-
多环芳烃是一种相对稳定的稠环化合物,在我国农田和场地土壤中普遍存在,其主要来源于天然气厂、焦化厂以及钢铁厂等[1-2]。相对于低环多环芳烃较易挥发的特性,高环多环芳烃在土壤中较稳定,不易挥发或向下迁移,是土壤中主要的有机污染物。同时,高环多环芳烃具有强疏水性,可与土壤有机质紧密结合,不易被降解[3],因此,多环芳烃污染土壤的总遗传毒性和致突变性主要是由高环多环芳烃引起[4]。我国公布的多环芳烃风险控制值中,以苯并[a]芘为代表的高环多环芳烃最严格[5]。这是因为它们的耐受水平是低分子量多环芳烃化合物(如菲和蒽)1/10000。这些稳定的生物难降解化合物,如苯并[a]芘,由于浓度高及长期累积性,污染的土壤修复难度大。
1966年,有研究第一次报道了土壤微生物降解苯并[a]芘的可能性[6]。在随后的30年间,微生物降解成为了苯并[a]芘污染土壤修复的主要方法[7-9]。直到1995年和1997年,芬顿和臭氧氧化土壤中苯并[a]芘先后进入研究人员的视野[10-11]。随后的研究不断证实,基于芬顿、臭氧和过硫酸盐等产生具有强氧化能力的羟基自由基为特点的高级氧化技术在苯并[a]芘污染土壤的高效修复中有巨大的应用潜力[10-13]。高级氧化技术可将苯并[a]芘等有机污染物氧化成低毒或无毒的小分子物质,且降解效率显著高于微生物降解[12-13]。高级氧化技术常见于废水处理,与之相比,土壤作为介质的修复过程更具挑战性,主要体现在以下三个方面,一是土壤介质的复杂性,土壤中有机质、矿物等,可与氧化剂发生反应,从而影响自由基对目标污染物的降解;二是土壤介质的传质性差,氧化剂与目标污染物的接触和反应显著降低,影响修复效果;三是土壤介质对污染物的高累积性,土壤中的有机质等对有机污染物有很强的吸附能力,导致土壤中的浓度显著高于水体,以苯并[a]芘为例,其在水中最大溶解度为0.00162 mg·L−1[14],在土壤中的浓度可以达到几百mg·kg−1,为高级氧化技术的使用提出了更大的挑战。
在近二十五年来,研究者们系统研究了高级氧化技术对土壤中苯并[a]芘的降解原理,并尝试在实际中应用,积累了较为丰富的文献材料,但缺少系统地梳理。目前,有关苯并[a]芘污染土壤修复的综述关注了生物降解方面的研究进展,主要有1997年Epuri 和Sorensen撰写的专著一章-植物修复在苯并[a]芘和六氯联苯污染土壤修复中的潜力[15],臧淑艳等发表的污染土壤中苯并[a]芘的微生物降解途径研究进展[16],最近,仲冉等综述了微生物、热、电动以及植物修复技术在苯并[a]芘土壤修复中的应用[17],有关高级氧化在苯并[a]芘污染土壤中修复的研究进展还未见报道。本文系统综述了基于芬顿、过硫酸盐和臭氧氧化的高级氧化技术在苯并[a]芘污染土壤中的研究进展,以期为苯并[a]芘污染土壤修复技术的发展提供理论支撑。
高级氧化技术修复苯并[a]芘污染土壤研究进展
Research progress on the remediation of benzo[a]pyrene contaminated soil by advanced oxidation technology
-
摘要: 苯并[a]芘是我国土壤中典型的持久性有机污染物之一,其高疏水、难降解的特性成为多环芳烃污染土壤修复的技术瓶颈。在苯并[a]芘污染土壤修复研究的初期,微生物降解被认为是最有效的修复方法。近二十五年来,高级氧化技术在苯并[a]芘污染土壤修复中受到持续关注,应用潜力巨大,了解不同氧化方法修复苯并[a]芘污染土壤的机制与影响因素有助于深化理论研究及应用。本文在简要介绍高级氧化技术修复苯并[a]芘污染土壤历史的基础上,重点综述了芬顿、过硫酸盐、臭氧等高级氧化技术修复的研究进展,并探讨了土壤结构性质对高级氧化技术修复的影响,最后对高级氧化技术修复苯并[a]芘污染土壤进行了展望,以期为多环芳烃污染土壤修复提供理论基础。Abstract: Benzo[a]pyrene is one of the representative persistent organic pollutants in soil in China. Its high hydrophobicity and difficult degradation have become the technical barrier in the remediation of soil contaminated by polycyclic aromatic hydrocarbon. In the early stage of the remediation of benzo[a]pyrene contaminated soil, microbial