1016/j.marpolbul.2020.111538 [46] THEBO A L, DRECHSEL P, LAMBIN E F, et al. A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows [J]. Environmental Research Letters, 2017, 12(7): 074008. doi: 10.1088/1748-9326/aa75d1 [47] ZHAO S Y, ZHU L X, WANG T, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution [J]. Marine Pollution Bulletin, 2014, 86(1/2): 562-568. [48] LIN L, ZUO L Z, PENG J P, et al. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China [J]. Science of the Total Environment, 2018, 644: 375-381. doi: 10.1016/j.scitotenv.2018.06.327 [49] FENG S S, LU H W, YAO T C, et al. Spatial characteristics of microplastics in the high-altitude area on the Tibetan Plateau [J]. Journal of Hazardous Materials, 2021, 417: 126034. doi: 10.1016/j.jhazmat.2021.126034 [50] DING L, WANG X L, OUYANG Z Z, et al. The occurrence of microplastic in Mu Us Sand Land soils in northwest China: Different soil types, vegetation cover and restoration years [J]. Journal of Hazardous Materials, 2021, 403: 123982. doi: 10.1016/j.jhazmat.2020.123982 [51] ZHANG S L, YANG X M, GERTSEN H, et al. A simple method for the extraction and identification of light density microplastics from soil [J]. Science of the Total Environment, 2018, 616/617: 1056-1065. doi: 10.1016/j.scitotenv.2017.10.213 [52] ZHANG X Y, YOU S Y, TIAN Y Q, et al. Comparison of plastic film, biodegradable paper and bio-based film mulching for summer tomato production: Soil properties, plant growth, fruit yield and fruit quality [J]. Scientia Horticulturae, 2019, 249: 38-48. doi: 10.1016/j.scienta.2019.01.037 [53] LI W F, WUFUER R, DUO J, et al. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region [J]. Science of the Total Environment, 2020, 749: 141420. doi: 10.1016/j.scitotenv.2020.141420 [54] LAN T, WANG T, CAO F, et al. A comparative study on the adsorption behavior of pesticides by pristine and aged microplastics from agricultural polyethylene soil films [J]. Ecotoxicology and Environmental Safety, 2021, 209: 111781. doi: 10.1016/j.ecoenv.2020.111781 [55] FAN X L, ZOU Y F, GENG N, et al. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process [J]. Journal of Hazardous Materials, 2021, 401: 123363. doi: 10.1016/j.jhazmat.2020.123363 [56] DING Y C, ZOU X Q, WANG C L, et al. The abundance and characteristics of atmospheric microplastic deposition in the northwestern South China Sea in the fall [J]. Atmospheric Environment, 2021, 253: 118389. doi: 10.1016/j.atmosenv.2021.118389 [57] BEAUREPAIRE M, DRIS R, GASPERI J, et al. Microplastics in the atmospheric compartment: A comprehensive review on methods, results on their occurrence and determining factors [J]. Current Opinion in Food Science, 2021, 41: 159-168. doi: 10.1016/j.cofs.2021.04.010 [58] GUO J J, HUANG X P, XIANG L, et al. Source, migration and toxicology of microplastics in soil [J]. Environment International, 2020, 137: 105263. doi: 10.1016/j.envint.2019.105263 [59] DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? [J]. Marine Pollution Bulletin, 2016, 104(1/2): 290-293. [60] 周倩, 田崇国, 骆永明. 滨海城市大气环境中发现多种微塑料及其沉降通量差异 [J]. 科学通报, 2017, 62(33): 3902-3909. doi: 10.1360/N972017-00956 ZHOU Q, TIAN C G, LUO Y M. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere [J]. Chinese Science Bulletin, 2017, 62(33): 3902-3909(in Chinese). doi: 10.1360/N972017-00956
