土壤微塑料污染与生态健康风险

刘锐涵, 王艳华, 赵建, 苏宇, 周倩, 郭学涛, 高婵娟, 董治宝. 土壤微塑料污染与生态健康风险[J]. 环境化学, 2022, 41(10): 3214-3230. doi: 10.7524/j.issn.0254-6108.2022040804
引用本文: 刘锐涵, 王艳华, 赵建, 苏宇, 周倩, 郭学涛, 高婵娟, 董治宝. 土壤微塑料污染与生态健康风险[J]. 环境化学, 2022, 41(10): 3214-3230. doi: 10.7524/j.issn.0254-6108.2022040804
LIU Ruihan, WANG Yanhua, ZHAO Jian, SU Yu, ZHOU Qian, GUO Xuetao, GAO Chanjuan, DONG Zhibao. Microplastics pollution in soil and the potential ecological health risks[J]. Environmental Chemistry, 2022, 41(10): 3214-3230. doi: 10.7524/j.issn.0254-6108.2022040804
Citation: LIU Ruihan, WANG Yanhua, ZHAO Jian, SU Yu, ZHOU Qian, GUO Xuetao, GAO Chanjuan, DONG Zhibao. Microplastics pollution in soil and the potential ecological health risks[J]. Environmental Chemistry, 2022, 41(10): 3214-3230. doi: 10.7524/j.issn.0254-6108.2022040804

土壤微塑料污染与生态健康风险

    通讯作者: Tel:13991828224,E-mail:yhwang930@foxmail.com
  • 基金项目:
    第二次青藏高原综合科学考察研究(2019QZKK0403), 国家自然科学基金 (42277207,41807457, 41822705, 41977163), 国家重点研发计划(2020YFC1808304), 陕西省自然科学基金(2019JQ-664), 陕西省重点研发计划一般项目(2022SF-118, 2021SF-454)和中央高校基本科研业务费(GK202103151, 202141003)资助.

Microplastics pollution in soil and the potential ecological health risks

    Corresponding author: WANG Yanhua, yhwang930@foxmail.com
  • Fund Project: Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0403),the National Natural Science Foundation of China (42277207,41807457, 41822705, 41977163), National Key R&D Program of China (2020YFC1808304),Natural Science Foundation of Shaanxi Province, China (2019JQ-664),General Projects of Key R & D Program in Shaanxi Province (2022SF-118, 2021SF-454) and Fundamental Research Funds for the Central Universities (GK202103151, 202141003).
  • 摘要: 微塑料(microplastics, MPs)广泛存在于各种环境介质中。与水生系统相比,土壤作为MPs在陆地系统中重要的长期的汇,MPs污染更为复杂,为全面了解土壤MPs污染现状,加强土壤MPs污染的风险管控,本文概述了土壤MPs的来源、丰度、迁移及潜在生态风险。土壤MPs主要来源于未合理处置的塑料垃圾、污泥堆肥、有机肥料施用等;MPs可能在全球土壤环境中普遍存在,多数地区土壤MPs丰度在0—5×103 个·kg−1之间,PE、PP、PS是土壤中最常见的MPs类型,频繁的农业活动导致农田土壤MPs污染尤为严重;MPs会对土壤生物的生长产生不同影响,并威胁人类健康,还会与其他污染物形成复合污染或发生老化/降解,对土壤生态系统构成更大的威胁。最后,从土壤MPs溯源、深层土壤中MPs检测、MPs与其他污染物复合污染毒性以及生态健康的风险等几方面提出了未来可能的研究方向,以期为进一步评估土壤MPs的环境行为和生态风险提供参考。
  • 加载中
  • 图 1  已发表论文中以“微塑料”、“土壤”为关键词的共现网络分析图[22]

    Figure 1.  Co-occurrence network analysis of published research papers with “microplastics” and “soil” as keywords

    图 2  土壤中MPs的来源与迁移

    Figure 2.  Origin and migration of MPs in soil

    图 3  文献报道的全球部分地区土壤环境MPs污染情况

    Figure 3.  MPs pollution of soil environment in some regions of the world reported in the literatures

    图 4  土壤MPs污染的生态健康风险

    Figure 4.  Ecological health risks of soil MPs pollution

  • [1] LEBRETON L, ANDRADY A. Future scenarios of global plastic waste generation and disposal [J]. Palgrave Communications, 2019, 5: 1-11. doi: 10.1057/s41599-018-0199-0
    [2] PLASTICS EUROPE. Plastics-The Facts 2020, An analysis of European plastics production, demand and waste data[EB/OL]. 2020. [2021-6-16].https://www.plasticseurope.org/en/resources/market-data
    [3] 骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究 防范生态与食物链风险 [J]. 中国科学院院刊, 2018, 33(10): 1021-1030.

    LUO Y M, ZHOU Q, ZHANG H B, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1021-1030(in Chinese).

    [4] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559
    [5] FRIAS J P G L, NASH R. Microplastics: Finding a consensus on the definition [J]. Marine Pollution Bulletin, 2019, 138: 145-147. doi: 10.1016/j.marpolbul.2018.11.022
    [6] CAO J H, ZHAO X N, GAO X D, et al. Extraction and identification methods of microplastics and nanoplastics in agricultural soil: A review [J]. Journal of Environmental Management, 2021, 294: 112997. doi: 10.1016/j.jenvman.2021.112997
    [7] BERGMANN M, WIRZBERGER V, KRUMPEN T, et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory [J]. Environmental Science & Technology, 2017, 51(19): 11000-11010.
    [8] WANG Y H, YANG Y N, LIU X, et al. Interaction of microplastics with antibiotics in aquatic environment: Distribution, adsorption, and toxicity [J]. Environmental Science & Technology, 2021, 55(23): 15579-15595.
    [9] LIU D T, ZHENG Y H, CHEN L J, et al. Prevalence of small-sized microplastics in coastal sediments detected by multipoint confocal micro-Raman spectrum scanning [J]. Science of the Total Environment, 2022, 831: 154741. doi: 10.1016/j.scitotenv.2022.154741
    [10] ZHOU Y F, HE G, JIANG X L, et al. Microplastic contamination is ubiquitous in riparian soils and strongly related to elevation, precipitation and population density [J]. Journal of Hazardous Materials, 2021, 411: 125178. doi: 10.1016/j.jhazmat.2021.125178
    [11] BATOOL I, QADIR A, LEVERMORE J M, et al. Dynamics of airborne microplastics, appraisal and distributional behaviour in atmosphere;a review[J]. The Science of the Total Environment, 2022, 806(Pt 4): 150745.
    [12] UZUN P, FARAZANDE S, GUVEN B. Mathematical modeling of microplastic abundance, distribution, and transport in water environments: A review [J]. Chemosphere, 2022, 288: 132517. doi: 10.1016/j.chemosphere.2021.132517
    [13] YUSUF A, SODIQ A, GIWA A, et al. Updated review on microplastics in water, their occurrence, detection, measurement, environmental pollution, and the need for regulatory standards [J]. Environmental Pollution, 2022, 292: 118421. doi: 10.1016/j.envpol.2021.118421
    [14] 郝爱红, 赵保卫, 张建, 等. 土壤中微塑料污染现状及其生态风险研究进展 [J]. 环境化学, 2021, 40(4): 1100-1111. doi: 10.7524/j.issn.0254-6108.2020083102

    HAO A H, ZHAO B W, ZHANG J, et al. Research progress on pollution status and ecological risk of microplastics in soil [J]. Environmental Chemistry, 2021, 40(4): 1100-1111(in Chinese). doi: 10.7524/j.issn.0254-6108.2020083102

    [15] ZHAO S L, ZHANG Z Q, CHEN L, et al. Review on migration, transformation and ecological impacts of microplastics in soil [J]. Applied Soil Ecology, 2022, 176: 104486. doi: 10.1016/j.apsoil.2022.104486
    [16] LUO H W, LIU C Y, HE D Q, et al. Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions [J]. Journal of Hazardous Materials, 2022, 423: 126915. doi: 10.1016/j.jhazmat.2021.126915
    [17] YANG L, ZHANG Y L, KANG S C, et al. Microplastics in soil: A review on methods, occurrence, sources, and potential risk [J]. Science of the Total Environment, 2021, 780: 146546. doi: 10.1016/j.scitotenv.2021.146546
    [18] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities [J]. Science of the Total Environment, 2017, 586: 127-141. doi: 10.1016/j.scitotenv.2017.01.190
    [19] PRAVEENA S M, ARIS A Z, SINGH V. Quality assessment for methodological aspects of microplastics analysis in soil [J]. Trends in Environmental Analytical Chemistry, 2022, 34: e00159. doi: 10.1016/j.teac.2022.e00159
    [20] 陈雅兰, 孙可, 韩兰芳, 等. 土壤中微塑料的分离及检测方法研究进展 [J]. 土壤学报, 2022, 59(2): 364-380.