degradation is considered to be the most efficient remediation method. In the past 25 years, advanced oxidation technology has received continuous attention with huge application potential in the remediation of benzo[a]pyrene contaminated soil. Understanding the mechanism and influencing factors of various oxidation methods for the remediation of benzo[a]pyrene soil will be helpful in deepening the theoretical research and application. Following the brief introduction on the historical research of advanced oxidation technology for the remediation of benzo[a]pyrene contaminated soil, this paper emphatically summarizes the research progresses of advanced oxidation technologies such as Fenton, persulfate and ozone for the remediation of benzo[a]pyrene contaminated soil, and discusses the influence of soil structures and properties effect on advanced oxidation technology. Finally, the remediation of benzo[a]pyrene contaminated soil by advanced oxidation technology is prospected, in order to provide a theoretical basis for the remediation of polycyclic aromatic hydrocarbons contaminated soil.
-
Key words:
- fenton oxidation /
- persulfate oxidation /
- ozone oxidation /
- soil /
- benzo[a]pyrene
-
表 1 芬顿氧化对苯并[a]芘污染土壤修复研究进展
Table 1. Research progress on the remediation of benzo[a]pyrene contaminated soil by Fenton oxidation
氧化剂
Oxidants污染物
Pollutants辅助材料
Auxiliary materials处理结果与机理
Results and mechanism参考文献
ReferencesH2O2 (2.8 mol·L−1);
FeSO4 (0.1 mol·L−1)9种多环芳烃
(400 mg·kg−1)十二烷基硫酸钠和微生物 芬顿氧化预处理后,9种多环芳烃的矿化率平均提高了87%,苯并[a]芘的矿化度提高了8.5倍 [10] H2O2: FeSO4=1:1—10:1 7种多环芳烃
(600 mg·kg−1)邻苯二酚和没食子酸 类芬顿和生物降解联合,土壤中 98% 以上二或三环及 70% 至 85% 四或五环多环芳烃被降解 [18] H2O2 (1500—14000 mmol·L−1);
FeSO4 (2—23.4 mmol·L−1)苯并[a]芘
(0.1 mmol·kg−1)铁和天然土壤矿物 壤土中 85% 的苯并[a]芘矿化,H2O2 可矿化吸附态苯并[a]芘 [20] H2O2 (1%);
FeSO4 (10 mmol·L−1)13种多环芳烃 过氧化钙和植物油 植物油增强多环芳烃的氧化,对高环多环芳烃效果更显著,过氧化钙比 H2O2 增强效果好 [21] H2O2 (2.8 mol·L−1);
FeSO4 (0.1 mol·L−1)16种多环芳烃
(222000 mg·kg−1)Tween 80 等 4种表面活性剂 芬顿氧化显著增强芘和苯并[a]芘的矿化 [30] H2O2 (4.9 mol·L−1) ;