[61] DEHGHANI S, MOORE F, AKHBARIZADEH R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran [J]. Environmental Science and Pollution Research, 2017, 24(25): 20360-20371. doi: 10.1007/s11356-017-9674-1 [62] HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: A review of the methods used for identification and quantification [J]. Environmental Science & Technology, 2012, 46(6): 3060-3075. [63] HEO N W, HONG S H, HAN G M, et al. Distribution of small plastic debris in cross-section and high strandline on Heungnam beach, South Korea [J]. Ocean Science Journal, 2013, 48(2): 225-233. doi: 10.1007/s12601-013-0019-9 [64] YAN L, PENG W. Research of new pollutant microplastics in soil [J]. IOP Conference Series:Earth and Environmental Science, 2021, 781(5): 052005. doi: 10.1088/1755-1315/781/5/052005 [65] de SOUZA MACHADO A A, LAU C W, TILL J, et al. Impacts of microplastics on the soil biophysical environment [J]. Environmental Science & Technology, 2018, 52(17): 9656-9665. [66] O'CONNOR D, PAN S Z, SHEN Z T, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles [J]. Environmental Pollution, 2019, 249: 527-534. doi: 10.1016/j.envpol.2019.03.092 [67] YAN X Y, YANG X Y, TANG Z, et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes [J]. Environmental Pollution, 2020, 262: 114270. doi: 10.1016/j.envpol.2020.114270 [68] WU X L, LYU X Y, LI Z Y, et al. Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type [J]. Science of the Total Environment, 2020, 707: 136065. doi: 10.1016/j.scitotenv.2019.136065 [69] LIU M T, SONG Y, LU S B, et al. A method for extracting soil microplastics through circulation of sodium bromide solutions [J]. Science of the Total Environment, 2019, 691: 341-347. doi: 10.1016/j.scitotenv.2019.07.144 [70] RODRIGUEZ-SEIJO A, LOURENÇO J, ROCHA-SANTOS T A P, et al. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché [J]. Environmental Pollution, 2017, 220: 495-503. doi: 10.1016/j.envpol.2016.09.092 [71] RAJU S, CARBERY M, KUTTYKATTIL A, et al. Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant [J]. Water Research, 2020, 173: 115549. doi: 10.1016/j.watres.2020.115549 [72] DONG S N, XIA J H, SHENG L T, et al. Transport characteristics of fragmental polyethylene glycol terephthalate (PET) microplastics in porous media under various chemical conditions [J]. Chemosphere, 2021, 276: 130214. doi: 10.1016/j.chemosphere.2021.130214 [73] DONG Z Q, ZHU L, ZHANG W, et al. Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand [J]. Environmental Pollution, 2019, 255: 113177. doi: 10.1016/j.envpol.2019.113177 [74] SAMANDRA S, JOHNSTON J M, JAEGER J E, et al. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia [J]. Science of the Total Environment, 2022, 802: 149727. doi: 10.1016/j.scitotenv.2021.149727 [75] LIU M T, LU S B, SONG Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China [J]. Environmental Pollution, 2018, 242: 855-862. doi: 10.1016/j.envpol.2018.07.051 [76] YU L, ZHANG J D, LIU Y, et al. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China [J]. Science of the Total Environment, 2021, 756: 143860. doi: 10.1016/j.scitotenv.2020.143860 [77] ZHOU Y F, LIU X N, WANG J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China [J]. Science of the Total Environment, 2019, 694: 133798. doi: 10.1016/j.scitotenv.2019.133798 [78] BERIOT N, PEEK J, ZORNOZA R, et al. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain [J]. Science of the Total Environment, 2021, 755: 142653. doi: 10.1016/j.scitotenv.2020.142653 [79] HUERTA LWANGA E, MENDOZA VEGA J, KU QUEJ V, et al. Field evidence for transfer of plastic debris along a terrestrial food chain [J]. Scientific Reports, 2017, 7(1): 14071. doi: 10.1038/s41598-017-14588-2 [80] HARMS I K, DIEKÖTTER T, TROEGEL S, et al. Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany [J]. Science of the Total Environment, 2021, 758: 143615. doi: 10.1016/j.scitotenv.2020.143615 [81] PIEHL S, LEIBNER A, LÖDER M G J, et al. Identification and quantification of macro- and microplastics on an agricultural farmland [J]. Scientific Reports, 2018, 8(1): 17950. doi: 10.1038/s41598-018-36172-y [82] ZHANG Y, LI Y H, SU F, et al. The life cycle of micro-nano plastics in domestic sewage [J]. Science of the Total Environment, 2022, 802: 149658. doi: 10.1016/j.scitotenv.2021.149658 [83] 岳俊杰, 赵爽, 程昊东, 等. 不同植物覆盖下黄河三角洲湿地土壤中微塑料的分布 [J]. 环境科学, 2021, 42(1): 204-210. doi: 10.13227/j.hjkx.202005030 YUE J J, ZHAO S, CHENG H D, et al. Distribution of micro-plastics in the soil covered by different vegetation in Yellow River Delta wetland [J]. Environmental Science, 2021, 42(1): 204-210(in Chinese). doi: 10.13227/j.hjkx.202005030