    CHEN Y L, SUN K, HAN L F, et al. Separation, identification, and quantification methods in soil microplastics analysis: A review [J]. Acta Pedologica Sinica, 2022, 59(2): 364-380(in Chinese).

    [21] YA H B, JIANG B, XING Y, et al. Recent advances on ecological effects of microplastics on soil environment [J]. Science of the Total Environment, 2021, 798: 149338. doi: 10.1016/j.scitotenv.2021.149338
    [22] CHEN C M. Science mapping: A systematic review of the literature [J]. Journal of Data and Information Science, 2017, 2(2): 1-40. doi: 10.1515/jdis-2017-0006
    [23] BLÄSING M, AMELUNG W. Plastics in soil: Analytical methods and possible sources [J]. Science of the Total Environment, 2018, 612: 422-435. doi: 10.1016/j.scitotenv.2017.08.086
    [24] CORRADINI F, MEZA P, EGUILUZ R, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal [J]. Science of the Total Environment, 2019, 671: 411-420. doi: 10.1016/j.scitotenv.2019.03.368
    [25] HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment [J]. Environmental Pollution, 2020, 260: 114096. doi: 10.1016/j.envpol.2020.114096
    [26] WEITHMANN N, MÖLLER J N, LÖDER M G J, et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment [J]. Science Advances, 2018, 4(4): eaap8060. doi: 10.1126/sciadv.aap8060
    [27] 杨杰, 李连祯, 周倩, 等. 土壤环境中微塑料污染: 来源、过程及风险 [J]. 土壤学报, 2021, 58(2): 281-298.

    YANG J, LI L Z, ZHOU Q, et al. Microplastics contamination of soil environment: Sources, processes and risks [J]. Acta Pedologica Sinica, 2021, 58(2): 281-298(in Chinese).

    [28] ALLEN S, ALLEN D, PHOENIX V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment [J]. Nature Geoscience, 2019, 12(5): 339-344. doi: 10.1038/s41561-019-0335-5
    [29] ASTNER A F, HAYES D G, O'NEILL H, et al. Mechanical formation of micro- and nano-plastic materials for environmental studies in agricultural ecosystems [J]. Science of the Total Environment, 2019, 685: 1097-1106. doi: 10.1016/j.scitotenv.2019.06.241
    [30] REN Z F, GUI X Y, XU X Y, et al. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants - A critical review [J]. Journal of Hazardous Materials, 2021, 419: 126455. doi: 10.1016/j.jhazmat.2021.126455
    [31] ZHANG K, SHI H H, PENG J P, et al. Microplastic pollution in China's inland water systems: A review of findings, methods, characteristics, effects, and management [J]. Science of the Total Environment, 2018, 630: 1641-1653. doi: 10.1016/j.scitotenv.2018.02.300
    [32] WANG J, LIU X H, LI Y, et al. Microplastics as contaminants in the soil environment: A mini-review [J]. Science of the Total Environment, 2019, 691: 848-857. doi: 10.1016/j.scitotenv.2019.07.209
    [33] BONDAROFF TP C S. Masks on the Beach : The impact of Covid-19 on Marine Palstic Pollution[R]. OceansAsia, 2020
    [34] CHEN X C, CHEN X F, LIU Q, et al. Used disposable face masks are significant sources of microplastics to environment [J]. Environmental Pollution, 2021, 285: 117485. doi: 10.1016/j.envpol.2021.117485
    [35] LI X W, CHEN L B, MEI Q Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in China [J]. Water Research, 2018, 142: 75-85. doi: 10.1016/j.watres.2018.05.034
    [36] WILLÉN A, JUNESTEDT C, RODHE L, et al. Sewage sludge as fertiliser - environmental assessment of storage and land application options [J]. Water Science and Technology, 2017, 75(5/6): 1034-1050.
    [37] LEBRETON L C M, van der ZWET J, DAMSTEEG J W, et al. River plastic emissions to the world's oceans [J]. Nature Communications, 2017, 8: 15611. doi: 10.1038/ncomms15611
    [38] CARR S A, LIU J, TESORO A G. Transport and fate of microplastic particles in wastewater treatment plants [J]. Water Research, 2016, 91: 174-182. doi: 10.1016/j.watres.2016.01.002
    [39] NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin? [J]. Environmental Science & Technology, 2016, 50(20): 10777-10779.
    [40] ZUBRIS K A V, RICHARDS B K. Synthetic fibers as an indicator of land application of sludge [J]. Environmental Pollution, 2005, 138(2): 201-211. doi: 10.1016/j.envpol.2005.04.013
    [41] GUO T, LOU C L, ZHAI W W, et al. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure [J]. Science of the Total Environment, 2018, 635: 995-1003. doi: 10.1016/j.scitotenv.2018.04.194
    [42] YANG J, LI R J, ZHOU Q, et al. Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure [J]. Environmental Pollution, 2021, 272: 116028. doi: 10.1016/j.envpol.2020.116028
    [43] WU R T, CAI Y F, CHEN Y X, et al. Occurrence of microplastic in livestock and poultry manure in South China [J]. Environmental Pollution, 2021, 277: 116790. doi: 10.1016/j.envpol.2021.116790
    [44] T G. Analysis of Plastic Residues in Commercial Compost[D]. Nova Gorica: University of Nova Gorica, 2016.
    [45] UDDIN S, FOWLER S W, BEHBEHANI M. An assessment of microplastic inputs into the aquatic environment from wastewater streams [J]. Marine Pollution Bulletin, 2020, 160: 111538. doi: 10.1016/j.marpolbul.2020.111538
    [46] THEBO A L, DRECHSEL P, LAMBIN E F, et al. A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows [J]. Environmental Research Letters, 2017, 12(7): 074008. doi: 10.1088/1748-9326/aa75d1
    [47] ZHAO S Y, ZHU L X, WANG T, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution [J]. Marine Pollution Bulletin, 2014, 86(1/2): 562-568.
    [48] LIN L, ZUO L Z, PENG J P, et al. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China [J]. Science of the Total Environment, 2018, 644: 375-381. doi: 10.1016/j.scitotenv.2018.06.327
    [49] FENG S S, LU H W, YAO T C, et al. Spatial characteristics of microplastics in the high-altitude area on the Tibetan Plateau [J]. Journal of Hazardous Materials, 2021, 417: 126034. doi: 10.1016/j.jhazmat.2021.126034
    [50] DING L, WANG X L, OUYANG Z Z, et al. The occurrence of microplastic in Mu Us Sand Land soils in northwest China: Different soil types, vegetation cover and restoration years [J]. Journal of Hazardous Materials, 2021, 403: 123982. doi: 10.1016/j.jhazmat.2020.123982
    [51] ZHANG S L, YANG X M, GERTSEN H, et al. A simple method for the extraction and identification of light density microplastics from soil [J]. Science of the Total Environment, 2018, 616/617: 1056-1065. doi: 10.1016/j.scitotenv.2017.10.213
    [52] ZHANG X Y, YOU S Y, TIAN Y Q, et al. Comparison of plastic film, biodegradable paper and bio-based film mulching for summer tomato production: Soil properties, plant growth, fruit yield and fruit quality [J]. Scientia Horticulturae, 2019, 249: 38-48. doi: 10.1016/j.scienta.2019.01.037
    [53] LI W F, WUFUER R, DUO J, et al. Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region [J]. Science of the Total Environment, 2020, 749: 141420. doi: 10.1016/j.scitotenv.2020.141420
    [54] LAN T, WANG T, CAO F, et al. A comparative study on the adsorption behavior of pesticides by pristine and aged microplastics from agricultural polyethylene soil films [J]. Ecotoxicology and Environmental Safety, 2021, 209: 111781. doi: 10.1016/j.ecoenv.2020.111781
    [55] FAN X L, ZOU Y F, GENG N, et al. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process [J]. Journal of Hazardous Materials, 2021, 401: 123363. doi: 10.1016/j.jhazmat.2020.123363
    [56] DING Y C, ZOU X Q, WANG C L, et al. The abundance and characteristics of atmospheric microplastic deposition in the northwestern South China Sea in the fall [J]. Atmospheric Environment, 2021, 253: 118389. doi: 10.1016/j.atmosenv.2021.118389
    [57] BEAUREPAIRE M, DRIS R, GASPERI J, et al. Microplastics in the atmospheric compartment: A comprehensive review on methods, results on their occurrence and determining factors [J]. Current Opinion in Food Science, 2021, 41: 159-168. doi: 10.1016/j.cofs.2021.04.010
    [58] GUO J J, HUANG X P, XIANG L, et al. Source, migration and toxicology of microplastics in soil [J]. Environment International, 2020, 137: 105263. doi: 10.1016/j.envint.2019.105263
    [59] DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? [J]. Marine Pollution Bulletin, 2016, 104(1/2): 290-293.
    [60] 周倩, 田崇国, 骆永明. 滨海城市大气环境中发现多种微塑料及其沉降通量差异 [J]. 科学通报, 2017, 62(33): 3902-3909. doi: 10.1360/N972017-00956