FeSO4 (0.01 mol·L−1)苯并[a]芘 — 苯并[a]芘的降解比吸附快,芬顿氧化效率与有机碳含量和多环芳烃可用性相关 [22] H2O2 (15%);
FeSO4 (5 mmol·L−1)23种多环芳烃 乙醇 乙醇促进土壤中多环芳烃的解吸,促进了多环芳烃降解 [23] H2O2 (15%);
FeSO4 (10 mmol·L−1)24种多环芳烃 — 蒽、苯并[a]芘和芘比其他结构相似的多环芳烃更易降解,这归因于它们对羟基自由基的敏感性 [24] H2O2 (0.023 mol·L−1);
FeSO4 (0.0005 mol·L−1)苯并[a]芘
(每瓶1 mg)环湖精及其衍生物 与生物降解或芬顿氧化相比,芬顿氧化与生物降解联合时,对苯并[a]芘降解达25% [19] H2O2 (0.01 mol·L−1);
FeSO4 (0.002 mol·L−1)苯并[a]芘
(40 mg·L−1)环湖精及其衍生物 羟丙基 β环湖精–苯并[a]芘–铁形成的三元络合物可促进在苯并[a]芘附近产生羟基自由基 [31] H2O2 (0.5 mol·L−1);
Fe(NO3)3 (0. 1 mol·L−1)苯并[a]芘
(9.88 mg·kg−1)环糊精 最佳降解条件:0.5 mol·L−1 H2O2、
0.1 mol·L−1 Fe(NO3)3、0. 5 mol·L−1 羟丙基 β环糊精[25] H2O2 (666 mmol·L−1);
H2O2: Fe2+ = 10:1 (mol·mol−1)苯并[a]芘
(500 mg·kg−1)乳酸乙酯和乙烯 乳酸芬顿比传统芬顿处理高12—42倍,机理是乳酸存在下,多环芳烃溶解度和解吸能力提高 [26] H2O2 (15 g)
H2O2:Fe2+=10:1苯并[a]芘
(6.34 mg·L−1)— 菲、荧蒽和苯并[a]芘降解产物是邻苯二甲酸和苯甲酸;随温度升高,污染物降解速率显著增加 [32] H2O2 (0—1.5 mol·L−1);
FeSO4 (0.12 mol·L−1)苯并[a]芘等
(0.38-0.82 mg·kg−1)柠檬酸 柠檬酸促进类芬顿氧化苯并[a]芘等多环芳烃 [27] H2O2 (0.2 g·kg−1);
过硫酸钠 (0.2 g·kg−1)16种多环芳烃
(0.67-185 µg·kg−1)铁和腐殖酸 H2O2、纳米铁粉和腐殖酸联合处理对结合态多环芳烃去除率 44.5% [33] H2O2 (1 mol·L−1) 苯并[a]芘
(500 µg·kg−1)— 苯并[a]芘降解率随不稳定有机碳含量的增加而增加,随耐化学腐蚀炭含量的增加而降低 [34] H2O2 (0—1.6 mol·L−1);
α-Fe2O3 (0—30 mg·kg−1)苯并[a]芘
(100 µg·kg−1)腐殖酸 在1%腐殖酸和16.71 mg赤铁矿用量时,苯并[a]芘降解率为76% [28] 4种不同浓度和配比的氧化剂 16种多环芳烃
(0.03 g·kg−1)— 荧蒽、芘和苯并[a]芘表现出比相同环数多环芳烃更高的降解率 [35] H2O2 (0—2 mol·L−1);
赤铁矿(0—4 mg·g−1)苯并[a]芘
(100 µg·kg−1)生物质炭 生物质炭活化 H2O2 并发射电子将 Fe(Ⅲ) 还原为 Fe(Ⅱ),可显著提高类芬顿反应的效率 [29] 表 2 过硫酸盐氧化对苯并[a]芘污染土壤修复研究进展
Table 2. Research progress on the remediation of benzo[a]pyrene contaminated soil by persulfate oxidation
氧化剂
Oxidants污染物
Pollutants辅助材料
Auxiliary materials处理结果与机理
Results and mechanism参考文献
References过硫酸盐
(0.2 mmol·mL−1)苯并[a]芘
(105—140 mg·kg−1)Fe3+ 和纳米零价铁 距离注入源最近的多环芳烃去除率为 90%,随着距离的增加,去除率显著降低 [36] 过硫酸盐
(50000 mg·L−1)苯并[a]芘等
(102 mg·kg−1)铁、FeSO4 和纳米零价铁 以铁和纳米零价铁为活化剂时,醌类化合物使 Fe3+ 还原为 Fe2+,促进硫酸根自由基生成 [37] 过硫酸盐
(1 mmol·g−1)苯并[a]芘
(144. 9 mg·kg−1)过碳酸钠和H2O2 等 活化过硫酸钠效果是过碳酸钠>H2O2>过氧化钙 [38] 过硫酸钠
(1 mol·L−1)苯并[a]芘