[84] CAO L, WU D, LIU P, et al. Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China [J]. Science of the Total Environment, 2021, 794: 148694. doi: 10.1016/j.scitotenv.2021.148694 [85] ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China [J]. Science of the Total Environment, 2018, 642: 12-20. doi: 10.1016/j.scitotenv.2018.06.004 [86] CHAI B W, WEI Q, SHE Y Z, et al. Soil microplastic pollution in an e-waste dismantling zone of China [J]. Waste Management, 2020, 118: 291-301. doi: 10.1016/j.wasman.2020.08.048 [87] ZHOU Q, ZHANG H B, FU C C, et al. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea [J]. Geoderma, 2018, 322: 201-208. doi: 10.1016/j.geoderma.2018.02.015 [88] LUO Z X, ZHOU X Y, SU Y, et al. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles [J]. Science of the Total Environment, 2021, 795: 148902. doi: 10.1016/j.scitotenv.2021.148902 [89] SU S, ZHOU S F, LIN G Q. Existence of microplastics in soil and groundwater in Jiaodong Peninsula [J]. E3S Web of Conferences, 2021, 251: 02045. [90] RAGOOBUR D, HUERTA-LWANGA E, SOMAROO G D. Microplastics in agricultural soils, wastewater effluents and sewage sludge in Mauritius [J]. Science of the Total Environment, 2021, 798: 149326. doi: 10.1016/j.scitotenv.2021.149326 [91] KUMAR M, XIONG X N, HE M J, et al. Microplastics as pollutants in agricultural soils [J]. Environmental Pollution, 2020, 265: 114980. doi: 10.1016/j.envpol.2020.114980 [92] KHALID N, AQEEL M, NOMAN A. Microplastics could be a threat to plants in terrestrial systems directly or indirectly [J]. Environmental Pollution, 2020, 267: 115653. doi: 10.1016/j.envpol.2020.115653 [93] WANG W F, GE J, YU X Y, et al. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective [J]. Science of the Total Environment, 2020, 708: 134841. doi: 10.1016/j.scitotenv.2019.134841 [94] LOZANO Y M, LEHNERT T, LINCK L T, et al. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass [J]. Frontiers in Plant Science, 2021, 12: 616645. doi: 10.3389/fpls.2021.616645 [95] HU B Y, LI Y X, JIANG L S, et al. Influence of microplastics occurrence on the adsorption of 17β-estradiol in soil [J]. Journal of Hazardous Materials, 2020, 400: 123325. doi: 10.1016/j.jhazmat.2020.123325 [96] GAO M L, XU Y L, LIU Y, et al. Effect of polystyrene on di-butyl phthalate (DBP) bioavailability and DBP-induced phytotoxicity in lettuce [J]. Environmental Pollution, 2021, 268: 115870. doi: 10.1016/j.envpol.2020.115870 [97] TOURINHO P S, KOČÍ V, LOUREIRO S, et al. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation [J]. Environmental Pollution, 2019, 252: 1246-1256. doi: 10.1016/j.envpol.2019.06.030 [98] BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: Above and below ground [J]. Environmental Science & Technology, 2019, 53(19): 11496-11506. [99] QI Y L, YANG X M, PELAEZ A M, et al. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth [J]. Science of the Total Environment, 2018, 645: 1048-1056. doi: 10.1016/j.scitotenv.2018.07.229 [100] de SOUZA MACHADO A A, KLOAS W, ZARFL C, et al. Microplastics as an emerging threat to terrestrial ecosystems [J]. Global Change Biology, 2018, 24(4): 1405-1416. doi: 10.1111/gcb.14020 [101] BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum [J]. Chemosphere, 2019, 226: 774-781. doi: 10.1016/j.chemosphere.2019.03.163 [102] HERNÁNDEZ-ARENAS R, BELTRÁN-SANAHUJA A, NAVARRO-QUIRANT P, et al. The effect of sewage sludge containing microplastics on growth and fruit