    ZHOU Q, TIAN C G, LUO Y M. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere [J]. Chinese Science Bulletin, 2017, 62(33): 3902-3909(in Chinese). doi: 10.1360/N972017-00956

    [61] DEHGHANI S, MOORE F, AKHBARIZADEH R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran [J]. Environmental Science and Pollution Research, 2017, 24(25): 20360-20371. doi: 10.1007/s11356-017-9674-1
    [62] HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: A review of the methods used for identification and quantification [J]. Environmental Science & Technology, 2012, 46(6): 3060-3075.
    [63] HEO N W, HONG S H, HAN G M, et al. Distribution of small plastic debris in cross-section and high strandline on Heungnam beach, South Korea [J]. Ocean Science Journal, 2013, 48(2): 225-233. doi: 10.1007/s12601-013-0019-9
    [64] YAN L, PENG W. Research of new pollutant microplastics in soil [J]. IOP Conference Series:Earth and Environmental Science, 2021, 781(5): 052005. doi: 10.1088/1755-1315/781/5/052005
    [65] de SOUZA MACHADO A A, LAU C W, TILL J, et al. Impacts of microplastics on the soil biophysical environment [J]. Environmental Science & Technology, 2018, 52(17): 9656-9665.
    [66] O'CONNOR D, PAN S Z, SHEN Z T, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles [J]. Environmental Pollution, 2019, 249: 527-534. doi: 10.1016/j.envpol.2019.03.092
    [67] YAN X Y, YANG X Y, TANG Z, et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes [J]. Environmental Pollution, 2020, 262: 114270. doi: 10.1016/j.envpol.2020.114270
    [68] WU X L, LYU X Y, LI Z Y, et al. Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type [J]. Science of the Total Environment, 2020, 707: 136065. doi: 10.1016/j.scitotenv.2019.136065
    [69] LIU M T, SONG Y, LU S B, et al. A method for extracting soil microplastics through circulation of sodium bromide solutions [J]. Science of the Total Environment, 2019, 691: 341-347. doi: 10.1016/j.scitotenv.2019.07.144
    [70] RODRIGUEZ-SEIJO A, LOURENÇO J, ROCHA-SANTOS T A P, et al. Histopathological and molecular effects of microplastics in Eisenia andrei Bouché [J]. Environmental Pollution, 2017, 220: 495-503. doi: 10.1016/j.envpol.2016.09.092
    [71] RAJU S, CARBERY M, KUTTYKATTIL A, et al. Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant [J]. Water Research, 2020, 173: 115549. doi: 10.1016/j.watres.2020.115549
    [72] DONG S N, XIA J H, SHENG L T, et al. Transport characteristics of fragmental polyethylene glycol terephthalate (PET) microplastics in porous media under various chemical conditions [J]. Chemosphere, 2021, 276: 130214. doi: 10.1016/j.chemosphere.2021.130214
    [73] DONG Z Q, ZHU L, ZHANG W, et al. Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand [J]. Environmental Pollution, 2019, 255: 113177. doi: 10.1016/j.envpol.2019.113177
    [74] SAMANDRA S, JOHNSTON J M, JAEGER J E, et al. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia [J]. Science of the Total Environment, 2022, 802: 149727. doi: 10.1016/j.scitotenv.2021.149727
    [75] LIU M T, LU S B, SONG Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China [J]. Environmental Pollution, 2018, 242: 855-862. doi: 10.1016/j.envpol.2018.07.051
    [76] YU L, ZHANG J D, LIU Y, et al. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China [J]. Science of the Total Environment, 2021, 756: 143860. doi: 10.1016/j.scitotenv.2020.143860
    [77] ZHOU Y F, LIU X N, WANG J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China [J]. Science of the Total Environment, 2019, 694: 133798. doi: 10.1016/j.scitotenv.2019.133798
    [78] BERIOT N, PEEK J, ZORNOZA R, et al. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain [J]. Science of the Total Environment, 2021, 755: 142653. doi: 10.1016/j.scitotenv.2020.142653
    [79] HUERTA LWANGA E, MENDOZA VEGA J, KU QUEJ V, et al. Field evidence for transfer of plastic debris along a terrestrial food chain [J]. Scientific Reports, 2017, 7(1): 14071. doi: 10.1038/s41598-017-14588-2
    [80] HARMS I K, DIEKÖTTER T, TROEGEL S, et al. Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany [J]. Science of the Total Environment, 2021, 758: 143615. doi: 10.1016/j.scitotenv.2020.143615
    [81] PIEHL S, LEIBNER A, LÖDER M G J, et al. Identification and quantification of macro- and microplastics on an agricultural farmland [J]. Scientific Reports, 2018, 8(1): 17950. doi: 10.1038/s41598-018-36172-y
    [82] ZHANG Y, LI Y H, SU F, et al. The life cycle of micro-nano plastics in domestic sewage [J]. Science of the Total Environment, 2022, 802: 149658. doi: 10.1016/j.scitotenv.2021.149658
    [83] 岳俊杰, 赵爽, 程昊东, 等. 不同植物覆盖下黄河三角洲湿地土壤中微塑料的分布 [J]. 环境科学, 2021, 42(1): 204-210. doi: 10.13227/j.hjkx.202005030

    YUE J J, ZHAO S, CHENG H D, et al. Distribution of micro-plastics in the soil covered by different vegetation in Yellow River Delta wetland [J]. Environmental Science, 2021, 42(1): 204-210(in Chinese). doi: 10.13227/j.hjkx.202005030