(0.008 mg·g−1)柠檬酸和FeSO4 随着有机碳增加,砖红壤、褐土、紫色土、黄土、潮土、黑土中多环芳烃降解率逐渐降低 [40] 过硫酸钠
(1 mmol·g−1)苯并[a]芘
(144.9 mg·kg−1)过碳酸钠等 过碳酸钠活化过硫酸钠的最优配比为 0.67:1,土壤中多环芳烃去除率为 92.3% [39] 过硫酸盐
(50—600 mmol·L−1)苯并[a]芘
(0.7 mg·kg−1)土著微生物 过硫酸盐对多环芳烃降解基因表达显著高于高锰酸钾,使苯并[a]芘降解率提高12.0%—18.4% [42] 过硫酸盐
(3—-12 g·L−1)苯并[a]芘
(42.6 mg·kg−1)生物质炭 过量的生物质炭或过硫酸盐可消耗硫酸根自由基而抑制苯并[a]芘降解 [41] 过硫酸钠
(0.5 mol·L−1)苯并[a]芘
(500 µg·kg−1)/ 吸附在不稳定有机碳上的苯并[a]芘最初被降解,吸附在稳定有机炭释放的苯并[a]芘后降解 [3] 过硫酸盐
(6—154 t)多环芳烃等 氧化钙 污染物降解效率随土壤深度的增加而降低 [43] 表 3 臭氧氧化对苯并[a]芘污染土壤修复研究进展
Table 3. Research progress on the remediation of benzo[a]pyrene contaminated soil by ozone oxidation
氧化剂
Oxidants污染物
Pollutants辅助材料
Auxiliary materials处理结果与机理
Results and mechanism参考文献
References臭氧
(0.05 g·L−1)苯并[a]芘
(20 mg·kg−1)— 芘和苯并[a]芘的14C被氧化为水溶性物质或结合残留物,降解产物为醌和含有甲酰基和羧基的芘和苯并[a]芘 [11] 臭氧
(12 mg·d−1)多环芳烃
(600 µg·g−1)微生物 臭氧氧化增强生物对煤焦油土壤多环芳烃降解,联合处理的效果比在掺有碳氢化合物的无菌土壤中更显著 [45] 臭氧:空气
(1% W/W)直接通入多环芳烃 — 臭氧氧化2 h可去除沉积物中50% — 100%多环芳烃,苯并[a]芘去除率为50% [49] 臭氧
(1.00 mg·L−1)11种多环芳烃 — 吸附在砂上的多环芳烃比泥炭上的更易降解,臭氧或芬顿氧化与生物联用对多环芳烃降解效果比单独的好 [46] 苯并[a]芘:臭氧
(4、18、44 mg·(mg·L−1)−1苯并[a]芘
(524 mg·kg−1)微生物 臭氧和废弃蘑菇堆肥联合对苯并[a]芘降解率大于75%,表明臭氧氧化提高污染物生物降解 [47] 臭氧
(73.7 mg·L−1)苯并[a]芘
(100 mg·kg−1)— 在100 r·min−1搅拌速度,3%含水率,73.7 mg·L−1臭氧浓度下,苯并[a]芘降解率达 93.67% [48] -
[1] 张晗, 刘凯, 邹天森, 等. 某地区两个燃煤电厂周边农田土壤中多环芳烃污染特征及生态安全评价 [J]. 环境化学, 2019, 38(8): 1832-1841. doi: 10.7524/j.issn.0254-6108.2018090401 ZHANG H, LIU K, ZOU T S, et al. Pollution characteristics and evaluation ecological safety of the polycyclic aromatic hydrocarbons(PAHs) pollution in surface soil of farmland around two coal-fired power plants [J]. Environmental Chemistry, 2019, 38(8): 1832-1841(in Chinese). doi: 10.7524/j.issn.0254-6108.2018090401
[2] 姚成, 倪进治, 刘瑞, 等. 扬州市不同功能区表层土壤中多环芳烃的含量、来源及其生态风险 [J]. 环境科学, 2020, 41(4): 1847-1854. YAO C, NI J Z, LIU R, et al. Contents, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface soils of various functional zones in Yangzhou City, China [J]. Environmental Science, 2020, 41(4): 1847-1854(in Chinese).