development of tomato plants [J]. Environmental Pollution, 2021, 268: 115779. doi: 10.1016/j.envpol.2020.115779 [103] LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil [J]. Chemosphere, 2017, 185: 907-917. doi: 10.1016/j.chemosphere.2017.07.064 [104] WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil [J]. Science of the Total Environment, 2019, 654: 576-582. doi: 10.1016/j.scitotenv.2018.11.123 [105] de SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance [J]. Environmental Science & Technology, 2019, 53(10): 6044-6052. [106] JIANG X F, CHEN H, LIAO Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba [J]. Environmental Pollution, 2019, 250: 831-838. doi: 10.1016/j.envpol.2019.04.055 [107] HUERTA LWANGA E, GERTSEN H, GOOREN H, et al. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae) [J]. Environmental Science & Technology, 2016, 50(5): 2685-2691. [108] CAO D D, WANG X, LUO X X, et al. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil [J]. IOP Conference Series:Earth and Environmental Science, 2017, 61: 012148. doi: 10.1088/1755-1315/61/1/012148 [109] ZHOU B Y, WANG J Q, ZHANG H B, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, East China: Multiple sources other than plastic mulching film [J]. Journal of Hazardous Materials, 2020, 388: 121814. doi: 10.1016/j.jhazmat.2019.121814 [110] SONG Y, CAO C J, QIU R, et al. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure [J]. Environmental Pollution, 2019, 250: 447-455. doi: 10.1016/j.envpol.2019.04.066 [111] LEI L L, LIU M T, SONG Y, et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans [J]. Environmental Science:Nano, 2018(8): 2009-2020. [112] JIN Y X, LU L, TU W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice [J]. Science of the Total Environment, 2019, 649: 308-317. doi: 10.1016/j.scitotenv.2018.08.353 [113] ZHU B K, FANG Y M, ZHU D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus [J]. Environmental Pollution, 2018, 239: 408-415. doi: 10.1016/j.envpol.2018.04.017 [114] ZHANG M J, ZHAO Y R, QIN X, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil [J]. Science of the Total Environment, 2019, 688: 470-478. doi: 10.1016/j.scitotenv.2019.06.108 [115] ZETTLER E R, MINCER T J, AMARAL-ZETTLER L A. Life in the “plastisphere”: Microbial communities on plastic marine debris [J]. Environmental Science & Technology, 2013, 47(13): 7137-7146. [116] CHAI B W, LI X, LIU H, et al. Bacterial communities on soil microplastic at Guiyu, an E-Waste dismantling zone of China [J]. Ecotoxicology and Environmental Safety, 2020, 195: 110521. doi: 10.1016/j.ecoenv.2020.110521 [117] RILLIG M C, LEHMANN A, RYO M, et al. Shaping up: Toward considering the shape and form of pollutants [J]. Environmental Science & Technology, 2019, 53(14): 7925-7926. [118] HUANG Y, ZHAO Y R, WANG J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil [J]. Environmental Pollution, 2019, 254: 112983. doi: 10.1016/j.envpol.2019.112983 [119] JUDY J D, WILLIAMS M, GREGG A, et al. Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota [J]. Environmental Pollution, 2019, 252: 522-531. doi: 10.1016/j.envpol.2019.05.027 [120] FEI Y F, HUANG S Y, ZHANG H B, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil [J]. Science of the Total Environment, 2020, 707: 135634. doi: 10.1016/j.scitotenv.2019.135634 [121] AWET T T, KOHL Y, MEIER F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil [J]. Environmental Sciences Europe, 2018, 30(1): 11. doi: 10.1186/s12302-018-0140-6 [122] KAUR K, REDDY S, BARATHE P, et al. Microplastic-associated pathogens and antimicrobial resistance in environment [J]. Chemosphere, 2022, 291: 133005. doi: 10.1016/j.chemosphere.2021.133005 [123] LV W W, ZHOU W Z, LU S B, et al. Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China [J]. Science of the Total Environment, 2019, 652: 1209-1218. doi: 10.1016/j.scitotenv.2018.10.321 [124] SUN M M, YE M, JIAO W T, et al. Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid [J]. Journal of Hazardous Materials, 2018, 345: 131-139. doi: 10.1016/j.jhazmat.2017.11.036 [125] LU X M, LU P Z, LIU X P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil [J]. Science of the Total Environment, 2020, 709: 136276. doi: 10.1016/j.scitotenv.2019.136276 [126] ZHU D, MA J, LI G, et al. Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens [J]. The ISME Journal, 2022, 16(2): 521-532. doi: 10.1038/s41396-021-01103-9 [127] SCHEURER M, BIGALKE M. Microplastics in Swiss floodplain soils [J]. Environmental Science & Technology, 2018, 52(6): 3591-3598. [128] 李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料 [J]. 科学通报, 2019, 64(9): 928-934. doi: 10.1360/N972018-00845 LI L Z, ZHOU Q, YIN N, et al. Uptake and accumulation of microplastics in an edible plant [J]. Chinese Science Bulletin, 2019, 64(9): 928-934(in Chinese). doi: 10.1360/N972018-00845
[129] BARBOZA L G A, VETHAAK A D, LAVORANTE B R B O, et al. Marine microplastic debris: An emerging issue for food security, food safety and human health [J]. Marine Pollution Bulletin, 2018, 133: 336-348. doi: 10.1016/j.marpolbul.2018.05.047 [130] SCHIRINZI G F, PÉREZ-POMEDA I, SANCHÍS J, et al. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells [J]. Environmental Research, 2017, 159: 579-587. doi: 10.1016/j.envres.2017.08.043 [131] LUSHER A, HOLLMAN P, MENDOZA-HILL J. Microplastics in fisheries and aquaculture: Status of knowledge on their occurrence and implications for aquatic organisms and food safety[R]. FAO Fisheries and Aquaculture Technical Paper No. 615, 2017. [132] PRATA J C. Airborne microplastics: Consequences to human health? [J]. Environmental Pollution, 2018, 234: 115-126. doi: 10.1016/j.envpol.2017.11.043 [133] MISHRA S, RATH C C, DAS A P. Marine microfiber pollution: A review on present status and future challenges [J]. Marine Pollution Bulletin, 2019, 140: 188-197. doi: 10.1016/j.marpolbul.2019.01.039 [134] PÉREZ-GUEVARA F, KUTRALAM-MUNIASAMY G, SHRUTI V C. Critical review on microplastics in fecal matter: Research progress, analytical methods and future outlook [J]. Science of the Total Environment, 2021, 778: 146395. doi: 10.1016/j.scitotenv.2021.146395 [135] ZHANG J J, WANG L, TRASANDE L, et al. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces [J]. Environmental Science & Technology Letters, 2021, 8(11): 989-994. [136] REVELL L E, KUMA P, le RU E C, et al. Direct radiative effects of airborne microplastics [J]. Nature, 2021, 598(7881): 462-467. doi: 10.1038/s41586-021-03864-x [137] GAO Y, YU G R, HE N P. Equilibration of the terrestrial water, nitrogen, and carbon cycles: Advocating a health threshold for carbon storage [J]. Ecological Engineering, 2013, 57: 366-374. doi: 10.1016/j.ecoleng.2013.04.011 [138] WANG Y, ZHOU B H, CHEN H L, et al. Distribution, biological effects and biofilms of microplastics in freshwater systems - A review [J]. Chemosphere, 2022, 299: 134370. doi: 10.1016/j.chemosphere.2022.134370 [139] LIU S Q, WANG J W, ZHU J H, et al. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings [J]. Chemosphere, 2021, 282: 130967. doi: 10.1016/j.chemosphere.2021.130967 [140] DONG Y M, GAO M L, QIU W W, et al. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects [J]. Journal of Hazardous Materials, 2021, 411: 125055. doi: 10.1016/j.jhazmat.2021.125055 [141] ABBASI S, MOORE F, KESHAVARZI B, et al. PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone [J]. Science of the Total Environment, 2020, 744: 140984. doi: 10.1016/j.scitotenv.2020.140984 [142] ZONG X Y, ZHANG J J, ZHU J W, et al. Effects of polystyrene microplastic on uptake and toxicity of copper and cadmium in hydroponic wheat seedlings (Triticum aestivum L. ) [J]. Ecotoxicology and Environmental Safety, 2021, 217: 112217. doi: 10.1016/j.ecoenv.2021.112217 [143] ZHOU Y F, LIU X N, WANG J. Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida [J]. Journal of Hazardous Materials, 2020, 392: 122273. doi: 10.1016/j.jhazmat.2020.122273 [144] WANG H T, DING J, XIONG C, et al. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica [J]. Environmental Pollution, 2019, 251: 110-116. doi: 10.1016/j.envpol.2019.04.054 [145] SUN W, MENG Z Y, LI R S, et al. Joint effects of microplastic and dufulin on bioaccumulation, oxidative stress and metabolic profile of the earthworm (Eisenia fetida) [J]. Chemosphere, 2021, 263: 128171. doi: 10.1016/j.chemosphere.2020.128171 [146] BOUGHATTAS I, ZITOUNI N, HATTAB S, et al. Interactive effects of environmental microplastics and 2, 4-dichlorophenoxyacetic acid (2, 4-D) on the earthworm Eisenia andrei [J]. Journal of Hazardous Materials, 2022, 424: 127578. doi: 10.1016/j.jhazmat.2021.127578 [147] HUANG D L, WANG X Y, YIN L S, et al. Research progress of microplastics in soil-plant system: Ecological effects and potential risks [J]. Science of the Total Environment, 2022, 812: 151487. doi: 10.1016/j.scitotenv.2021.151487 [148] 许楹, 殷超凡, 岳纹龙, 等. 石油基塑料的微生物降解 [J]. 生物工程学报, 2019, 35(11): 2092-2103. doi: 10.13345/j.cjb.190301 XU Y, YIN C F, YUE W L, et al. Microbial degradation of petroleum-based plastics [J]. Chinese Journal of Biotechnology, 2019, 35(11): 2092-2103(in Chinese). doi: 10.13345/j.cjb.190301
[149] TRIBEDI P, SIL A K. Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm [J]. Environmental Science and Pollution Research International, 2013, 20(6): 4146-4153. doi: 10.1007/s11356-012-1378-y [150] ORR I G, HADAR Y, SIVAN A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber [J]. Applied Microbiology and Biotechnology, 2004, 65(1): 97-104. [151] ZHANG K, HAMIDIAN A H, TUBIĆ A, et al. Understanding plastic degradation and microplastic formation in the environment: A review [J]. Environmental Pollution, 2021, 274: 116554. doi: 10.1016/j.envpol.2021.116554 [152] SARKER A, DEEPO D M, NANDI R, et al. A review of microplastics pollution in the soil and terrestrial ecosystems: A global and Bangladesh perspective [J]. Science of the Total Environment, 2020, 733: 139296. doi: 10.1016/j.scitotenv.2020.139296 [153] YANG J, YANG Y, WU W M, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms [J]. Environmental Science & Technology, 2014, 48(23): 13776-13784. [154] BRANDON A M, GAO S H, TIAN R M, et al. Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome [J]. Environmental Science & Technology, 2018, 52(11): 6526-6533. [155] HUERTA LWANGA E, THAPA B, YANG X M, et al. Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration [J]. Science of the Total Environment, 2018, 624: 753-757. doi: 10.1016/j.scitotenv.2017.12.144 [156] 杨莉, 刘颖, 高婕, 等. 大麦虫幼虫肠道菌群对聚苯乙烯泡沫塑料降解 [J]. 环境科学, 2020, 41(12): 5609-5616. doi: 10.13227/j.hjkx.202003273 YANG L, LIU Y, GAO J, et al. Biodegradation of expanded polystyrene foams in Zophobas morio: Effects of gut microbiota [J]. Environmental Science, 2020, 41(12): 5609-5616(in Chinese). doi: 10.13227/j.hjkx.202003273
[157] MUHAMMAD A, ZHOU X X, HE J T, et al. Toxic effects of acute exposure to polystyrene microplastics and nanoplastics on the model insect, silkworm Bombyx mori [J]. Environmental Pollution, 2021, 285: 117255. doi: 10.1016/j.envpol.2021.117255 [158] LIU H L, TIAN L J, WANG S T, et al. Size-dependent transgenerational toxicity induced by nanoplastics in nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2021, 790: 148217. doi: 10.1016/j.scitotenv.2021.148217 [159] ZHANG H B, WANG J Q, ZHOU B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution, 2018, 243: 1550-1557. doi: 10.1016/j.envpol.2018.09.122