    [84] CAO L, WU D, LIU P, et al. Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China [J]. Science of the Total Environment, 2021, 794: 148694. doi: 10.1016/j.scitotenv.2021.148694
    [85] ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China [J]. Science of the Total Environment, 2018, 642: 12-20. doi: 10.1016/j.scitotenv.2018.06.004
    [86] CHAI B W, WEI Q, SHE Y Z, et al. Soil microplastic pollution in an e-waste dismantling zone of China [J]. Waste Management, 2020, 118: 291-301. doi: 10.1016/j.wasman.2020.08.048
    [87] ZHOU Q, ZHANG H B, FU C C, et al. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea [J]. Geoderma, 2018, 322: 201-208. doi: 10.1016/j.geoderma.2018.02.015
    [88] LUO Z X, ZHOU X Y, SU Y, et al. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles [J]. Science of the Total Environment, 2021, 795: 148902. doi: 10.1016/j.scitotenv.2021.148902
    [89] SU S, ZHOU S F, LIN G Q. Existence of microplastics in soil and groundwater in Jiaodong Peninsula [J]. E3S Web of Conferences, 2021, 251: 02045.
    [90] RAGOOBUR D, HUERTA-LWANGA E, SOMAROO G D. Microplastics in agricultural soils, wastewater effluents and sewage sludge in Mauritius [J]. Science of the Total Environment, 2021, 798: 149326. doi: 10.1016/j.scitotenv.2021.149326
    [91] KUMAR M, XIONG X N, HE M J, et al. Microplastics as pollutants in agricultural soils [J]. Environmental Pollution, 2020, 265: 114980. doi: 10.1016/j.envpol.2020.114980
    [92] KHALID N, AQEEL M, NOMAN A. Microplastics could be a threat to plants in terrestrial systems directly or indirectly [J]. Environmental Pollution, 2020, 267: 115653. doi: 10.1016/j.envpol.2020.115653
    [93] WANG W F, GE J, YU X Y, et al. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective [J]. Science of the Total Environment, 2020, 708: 134841. doi: 10.1016/j.scitotenv.2019.134841
    [94] LOZANO Y M, LEHNERT T, LINCK L T, et al. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass [J]. Frontiers in Plant Science, 2021, 12: 616645. doi: 10.3389/fpls.2021.616645
    [95] HU B Y, LI Y X, JIANG L S, et al. Influence of microplastics occurrence on the adsorption of 17β-estradiol in soil [J]. Journal of Hazardous Materials, 2020, 400: 123325. doi: 10.1016/j.jhazmat.2020.123325
    [96] GAO M L, XU Y L, LIU Y, et al. Effect of polystyrene on di-butyl phthalate (DBP) bioavailability and DBP-induced phytotoxicity in lettuce [J]. Environmental Pollution, 2021, 268: 115870. doi: 10.1016/j.envpol.2020.115870
    [97] TOURINHO P S, KOČÍ V, LOUREIRO S, et al. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation [J]. Environmental Pollution, 2019, 252: 1246-1256. doi: 10.1016/j.envpol.2019.06.030
    [98] BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: Above and below ground [J]. Environmental Science & Technology, 2019, 53(19): 11496-11506.
    [99] QI Y L, YANG X M, PELAEZ A M, et al. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth [J]. Science of the Total Environment, 2018, 645: 1048-1056. doi: 10.1016/j.scitotenv.2018.07.229
    [100] de SOUZA MACHADO A A, KLOAS W, ZARFL C, et al. Microplastics as an emerging threat to terrestrial ecosystems [J]. Global Change Biology, 2018, 24(4): 1405-1416. doi: 10.1111/gcb.14020
    [101] BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum [J]. Chemosphere, 2019, 226: 774-781. doi: 10.1016/j.chemosphere.2019.03.163
    [102] HERNÁNDEZ-ARENAS R, BELTRÁN-SANAHUJA A, NAVARRO-QUIRANT P, et al. The effect of sewage sludge containing microplastics on growth and fruit development of tomato plants [J]. Environmental Pollution, 2021, 268: 115779. doi: 10.1016/j.envpol.2020.115779
    [103] LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil [J]. Chemosphere, 2017, 185: 907-917. doi: 10.1016/j.chemosphere.2017.07.064
    [104] WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil [J]. Science of the Total Environment, 2019, 654: 576-582. doi: 10.1016/j.scitotenv.2018.11.123
    [105] de SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance [J]. Environmental Science & Technology, 2019, 53(10): 6044-6052.
    [106] JIANG X F, CHEN H, LIAO Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba [J]. Environmental Pollution, 2019, 250: 831-838. doi: 10.1016/j.envpol.2019.04.055
    [107] HUERTA LWANGA E, GERTSEN H, GOOREN H, et al. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae) [J]. Environmental Science & Technology, 2016, 50(5): 2685-2691.
    [108] CAO D D, WANG X, LUO X X, et al. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil [J]. IOP Conference Series:Earth and Environmental Science, 2017, 61: 012148. doi: 10.1088/1755-1315/61/1/012148
    [109] ZHOU B Y, WANG J Q, ZHANG H B, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, East China: Multiple sources other than plastic mulching film [J]. Journal of Hazardous Materials, 2020, 388: 121814. doi: 10.1016/j.jhazmat.2019.121814
    [110] SONG Y, CAO C J, QIU R, et al. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure [J]. Environmental Pollution, 2019, 250: 447-455. doi: 10.1016/j.envpol.2019.04.066
    [111] LEI L L, LIU M T, SONG Y, et al. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans [J]. Environmental Science:Nano, 2018(8): 2009-2020.
    [112] JIN Y X, LU L, TU W Q, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice [J]. Science of the Total Environment, 2019, 649: 308-317. doi: 10.1016/j.scitotenv.2018.08.353
    [113] ZHU B K, FANG Y M, ZHU D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus [J]. Environmental Pollution, 2018, 239: 408-415. doi: 10.1016/j.envpol.2018.04.017
    [114] ZHANG M J, ZHAO Y R, QIN X, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil [J]. Science of the Total Environment, 2019, 688: 470-478. doi: 10.1016/j.scitotenv.2019.06.108
    [115] ZETTLER E R, MINCER T J, AMARAL-ZETTLER L A. Life in the “plastisphere”: Microbial communities on plastic marine debris [J]. Environmental Science & Technology, 2013, 47(13): 7137-7146.
    [116] CHAI B W, LI X, LIU H, et al. Bacterial communities on soil microplastic at Guiyu, an E-Waste dismantling zone of China [J]. Ecotoxicology and Environmental Safety, 2020, 195: 110521. doi: 10.1016/j.ecoenv.2020.110521
    [117] RILLIG M C, LEHMANN A, RYO M, et al. Shaping up: Toward considering the shape and form of pollutants [J]. Environmental Science & Technology, 2019, 53(14): 7925-7926.
    [118] HUANG Y, ZHAO Y R, WANG J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil [J]. Environmental Pollution, 2019, 254: 112983. doi: 10.1016/j.envpol.2019.112983
    [119] JUDY J D, WILLIAMS M, GREGG A, et al. Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota [J]. Environmental Pollution, 2019, 252: 522-531. doi: 10.1016/j.envpol.2019.05.027
    [120] FEI Y F, HUANG S Y, ZHANG H B, et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil [J]. Science of the Total Environment, 2020, 707: 135634. doi: 10.1016/j.scitotenv.2019.135634
    [121] AWET T T, KOHL Y, MEIER F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil [J]. Environmental Sciences Europe, 2018, 30(1): 11. doi: 10.1186/s12302-018-0140-6
    [122] KAUR K, REDDY S, BARATHE P, et al. Microplastic-associated pathogens and antimicrobial resistance in environment [J]. Chemosphere, 2022, 291: 133005. doi: 10.1016/j.chemosphere.2021.133005
    [123] LV W W, ZHOU W Z, LU S B, et al. Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China [J]. Science of the Total Environment, 2019, 652: 1209-1218. doi: 10.1016/j.scitotenv.2018.10.321
    [124] SUN M M, YE M, JIAO W T, et al. Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid [J]. Journal of Hazardous Materials, 2018, 345: 131-139. doi: 10.1016/j.jhazmat.2017.11.036
    [125] LU X M, LU P Z, LIU X P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil [J]. Science of the Total Environment, 2020, 709: 136276. doi: 10.1016/j.scitotenv.2019.136276
    [126] ZHU D, MA J, LI G, et al. Soil plastispheres as hotpots of antibiotic resistance genes and potential pathogens [J]. The ISME Journal, 2022, 16(2): 521-532. doi: 10.1038/s41396-021-01103-9
    [127] SCHEURER M, BIGALKE M. Microplastics in Swiss floodplain soils [J]. Environmental Science & Technology, 2018, 52(6): 3591-3598.
    [128] 李连祯, 周倩, 尹娜, 等. 食用蔬菜能吸收和积累微塑料 [J]. 科学通报, 2019, 64(9): 928-934. doi: 10.1360/N972018-00845

    LI L Z, ZHOU Q, YIN N, et al. Uptake and accumulation of microplastics in an edible plant [J]. Chinese Science Bulletin, 2019, 64(9): 928-934(in Chinese). doi: 10.1360/N972018-00845

    [129] BARBOZA L G A, VETHAAK A D, LAVORANTE B R B O, et al. Marine microplastic debris: An emerging issue for food security, food safety and human health [J]. Marine Pollution Bulletin, 2018, 133: 336-348. doi: 10.1016/j.marpolbul.2018.05.047
    [130] SCHIRINZI G F, PÉREZ-POMEDA I, SANCHÍS J, et al. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells [J]. Environmental Research, 2017, 159: 579-587. doi: 10.1016/j.envres.2017.08.043
    [131] LUSHER A, HOLLMAN P, MENDOZA-HILL J. Microplastics in fisheries and aquaculture: Status of knowledge on their occurrence and implications for aquatic organisms and food safety[R]. FAO Fisheries and Aquaculture Technical Paper No. 615, 2017.
    [132] PRATA J C. Airborne microplastics: Consequences to human health? [J]. Environmental Pollution, 2018, 234: 115-126. doi: 10.1016/j.envpol.2017.11.043
    [133] MISHRA S, RATH C C, DAS A P. Marine microfiber pollution: A review on present status and future challenges [J]. Marine Pollution Bulletin, 2019, 140: 188-197. doi: 10.1016/j.marpolbul.2019.01.039
    [134] PÉREZ-GUEVARA F, KUTRALAM-MUNIASAMY G, SHRUTI V C. Critical review on microplastics in fecal matter: Research progress, analytical methods and future outlook [J]. Science of the Total Environment, 2021, 778: 146395. doi: 10.1016/j.scitotenv.2021.146395
    [135] ZHANG J J, WANG L, TRASANDE L, et al. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces [J]. Environmental Science & Technology Letters, 2021, 8(11): 989-994.
    [136] REVELL L E, KUMA P, le RU E C, et al. Direct radiative effects of airborne microplastics [J]. Nature, 2021, 598(7881): 462-467. doi: 10.1038/s41586-021-03864-x
    [137] GAO Y, YU G R, HE N P. Equilibration of the terrestrial water, nitrogen, and carbon cycles: Advocating a health threshold for carbon storage [J]. Ecological Engineering, 2013, 57: 366-374. doi: 10.1016/j.ecoleng.2013.04.011
    [138] WANG Y, ZHOU B H, CHEN H L, et al. Distribution, biological effects and biofilms of microplastics in freshwater systems - A review [J]. Chemosphere, 2022, 299: 134370. doi: 10.1016/j.chemosphere.2022.134370
    [139] LIU S Q, WANG J W, ZHU J H, et al. The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings [J]. Chemosphere, 2021, 282: 130967. doi: 10.1016/j.chemosphere.2021.130967
    [140] DONG Y M, GAO M L, QIU W W, et al. Uptake of microplastics by carrots in presence of As (III): Combined toxic effects [J]. Journal of Hazardous Materials, 2021, 411: 125055. doi: 10.1016/j.jhazmat.2021.125055
    [141] ABBASI S, MOORE F, KESHAVARZI B, et al. PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone [J]. Science of the Total Environment, 2020, 744: 140984. doi: 10.1016/j.scitotenv.2020.140984
    [142] ZONG X Y, ZHANG J J, ZHU J W, et al. Effects of polystyrene microplastic on uptake and toxicity of copper and cadmium in hydroponic wheat seedlings (Triticum aestivum L. ) [J]. Ecotoxicology and Environmental Safety, 2021, 217: 112217. doi: 10.1016/j.ecoenv.2021.112217
    [143] ZHOU Y F, LIU X N, WANG J. Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida [J]. Journal of Hazardous Materials, 2020, 392: 122273. doi: 10.1016/j.jhazmat.2020.122273
    [144] WANG H T, DING J, XIONG C, et al. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica [J]. Environmental Pollution, 2019, 251: 110-116. doi: 10.1016/j.envpol.2019.04.054
    [145] SUN W, MENG Z Y, LI R S, et al. Joint effects of microplastic and dufulin on bioaccumulation, oxidative stress and metabolic profile of the earthworm (Eisenia fetida) [J]. Chemosphere, 2021, 263: 128171. doi: 10.1016/j.chemosphere.2020.128171
    [146] BOUGHATTAS I, ZITOUNI N, HATTAB S, et al. Interactive effects of environmental microplastics and 2, 4-dichlorophenoxyacetic acid (2, 4-D) on the earthworm Eisenia andrei [J]. Journal of Hazardous Materials, 2022, 424: 127578. doi: 10.1016/j.jhazmat.2021.127578
    [147] HUANG D L, WANG X Y, YIN L S, et al. Research progress of microplastics in soil-plant system: Ecological effects and potential risks [J]. Science of the Total Environment, 2022, 812: 151487. doi: 10.1016/j.scitotenv.2021.151487
    [148] 许楹, 殷超凡, 岳纹龙, 等. 石油基塑料的微生物降解 [J]. 生物工程学报, 2019, 35(11): 2092-2103. doi: 10.13345/j.cjb.190301