[3] ZHUO C Y, HU S J, YANG Y, et al. Effects of the structures and micropores of sedimentary organic matter on the oxidative degradation of benzo(a)Pyrene by Na2S2O8 [J]. Water Research, 2020, 174: 115635. doi: 10.1016/j.watres.2020.115635 [4] 蓝家程, 孙玉川, 胡宁, 等. 岩溶槽谷区土壤多环芳烃健康风险评价 [J]. 环境化学, 2019, 38(9): 1973-1981. doi: 10.7524/j.issn.0254-6108.2019030601 LAN J C, SUN Y C, HU N, et al. Health risk assessment of polycyclic aromatic hydrocarbons in soils of Karst trough valley in Chongqing [J]. Environmental Chemistry, 2019, 38(9): 1973-1981(in Chinese). doi: 10.7524/j.issn.0254-6108.2019030601
[5] 生态环境部, 国家市场监督管理总局. 土壤环境质量 建设用地土壤污染风险管控标准: GB 36600—2018[S]. 北京: 中国标准出版社, 2018. Ministry of Ecological Environment. Soil environmental quality Risk control standard for soil contamination of development land: GB 36600—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[6] POGLAZOVA M N, FEDOSEEVA G E, KHESINA A, et al. On the possibility of benzo(a)Pyrene destruction by soil microorganisms [J]. Doklady Akademii Nauk SSSR, 1966, 169(5): 1174-1177. [7] JUHASZ A L, NAIDU R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]Pyrene [J]. International Biodeterioration & Biodegradation, 2000, 45(1/2): 57-88. doi: 10.1016/S0964-8305(00)00052-4 [8] 钱林波, 元妙新, 陈宝梁. 固定化微生物技术修复PAHs污染土壤的研究进展 [J]. 环境科学, 2012, 33(5): 1767-1776. QIAN L B, YUAN M X, CHEN B L. Research progress about bioremediation of polycyclic aromatic hydrocarbons contaminated soil with immobilized microorganism technique [J]. Environmental Science, 2012, 33(5): 1767-1776(in Chinese).
[9] QIAN L B, CHEN B L. Enhanced oxidation of benzo[a]Pyrene by crude enzyme extracts produced during interspecific fungal interaction of Trametes versicolor and Phanerochaete chrysosporium [J]. Journal of Environmental Sciences, 2012, 24(9): 1639-1646. doi: 10.1016/S1001-0742(11)61056-5 [10] MARTENS D A, FRANKENBERGER W T. Enhanced degradation of polycyclic aromatic hydrocarbons in soil treated with an advanced oxidative process—Fenton's Reagent [J]. Journal of Soil Contamination, 1995, 4(2): 175-190. doi: 10.1080/15320389509383491 [11] EBERIUS M, BERNS A, SCHUPHAN I. Ozonation of Pyrene and benzo[a]Pyrene in silica and soil–14C-mass balances and chemical analysis of oxidation products as a first step to ecotoxicological evaluation [J]. Fresenius' Journal of Analytical Chemistry, 1997, 359(3): 274-279. doi: 10.1007/s002160050572 [12] YAN J C, YANG L, QIAN L B, et al. Nano-magnetite supported by biochar pyrolyzed at different temperatures as hydrogen peroxide activator: Synthesis mechanism and the effects on ethylbenzene removal [J]. Environmental Pollution, 2020, 261: 114020. doi: 10.1016/j.envpol.2020.114020 [13] da OUYANG, CHEN Y, YAN J C, et al. Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1, 4-dioxane: Important role of biochar defect structures [J]. Chemical Engineering Journal, 2019, 370: 614-624. doi: 10.1016/j.cej.2019.03.235 [14] 陈梦舫, 韩璐, 罗飞. 污染场地土壤与地下水风险评估方法学[M]. 北京: 科学出版社, 2017. CHEN M F, HAN L, LUO F. Soil and groundwater risk assessment methodologies for contaminated sites[M]. Beijing: Science Press, 2017(in Chinese).