    XU Y, YIN C F, YUE W L, et al. Microbial degradation of petroleum-based plastics [J]. Chinese Journal of Biotechnology, 2019, 35(11): 2092-2103(in Chinese). doi: 10.13345/j.cjb.190301

    [149] TRIBEDI P, SIL A K. Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm [J]. Environmental Science and Pollution Research International, 2013, 20(6): 4146-4153. doi: 10.1007/s11356-012-1378-y
    [150] ORR I G, HADAR Y, SIVAN A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber [J]. Applied Microbiology and Biotechnology, 2004, 65(1): 97-104.
    [151] ZHANG K, HAMIDIAN A H, TUBIĆ A, et al. Understanding plastic degradation and microplastic formation in the environment: A review [J]. Environmental Pollution, 2021, 274: 116554. doi: 10.1016/j.envpol.2021.116554
    [152] SARKER A, DEEPO D M, NANDI R, et al. A review of microplastics pollution in the soil and terrestrial ecosystems: A global and Bangladesh perspective [J]. Science of the Total Environment, 2020, 733: 139296. doi: 10.1016/j.scitotenv.2020.139296
    [153] YANG J, YANG Y, WU W M, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms [J]. Environmental Science & Technology, 2014, 48(23): 13776-13784.
    [154] BRANDON A M, GAO S H, TIAN R M, et al. Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome [J]. Environmental Science & Technology, 2018, 52(11): 6526-6533.
    [155] HUERTA LWANGA E, THAPA B, YANG X M, et al. Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration [J]. Science of the Total Environment, 2018, 624: 753-757. doi: 10.1016/j.scitotenv.2017.12.144
    [156] 杨莉, 刘颖, 高婕, 等. 大麦虫幼虫肠道菌群对聚苯乙烯泡沫塑料降解 [J]. 环境科学, 2020, 41(12): 5609-5616. doi: 10.13227/j.hjkx.202003273

    YANG L, LIU Y, GAO J, et al. Biodegradation of expanded polystyrene foams in Zophobas morio: Effects of gut microbiota [J]. Environmental Science, 2020, 41(12): 5609-5616(in Chinese). doi: 10.13227/j.hjkx.202003273

    [157] MUHAMMAD A, ZHOU X X, HE J T, et al. Toxic effects of acute exposure to polystyrene microplastics and nanoplastics on the model insect, silkworm Bombyx mori [J]. Environmental Pollution, 2021, 285: 117255. doi: 10.1016/j.envpol.2021.117255
    [158] LIU H L, TIAN L J, WANG S T, et al. Size-dependent transgenerational toxicity induced by nanoplastics in nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2021, 790: 148217. doi: 10.1016/j.scitotenv.2021.148217
    [159] ZHANG H B, WANG J Q, ZHOU B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution, 2018, 243: 1550-1557. doi: 10.1016/j.envpol.2018.09.122
  • 加载中
图( 4)
计量
  • 文章访问数:  5236
  • HTML全文浏览数:  5236
  • PDF下载数:  186
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-04-08
  • 录用日期:  2022-06-02
  • 刊出日期:  2022-10-27

土壤微塑料污染与生态健康风险

    通讯作者: Tel:13991828224,E-mail:yhwang930@foxmail.com
  • 1. 陕西师范大学地理科学与旅游学院,西安,710119
  • 2. 中国海洋大学环境科学与工程学院,青岛,266100
  • 3. 东南大学能源与环境学院,南京,210023
  • 4. 浙江工业大学环境学院,杭州,310014
  • 5. 西北农林科技大学资源环境学院,杨凌,712100
  • 6. 吉林化工学院资源与环境工程学院,吉林,132022
基金项目:
第二次青藏高原综合科学考察研究(2019QZKK0403), 国家自然科学基金 (42277207,41807457, 41822705, 41977163), 国家重点研发计划(2020YFC1808304), 陕西省自然科学基金(2019JQ-664), 陕西省重点研发计划一般项目(2022SF-118, 2021SF-454)和中央高校基本科研业务费(GK202103151, 202141003)资助.

摘要: 微塑料(microplastics, MPs)广泛存在于各种环境介质中。与水生系统相比,土壤作为MPs在陆地系统中重要的长期的汇,MPs污染更为复杂,为全面了解土壤MPs污染现状,加强土壤MPs污染的风险管控,本文概述了土壤MPs的来源、丰度、迁移及潜在生态风险。土壤MPs主要来源于未合理处置的塑料垃圾、污泥堆肥、有机肥料施用等;MPs可能在全球土壤环境中普遍存在,多数地区土壤MPs丰度在0—5×103 个·kg−1之间,PE、PP、PS是土壤中最常见的MPs类型,频繁的农业活动导致农田土壤MPs污染尤为严重;MPs会对土壤生物的生长产生不同影响,并威胁人类健康,还会与其他污染物形成复合污染或发生老化/降解,对土壤生态系统构成更大的威胁。最后,从土壤MPs溯源、深层土壤中MPs检测、MPs与其他污染物复合污染毒性以及生态健康的风险等几方面提出了未来可能的研究方向,以期为进一步评估土壤MPs的环境行为和生态风险提供参考。

English Abstract

  • 塑料的商业生产始于20世纪50年代[1],现广泛应用于包装、医疗、农业等行业,仅2019年全球塑料产量就高达3.68亿吨[2]。塑料在光照辐射、机械磨损、风化侵蚀、动物和微生物的作用下,可逐渐分解成粒径更小的塑料颗粒[3]。微塑料(microplastics, MPs)的概念最早出现在2004年Science发表的一篇文章[4],定义为粒径小于5 mm的塑料颗粒[5],粒径小于100 nm的被称为“纳米塑料”(nanoplastics, NPs)[6]。MPs通过大气、洋流等作用在全球范围内长距离运输[7],并在环境中持续存在和积累。水体[8]、沉积物[9]、土壤[10]、大气[11]甚至深海和极地都能检测到MPs[7]。尽管多项研究回顾了MPs在水环境中的发生、分布、生态风险及水体MPs与其他污染物的环境地球化学行为[8, 12-13],但关于陆地MPs的综述论文却很少[14-15]。陆地MPs是海洋MPs的主要来源,其MPs污染程度可能是海洋的4—23倍[16]。土壤作为陆地系统中MPs的汇[17],对MPs的储存和转移起着至关重要的作用[18]。因此,充分认识MPs在土壤环境中的丰度、来源、迁移和生态毒性对于科学评估和源头控制土壤MPs污染十分关键。