[15] EPURI V, SORENSEN D L. Benzo(a)Pyrene and hexachlorobiphenyl contaminated soil: Phytoremediation potential[M]//Phytoremediation of Soil and Water Contaminants. Washington, DC: American Chemical Society, 1997: 200-222. [16] 臧淑艳, 李培军, 张英, 等. 污染土壤中苯并(a)芘的微生物降解途径研究进展 [J]. 生态学杂志, 2006, 25(8): 978-982. doi: 10.3321/j.issn:1000-4890.2006.08.021 ZANG S Y, LI P J, ZHANG Y, et al. Research advances in microbial metabolic pathway of benzo[a]Pyrene in contaminated soils [J]. Chinese Journal of Ecology, 2006, 25(8): 978-982(in Chinese). doi: 10.3321/j.issn:1000-4890.2006.08.021
[17] 仲冉, 杨凤, 丁克强, 等. 苯并(a)芘污染土壤现状及修复技术研究进展 [J]. 环境科技, 2021, 34(1): 76-81. ZHONG R, YANG F, DING K Q, et al. Progress in research on the pollution status and remediation technology of BaP in soils [J]. Environmental Science and Technology, 2021, 34(1): 76-81(in Chinese).
[18] NAM K, RODRIGUEZ W, KUKOR J J. Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton reaction [J]. Chemosphere, 2001, 45(1): 11-20. doi: 10.1016/S0045-6535(01)00051-0 [19] RAFIN C, VEIGNIE E, FAYEULLE A, et al. Benzo[a]Pyrene degradation using simultaneously combined chemical oxidation, biotreatment with Fusarium solani and cyclodextrins [J]. Bioresource Technology, 2009, 100(12): 3157-3160. doi: 10.1016/j.biortech.2009.01.012 [20] WATTS R J, STANTON P C, HOWSAWKENG J, et al. Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide [J]. Water Research, 2002, 36(17): 4283-4292. doi: 10.1016/S0043-1354(02)00142-2 [21] BOGAN B W, TRBOVIC V, PATEREK J R. Inclusion of vegetable oils in Fenton's chemistry for remediation of PAH-contaminated soils [J]. Chemosphere, 2003, 50(1): 15-21. doi: 10.1016/S0045-6535(02)00490-3 [22] FLOTRON V, DELTEIL C, PADELLEC Y, et al. Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton's reagent process [J]. Chemosphere, 2005, 59(10): 1427-1437. doi: 10.1016/j.chemosphere.2004.12.065 [23] LUNDSTEDT S, PERSSON Y, ÖBERG L. Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks’ soil [J]. Chemosphere, 2006, 65(8): 1288-1294. doi: 10.1016/j.chemosphere.2006.04.031 [24] JONSSON S, PERSSON Y, FRANKKI S, et al. Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton's reagent: A multivariate evaluation of the importance of soil characteristics and PAH properties [J]. Journal of Hazardous Materials, 2007, 149(1): 86-96. doi: 10.1016/j.jhazmat.2007.03.057 [25] 杜勇超, 豆俊峰, 丁爱中, 等. 类Fenton试剂氧化降解土壤中PAHs及其影响因素研究 [J]. 环境工程学报, 2011, 5(8): 1882-1886. DU Y C, DOU J F, DING A Z, et al. Study on characteristics and influencing factors of PAHs degradation in soil by Fenton-like reagent [J]. Chinese Journal of Environmental Engineering, 2011, 5(8): 1882-1886(in Chinese).