    在Web of Science核心数据库中以“microplastics”和“soil”为关键词进行了搜索(截至2021年8月21日),产生了608篇文献。通过共现网络分析(图1),发现土壤环境MPs的研究始于2016年,相关研究主要包括:1)土壤类型,全球学者普遍注重农田土壤MPs的研究;2)MPs的来源,包括未合理处置的塑料垃圾、污泥堆肥、有机肥料的施用、污水灌溉和地膜覆盖等;3)MPs的分析方法,包括采样、分离(筛分、密度分离、消解等)、鉴定(目检法、光谱法、热解质谱分析法等);4)土壤MPs的丰度、类型(如聚丙烯(PP)、聚乙烯(PE)、聚苯乙烯(PS))、形状(如纤维、薄膜、碎片、颗粒等);5)MPs的生物效应,包括对植物、动物和微生物的影响。由此可见,MPs的来源、种类、分布、检测方法及生态健康风险是当前土壤MPs污染研究的热点方向。已发表的文献中,Praveena等[19]、陈雅兰等[20]较为全面的综述了土壤中MPs的提取与鉴定方法,郝爱红等[14]、Zhao等[15]从土壤中MPs的来源、迁移、分析方法、污染特征和生态风险等方面入手,揭示了土壤MPs的归宿和生态风险,但有关土壤MPs与多种有害污染物共同暴露的生物毒性、土壤中老化或降解MPs的生态风险鲜有报道。有学者对全球土壤MPs污染做了简单的总结[17, 21],但所收集的数据不够全面。因此,本文在总结最新国内外研究进展的基础上,从土壤环境中MPs的来源、丰度、迁移及其生态健康风险方面进行了综述,并提出了相关领域未来的研究重点。相比先前的研究,本文更加全面的总结了土壤中MPs的丰度,通过绘制分布图以更加直观的形式展现了全球土壤MPs污染,并将土壤老化/降解MPs的生态风险以及MPs的复合污染毒性和潜在生态风险展开了系统地回顾和展望,填补该领域综述论文的空白。本文将为评估土壤MPs潜在的生态健康风险提供有价值的参考。

    • 土壤中MPs的来源十分广泛(图2),人们日常生活(如未合理处置的塑料垃圾)和农业活动(如污泥堆肥、有机肥施用、地膜覆盖及农田灌溉等)产生的MPs会直接进入土壤[23-26],或通过地表径流[27]和大气沉降[28]间接输送到土壤环境。

    • 土壤中存在着与水环境类似、种类繁多的MPs碎片[29],它们与塑料污染密不可分。根据目前的塑料废弃物管理趋势预测,2050年全球产生的塑料垃圾中将有120万吨进入垃圾填埋场或自然环境[30],必然会对生态环境造成影响。日常生活使用的一次性塑料袋/瓶、口罩/手套、衣服等均含有塑料,如使用后被随意丢弃在路边或非法倾倒地点[31],会造成附近土壤塑料污染。作为塑料垃圾的重要组成部分,塑料袋全球每年的消费量约为5000—10000亿个,其中900多亿个塑料袋不可回收[32],可在环境中老化降解生成MPs。自2020年新冠疫情爆发以来,大量一次性口罩排放到环境中。据估计,2020年全球生产的一次性口罩约520亿个[33]。每片新口罩中可释放(183.0±78.4)个MPs,而使用过的口罩因附着了空气中的MPs会释放更多的MPs(每片(1246.6±403.5) 个) [34]。由此,未合理处置的一次性口罩引起的土壤塑料和MPs污染不容忽视。

    • 污泥堆肥可能导致土壤MPs的增加[24]。生活废水经污水处理厂,可大大减少MPs(去除率约99%)向水环境直接排放[24],但未被处理的MPs通常积聚在污泥中[35],由于污泥含有丰富的N、P、K等营养元素[36],许多地区将污泥用作农田肥料[24],MPs便由此进入土壤。不同国家污泥中MPs的含量与经济发展水平、人口密度和废物处置等因素有关[37]。对于经济发达、人口密度高的国家,因使用药品、个人护理品(PPCPs)及洗衣产生的污水量大[38],污泥中MPs的含量相应较高。在欧洲和北美地区,每年通过污泥堆肥进入农田的MPs分别有约6.3×104—4.3×105和4.4×104—3.0×105[39]。土壤MPs的丰度随污泥施用量的增加而增加[24]。研究发现,在农田中仅施用一次污泥,15年后该区域土壤中仍可检测出塑料纤维[40],表明MPs在土壤中难以降解,会产生持久性污染。

    • 有机肥料的重复施用除了会引起重金属和抗生素等污染残留[41],还会导致土壤MPs污染,而后者常常被人们忽视[42]。研究发现,有机肥中普遍含有的MPs可能来自运输饲料的塑料管道、储存消毒剂或抗生素的塑料瓶[43]。江西鹰潭,猪粪中MPs的平均年丰度约为(1250±640)个·kg−1(干重),施用了猪粪的农田中MPs的年均累积量约为(1.25±0.61)个·kg−1[42];施用猪粪22年后的农田中MPs丰度((43.8±16.2)个·kg−1)明显高于未施用猪粪的农田((16.4±2.7)个·kg−1)[42]。德国是全球对肥料质量要求最严格的国家之一,但每年通过施用有机肥进入农田的MPs高达3.5×1010—2.2×1012[26]。我国作为有机肥生产和使用大国,据估计,我国每年通过有机肥进入农田土壤中的MPs可达52.4—26400吨[3]。但该数据仅仅基于德国波恩、斯洛文尼亚等地区关于有机肥中塑料污染的报道[23, 26, 44],并结合我国有机肥每年实际施用量(2200万吨左右)来进行估算的,该估算忽略了粒径小于0.5 mm的MPs,且缺乏我国有机肥中关于MPs丰度的报道,因此,未来的研究中还应多关注我国有机肥中MPs的污染情况,以便全面评估我国通过有机肥进入土壤的MPs量。

    • 农业灌溉是MPs进入土壤的又一重要途径。据统计,全球每年生活污水产生量超过356 km3,处理后的出水中有23.8 km3主要用于农业灌溉[45]。生活污水中含有大量源于PPCPs和衣物的MPs。虽然常规的处理工艺可有效去除污水中绝大部分MPs,但出水中仍有残留的MPs通过农业灌溉进入土壤环境[15]。在部分水资源匮乏的国家,未经处理的污水也会被用于灌溉农田[23]。据报道,全球约有3.6×105 km2的农田是使用未处理或者部分处理的生活污水进行灌溉的[46],必然会向土壤中输入更多的MPs。此外,天然水体中也存在MPs,例如:我国长江水中MPs高达6.6×103个·m−3[47],珠江水中MPs的丰度介于397—7924个·m−3之间[48],即使在偏远的内陆湖泊沿岸也有大量MPs存在,如青藏高原湖泊中MPs丰度可达(625±411)个·m−3[49]。这些水环境中的MPs也可通过灌溉或随地表径流进入土壤环境中。随着研究的深入,人们开始对生态环境敏感区(如青藏高原[49]、沙漠[50]、黄土高原[51])MPs污染进行研究,作为东南亚多条河流重要发源地的青藏高原,无处不在的MPs可能使其污染范围不断扩大到其他水系,或通过地表径流进入土壤环境,而该地区生态环境脆弱,存在调查难度大、恢复年限长等问题,未来的研究应该更加注重生态环境敏感区MPs污染及其健康风险评价。

    • 地膜是农田土壤MPs污染的重要来源[23, 25]。2016年全球农用塑料薄膜市场交易量为400万吨,预计到2030年将以每年5.6%的速度增长[25]。全球约有1.29×105 km2的农田覆盖有地膜[52],我国地膜使用量最大,占全世界地膜覆盖面积的90%[17]。从田地中去除地膜费时费力,大量被残留的地膜在阳光辐射等作用下逐步破碎裂解,形成MPs[29]。农田土壤中MPs的含量随覆盖时间的延长逐渐增加[17]。在我国石河子市,随着地膜连续覆盖时间从5年增加至30年,MPs丰度从10.10 mg·kg−1增加到了61.05 mg·kg−1[53]。目前,大力研制与推广的环保型可降解地膜是解决塑料污染最有效的途径,但研究表明,MPs对污染物(如抗生素、农药等)的吸附能力大小排序为:老化可降解MPs>可降解MPs>非可降解MPs,且老化程度越高对污染物的吸附量越大[54-55],在这种情况下可降解地膜的使用,特别是地膜在环境中不可避免的老化行为,可能会给环境带来更大的生态危害,在未来的农业发展中应该重视这一问题。