[26] YAP C L, GAN S Y, NG H K. Ethyl lactate-Fenton treatment of soil highly contaminated with polycyclic aromatic hydrocarbons (PAHs) [J]. Chemical Engineering Journal, 2012, 200/201/202: 247-256. doi: 10.1016/j.cej.2012.06.036 [27] 戚惠民. 异位类Fenton化学氧化在多环芳烃污染场地修复中的应用 [J]. 环境工程学报, 2018, 12(11): 3260-3268. doi: 10.12030/j.cjee.201803140 QI H M. Application of ex-situ Fenton-like chemical oxidation in remedying PAHs polluted site [J]. Chinese Journal of Environmental Engineering, 2018, 12(11): 3260-3268(in Chinese). doi: 10.12030/j.cjee.201803140
[28] MAZARJI M, MINKINA T, SUSHKOVA S, et al. Impact of humic acid on degradation of benzo(a)Pyrene polluted Haplic Chernozem triggered by modified Fenton-like process [J]. Environmental Research, 2020, 190: 109948. doi: 10.1016/j.envres.2020.109948 [29] MAZARJI M, MINKINA T, SUSHKOVA S, et al. Biochar-assisted Fenton-like oxidation of benzo[a]Pyrene-contaminated soil [J]. Environmental Geochemistry and Health, 2022,44: 195-206. doi: 10.1007/s10653-020-00801-1 [30] PISKONEN R, ITÄVAARA M. Evaluation of chemical pretreatment of contaminated soil for improved PAH bioremediation [J]. Applied Microbiology and Biotechnology, 2004, 65(5): 627-634. [31] VEIGNIE E, RAFIN C, LANDY D, et al. Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]Pyrene [J]. Journal of Hazardous Materials, 2009, 168(2/3): 1296-1301. doi: 10.1016/j.jhazmat.2009.03.012 [32] BENDOUZ M, TRAN L H, COUDERT L, et al. Degradation of polycyclic aromatic hydrocarbons in different synthetic solutions by Fenton's oxidation [J]. Environmental Technology, 2017, 38(1): 116-127. doi: 10.1080/09593330.2016.1188161 [33] 贾存珍, 柳修楚, 柴超, 等. 化学氧化修复对农田土壤和菠菜中多环芳烃含量和组成的影响 [J]. 环境化学, 2019, 38(7): 1518-1527. doi: 10.7524/j.issn.0254-6108.2018092803 JIA C Z, LIU X C, CHAI C, et al. Effects of chemical oxidation remediation on concentration and composition of PAHs in agricultural soils and spinach [J]. Environmental Chemistry, 2019, 38(7): 1518-1527(in Chinese). doi: 10.7524/j.issn.0254-6108.2018092803
[34] ZHUO C Y, ZHANG D N, YANG Y, et al. Effects of compositions, chemical structures, and microporosity of sedimentary organic matter on degradation of benzo(a)Pyrene by hydrogen peroxide [J]. Water Research, 2019, 159: 414-422. doi: 10.1016/j.watres.2019.05.041 [35] TAN W B, LIU N K, DANG Q L, et al. Insights into the removal efficiencies of aged polycyclic aromatic hydrocarbons in humic acids of different soil aggregate fractions by various oxidants [J]. Environmental Pollution, 2020, 264: 114678. doi: 10.1016/j.envpol.2020.114678 [36] PARDO F, SANTOS A, ROMERO A. Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: A column study [J]. Science of the Total Environment, 2016, 566/567: 480-488. doi: 10.1016/j.scitotenv.2016.04.197 [37] PELUFFO M, PARDO F, SANTOS A, et al. Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil [J]. Science of the Total Environment, 2016, 563/564: 649-656. doi: 10.1016/j.scitotenv.2015.09.034 [38] 占升, 郑义, 李森, 等. 不同氧化剂活化过硫酸钠对土壤中多环芳烃降解的影响 [J]. 浙江农业学报, 2017, 29(1): 129-136. doi: 10.3969/j.issn.1004-1524.2017.01.18 ZHAN S, ZHENG Y, LI S, et al. Degradation of PAHs in soil by different oxidants activated sodium persulfate [J]. Acta Agriculturae Zhejiangensis, 2017, 29(1): 129-136(in Chinese). doi: 10.3969/j.issn.1004-1524.2017.01.18