    • 土壤MPs也有部分来自大气中悬浮的塑料颗粒。多项研究表明,大气中存在MPs,如南海西北部大气中MPs的丰度为(0.035±0.015)n·m−3[56]。大气中的MPs主要来源于建筑材料、纺织品磨损、灰尘、道路油漆、轮胎和制动器磨损[57]。轮胎磨损产生的MPs主要来自各种车辆,全球车辆轮胎磨损的MPs排放量为人均0.81 kg·a−1[58],飞机轮胎磨损释放的MPs相对较少,约占荷兰轮胎磨损MPs排放总量的2%[58]。空气中密度小的大塑料颗粒和MPs可通过大气沉降和风力传输沉积在城市或乡村陆地表面[59],还可传输到偏远、人烟稀少的地区[28]。据报道,我国烟台市大气MPs沉降通量达1.5×105个·(m2 a)−1[60];法国巴黎大气MPs沉降通量达2—355个·(m2 d)−1,且该地区每年有3—10吨的纤维被大气沉降物沉积[59]。由此可见,大气沉降是MPs沉积到陆地的重要途径。值得思考的是,粒径小于50 μm的MPs可以重新悬浮到大气中[61],增加人体吸入MPs的风险,而多数国家并没有将大气中的MPs作为空气污染的一部分进行监测,为了明晰MPs对人类健康构成的潜在风险,将MPs纳入空气污染的监测范围迫在眉睫,尤其是在MPs污染严重的大城市。

      总体来看,国内外大量关于土壤中MPs的来源研究仅停留在对来源的简单陈述,只有少部分做了MPs的溯源追踪方法。目前,环境中MPs的溯源方法主要集中于水体和沉积物,通过非仪器分析法(目视分析法、密度分析法、灼烧分析法等)从MPs的颜色、形状、密度等特性初步判识MPs的外观及用途[62],或通过仪器检测(光谱分析法、显微分析法、色谱质谱分析法等)判识MPs的化学成分及结构[63],两者相结合可追溯环境中MPs的来源。从已有研究成果来看,土壤MPs的溯源依旧没有可靠且简单易行的检测方法。值得注意的是,进入到环境的塑料碎片和MPs,由于各种物理化学作用,最终会破碎形成NPs,更小的粒径以及颜色、形状等特性不够显著增加了对MPs来源追溯的难度,因此亟需建立适合更小粒径的NPs的检测方法和理化指标。

    • MPs在土壤中可发生水平和垂直迁移[64],其迁移行为受土壤和MPs理化性质的影响[21, 65]。土壤的理化性质(包括孔隙度、土壤质地、矿物和腐殖质含量等)对MPs的迁移有重要影响。土壤的孔隙大小由其质地决定,可直接影响MPs的迁移[30],砂土表面的MPs在渗透作用下可垂直迁移至距地表1.5—7.5 cm的土壤中[66]。由于土壤裂缝,干燥气候可能会加速MPs向下移动[66]。土壤矿物和腐殖酸共存时会增加MPs的垂直传输距离(9—10 cm)[67]。Wu等[68]发现, PS微球的迁移能力随土壤矿物(Fe/Al氧化物)含量的增高而降低,这是由于带负电的MPs与带正电的Fe/Al氧化物发生静电吸引所致。此外,MPs的特性(包括粒径、形状、电荷和表面化学等)也会影响其在土壤中的迁移。当MPs的粒径小于土壤孔隙尺寸时,MPs能通过土壤孔隙和裂缝向下移动,粒径小的MPs也容易被土壤动物摄食而转移到更深层的土壤中[69-70]。由于MPs与土壤团聚体的相互作用不同,不同形状的MPs可能对土壤中MPs的迁移产生阻塞作用影响其迁移行为[65]。如:塑料微球和微粒比微纤维更易下移到土壤深层,因为微纤维与土壤颗粒缠结形成土块后无法迁移[71]。高密度的MPs(如PET(聚对苯二甲酸乙二醇酯))可能会因重力作用而促进其在土壤中的迁移[72]。表面含有羧基、磺酸基、低密度氨基官能团的PS微球,比含有高密度氨基官能团的PS微球更易在海沙中迁移,这是由于带正电的高密度氨基MPs与带负电的沙粒之间存在静电吸引,从而阻碍MPs的迁移行为[73]

      除了在土壤内部迁移外,土壤中的MPs也会在风力、气流、地表径流等作用下迁移到空气和水等环境介质中[64, 66]。土壤表面的MPs尤其是微纤维等轻质塑料颗粒,可以被风和气流抬升到空气中,最终长距离传播到其他陆地或地表水中[59]。此外,地表径流可促使MPs进入深层土壤甚至含水层。据报道,澳大利亚维多利亚州地下水中MPs的平均丰度为38个·L−1[74],向地下水迁移的MPs可能带来新的环境问题,但目前仍缺乏对地下水MPs污染的环境风险预测、评估和防控研究。

    • 我们收集了全球不同地区土壤环境中检出的MPs的理化性质和丰度,绘制了图3。目前,虽然只有少量研究报道了土壤环境中MPs的丰度情况,但可看出MPs广泛存在于多种土壤中(如农业土壤、公园土壤、湿地土壤、沙漠土壤等),其丰度从几个·kg−1到数万个·kg−1不等,多数地区土壤MPs丰度在0—5×103个·kg−1之间,粒径大多小于1 mm[75-77];MPs形状有纤维、薄膜、碎片、颗粒等,PP、PE、PS是土壤中最主要的聚合物类型。土壤环境中MPs的丰度普遍高于水和沉积物中的[8],说明土壤环境是MPs重要的汇。在全球范围内,亚洲、欧洲、北美、大洋洲的土壤环境中都发现了MPs,且不同地区丰度差异较大。从图3中可看出,智利梅利皮利亚县田地因长期施用污泥导致土壤MPs丰度高达18000—41000个·kg−1,明显高于其他地区[24];西班牙东南部穆尔西亚蔬菜农田土壤和墨西哥坎佩切家庭花园土壤中也检测到了数量较高的MPs,丰度分别为(2116±1024)个·kg−1和(870±1900)个·kg−1[78-79];但德国石勒苏益格-荷尔斯泰因州农田表层土壤中MPs仅有(5.8±8)个·kg−1[80],且该国弗兰科尼亚中部农田中MPs的丰度最低,仅为(0.34±0.36)个·kg−1[81]

      作为最大的塑料生产国和消费国[82],我国土壤MPs污染引起了越来越多的关注。在我国大多数受人为活动影响较少的土壤中MPs含量较低,如山东东营黄河三角洲湿地无植物覆盖的土壤和长江沿岸休耕的土壤中MPs丰度仅为60个·kg−1[83]和(28.4±22.0)个·kg−1[84];但农业土壤中MPs的含量通常较高,如:云南滇池柴河流域土壤MPs丰度为7100—42960个·kg−1[85];湖北武汉、山东寿光的农田土壤中也含有较高丰度的MPs(4.3×104—6.2×105、275—4165个·kg−1)[76-77],这可能是塑料地膜老化降解、污泥施用和污水灌溉所致。而少数地区如黄土高原[51]、上海菜地[75]等农田土壤中MPs丰度较小。在工业活动频繁的地区,也可能会引入较高丰度的MPs,广东贵屿电子废物拆解区土壤中MPs的丰度达34100个·kg−1[86]。沿海地区可通过海水养殖、旅游和港口建设等活动引入大量MPs[87]。一些偏远地区也存在少量MPs,可能是通过游客活动、卡车轮胎磨损和农用地膜引入的[88],或与大气传输有关。

      土壤中MPs的垂直分布没有明显的规律[76]。例如我国上海郊区[75]、山东寿光[76]和德国石勒苏益格-荷尔斯泰因州[80]农田中表层土壤MPs丰度高于深层土壤MPs丰度,黄土高原[51]、山东胶州湾菜地和果园土壤[89]、毛里求斯农业土壤[90]中深层土壤含有更多的MPs,而我国云南滇池柴河流域农田[85]和墨西哥家庭花园[79]的表层和深层土壤MPs含量无显著差异。不同地区土壤MPs垂直分布可能会受到土壤翻耕、地表径流等因素的影响[51],动物的摄食和排泄行为也可能影响MPs在表层和深层土壤之间的垂直转移[58, 64]。此外,少数研究还报道了土壤质地、植被覆盖、栽培时间、恢复年限等与MPs丰度的关系[50, 76, 85]。例如: 我国山东寿光的农业土壤和砂质壤土中MPs丰度显著高于粉质壤土[76],毛乌素沙漠土壤MPs丰度高于草地和林地[50];设施栽培时间>25与<10年的农田土壤中MPs丰度差异不显著,表明早期的设施栽培措施导致土壤中MPs的累积数量不高[85]。由此可见,土壤中MPs无处不在,不同地区土壤MPs污染水平之间的差异是人类农业活动、工业生产等因素共同作用的结果。值得注意的是,已有研究采用的分离、计数MPs的方法不一,在单位上也有区别,可能会低估或高估了土壤中MPs的真实污染水平。因此,未来的研究亟需建立土壤MPs分离和检测标准。在深层土壤中,MPs受阳光辐照的影响减小,且可降解塑料的微生物种群较少[91],这意味着土壤深处MPs的老化降解可能减慢,其持久性可能会更长。那么,除了表层土壤,检测深层土壤中MPs的含量才能全面评估土壤中MPs的污染状况。