[39] 张宏玲, 李森, 张杨, 等. 活化过硫酸盐体系原位模拟去除土壤中多环芳烃 [J]. 浙江农业学报, 2018, 30(6): 1044-1049. doi: 10.3969/j.issn.1004-1524.2018.06.22 ZHANG H L, LI S, ZHANG Y, et al. In situ simulated remediation of polycyclic aromatic hydrocarbons by activated sodium persulfate system [J]. Acta Agriculturae Zhejiangensis, 2018, 30(6): 1044-1049(in Chinese). doi: 10.3969/j.issn.1004-1524.2018.06.22
[40] 邸莎, 张超艳, 颜增光, 等. 过硫酸钠对我国典型土壤中多环芳烃氧化降解效果的影响 [J]. 环境科学研究, 2018, 31(1): 95-101. DI S, ZHANG C Y, YAN Z G, et al. Oxidative degradation effect of sodium persulfate on polycyclic aromatic hydrocarbons in typical Chinese soils [J]. Research of Environmental Sciences, 2018, 31(1): 95-101(in Chinese).
[41] GUO J Y, WEN X Y, YANG J W, et al. Removal of benzo(a)Pyrene in polluted aqueous solution and soil using persulfate activated by corn straw biochar [J]. Journal of Environmental Management, 2020, 272: 111058. doi: 10.1016/j.jenvman.2020.111058 [42] XU S, WANG W, ZHU L Z. Enhanced microbial degradation of benzo[a]Pyrene by chemical oxidation [J]. Science of the Total Environment, 2019, 653: 1293-1300. doi: 10.1016/j.scitotenv.2018.10.444 [43] XU Q H, SHI F, YOU H, et al. Integrated remediation for organic-contaminated site by forcing running-water to modify alkali-heat/persulfate via oxidation process transfer [J]. Chemosphere, 2021, 262: 128352. doi: 10.1016/j.chemosphere.2020.128352 [44] 杨勇, 张蒋维, 陈恺, 等. 化学氧化法治理焦化厂PAHs污染土壤 [J]. 环境工程学报, 2016, 10(1): 427-431. doi: 10.12030/j.cjee.20160171 YANG Y, ZHANG J W, CHEN K, et al. Chemical oxidation of coking plant soils contaminated with polycyclic aromatic hydrocarbons [J]. Chinese Journal of Environmental Engineering, 2016, 10(1): 427-431(in Chinese). doi: 10.12030/j.cjee.20160171
[45] NAM K, KUKOR J J. Combined ozonation and biodegradation for remediation of mixtures of polycyclic aromatic hydrocarbons in soil [J]. Biodegradation, 2000, 11(1): 1-9. doi: 10.1023/A:1026592324693 [46] GOI A, TRAPIDO M. Degradation of polycyclic aromatic hydrocarbons in soil: The Fenton reagent versus ozonation [J]. Environmental Technology, 2004, 25(2): 155-164. doi: 10.1080/09593330409355448 [47] RUSSO L, RIZZO L, BELGIORNO V. Ozone oxidation and aerobic biodegradation with spent mushroom compost for detoxification and benzo(a)Pyrene removal from contaminated soil [J]. Chemosphere, 2012, 87(6): 595-601. doi: 10.1016/j.chemosphere.2012.01.012 [48] LI X, LUO T, WANG Y, et al. Removal of benzo[a]pyrene in contaminated soil by ozonation [J]. Environmental Science and Technology, 2020, 43(4): 171-177. [49] ZENG Y, HONG P K A. Slurry-phase ozonation for remediation of sediments contaminated by polycyclic aromatic hydrocarbons [J]. Journal of the Air & Waste Management Association , 2002, 52(1): 58-68.