    • 土壤MPs可通过多种途径对生态系统构成潜在威胁(图4)。MPs的存在可直接影响土壤动植物、微生物的生长[92-94],后经食物链的积累和传递可能对人体健康构成潜在威胁[79]。土壤MPs在土壤环境中能够吸附多种污染物质(如重金属、抗生素、农药等)[58, 95],或与自身释放的添加剂(如增塑剂、抗氧化剂、阻燃剂等)形成复合污染[96],这会给土壤动植物的生长带来极大的危害,而土壤环境中的MPs大多处于老化/降解状态,较原生MPs对污染物表现为更高的吸附能力[97],可能会对土壤生态系统构成更大的威胁。

    • MPs进入农业土壤会对植物产生暴露,阻塞种子孔隙、限制根吸收水和养分[92],影响植物的芽高、生物量和发芽率等[98-100]。Bosker 等[101]发现,绿色荧光塑料颗粒(50、500、4800 nm, 107个·mL−1)因堵塞种子的荚膜孔道会限制水芹种子发芽。而含PP、高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)和PET的土壤MPs能促进番茄植株的生长,但会延迟结果和降低果实产量[102]。MPs还可通过改变土壤结构、容重、持水能力和营养成分[103-104],间接影响植物根系性状、生长状态和养分吸收[99, 105]。de Souza Machado等[100]发现,MPs污染使得土壤容重降低,通气增加,有助于植物根系渗透到土壤中。然而,MPs(如微纤维)也会缠住幼根,阻碍幼苗的生长[92]

      MPs对植物生长的影响与其类型、暴露浓度、粒径等因素有关。de Souza Machado等[105]发现,PA、PE、HDPE、PP(均为2.0%)均会改变大葱的生物量、元素组成和根系性状,其影响程度因聚合物类型而异。Boots等[98]对比研究了生物降解的聚乳酸(PLA, 65.6 μm, 0.1% W/W)和难降解合成纤维((丙烯酸(AA)和尼龙混合物), 0.001% W/W)对黑麦草发芽的影响,发现两种MPs均会降低发芽率,PLA还会降低芽高。Qi等[99]也报道了类似的结果,即1%的淀粉基生物降解塑料和PE均抑制了小麦生长,且前者比后者的抑制作用更强。由此,生物降解材料来源的MPs对植物可能产生更强的毒性效应,值得进一步研究。一些研究表明粒径大小不同的MPs对植物的影响也不同,与5 μm PS(10、50、100 mg·L−1)相比,100 nm PS对蚕豆的生长抑制作用、遗传毒性和氧化损伤更强[106]。但目前,对于MPs在植物中的积累和转运以及对植物的毒性作用和机制等的认识仍不清楚。

    • MPs被动物摄入后会影响其摄食行为、生长和繁殖[107]。与水生动物相比,MPs对陆生动物影响的生态毒理学研究非常有限,且主要集中在无脊椎动物(如蚯蚓)[93]。已有研究证实MPs暴露对蚯蚓的毒性作用主要包括抑制生长、体重减轻、肠道损伤、免疫响应、肠道微生物群落的改变,以及死亡率增加[70, 108-109]。少数研究报道了土壤MPs也会影响蜗牛[110]、土壤线虫[111]、小鼠[112]等的健康。MPs对动物的影响存在剂量-效应关系。Huerta Lwanga等[107]发现,0.2%的PE(<150 μm)对蚯蚓(Lumbricidae)的生长和存活没有影响,但较高的添加量(1.2%)有抑制作用。Cao等[108]同样发现,低剂量(≤0.5%)的PS(58 μm)对蚯蚓生长的影响不明显,但高剂量(1%、2%)的MPs显著抑制了蚯蚓的生长,死亡率达40%。PS(0.05—0.1 μm)在高暴露量(10%)下可观察到蚯蚓肠道微生物群的明显变化[113]。虽然低浓度MPs暴露不会明显影响动物的生长和引起动物死亡,但会诱使动物组织病理损伤和免疫响应[70]。在评估MPs对动物健康的影响时,粒径是除暴露剂量之外的重要影响因素,Lei等[111]研究了不同粒径的PS(0.1、0.5、1.0、2.0、5.0 μm)对土壤线虫(Caenorhabditis elegans)的影响,发现相同质量浓度(1 mg·L−1)下1.0 μm PS暴露后土壤线虫的存活率最低然而,对于MPs对陆生动物的潜在影响,如MPs在动物组织中的积累和运输、MPs对动物的毒性作用和机制等方面的认识仍存在空白。

    • MPs内含或吸附的有机物可为微生物提供碳源[21],微生物在MPs表面定殖后形成生物膜[114],继而构成具有特殊微生物群落组成和功能的“塑料圈”[115]。研究发现,电子拆解厂区域的MPs(如PP、聚碳酸酯(PC)和ABS)及其周围环境的细菌群落存在显著差异,这可能是因为MPs为微生物提供了新的生态位[116],或通过改变土壤理化性质(如破坏土壤结构、降低土壤密度、改变土壤持水能力等)影响了微生物的群落结构和功能[65, 117]。添加MPs后土壤微生物群落多样性的影响研究还处于起步阶段,Huang、Judy等[118-119]认为,HDPE(<2 mm, 0.1%、0.25%、0.5%、1% W/W)、PVC(<2 mm, 0.01%、0.1%、0.25%、0.5%、1% W/W)、PET(<2 mm, 0.1%、0.25%、0.5%、1% W/W)和LDPE(2 mm×2 mm, 0.076 g·kg−1)的存在并没有显著改变土壤微生物群落的丰度和多样性。但也有研究发现土壤中添加低或高浓度(1%、5%)的LDPE(678 μm)和高浓度(5%)的PVC(18 μm)均显著增加了β变形杆菌目(Betaproteobacteriales)和假单胞菌目(Pseudomonadales)的相对丰度,而高浓度的PVC(18 μm, 5%)显著降低了鞘脂单胞菌科(Sphingomonadaceae)的丰度[120]。这些研究结果之间的差异可能与MPs的类型、浓度、以及土壤的理化性质有关。不同类型的MPs对微生物活性影响不同,PP颗粒(<180 μm, 7%、28%)对土壤微生物活性有积极影响[103],然而,Lozano等[94]发现PP碎片(<5 mm, 20%)会降低土壤微生物活性,PS颗粒(32.6 nm±11.9 nm, 1000 ng·g−1)、LDPE(643 μm, 17%)也对土壤微生物活性显示出负面影响[65, 121],de Souza Machado等[105]的研究也报道了类似的结果,但在这些研究中,MPs粒径、形状、大小和浓度各不相同,因此很难得出MPs对微生物毒性的一般性结论。

      此外,MPs作为致病菌和耐药菌的载体[122],可能影响土壤中ARGs的分布和迁移。MPs与ARGs在环境中广泛共存,由于ARGs对人类健康的潜在不利影响,其传播越来越受到关注。水生环境中,多项研究表明MPs(如PVC、聚乙烯醇(PVA))可影响ARGs的分布和传播[123]。在土壤中,PS(0.08—0.10 mm, 0.1%)的存在已被证实会增加抗生素和ARGs的保留时间[124],Lu等[125]也得出了类似的结果,MPs可促进土壤中ARGs丰度和数量,但还需要更多的证据来证实MPs污染是否促进ARGs在土壤环境中传播的结论。此外,Zhu等[126]发现土壤温度和湿度的升高均显著提高了MPs上ARGs的丰度,因此,在全球气候变化的情况下,土壤MPs对ARGs影响需引起更多的关注。

    • MPs可通过改变土壤理化性质、降低土壤肥力,影响土壤的生态功能和粮食生产[127],对人类的生存和发展产生潜在影响。MPs也可经陆生食物链传递进入人体。MPs及其吸附的污染物可在动植物体内积累[79],食用植物可以从土壤中吸收和积累微型(0.2 μm)荧光PS珠[128],100 nm PS可以在蚕豆、生菜根中积累,然后运输到茎叶[106]。一些重要的家禽(如鸡)也可食用MPs[79],而当人们食用被污染的家禽或蔬菜时,MPs可能在人体内大量积累。据估计,在墨西哥每人每年通过食用鸡肉就可摄入840个塑料颗粒[79],MPs一旦进入人体,可能引起炎症与应激反应、产生生殖与发育毒性,或改变肠道微生物的组成和功能[129]。MPs(<150 μm)可能会从肠腔转移到淋巴和循环系统,进而导致全身暴露[129]。Schirinzi等[130]证明了MPs(PS, 10 μm)和NPs(PS, 40、250 nm)可诱导人体细胞发生氧化应激,并在细胞水平上引起细胞毒性。MPs和NPs与免疫系统作用还可能会导致免疫毒性,进而引发不良反应(即免疫抑制、免疫激活和异常炎症反应)[131]。Prata[132]还发现,由于摄入MPs引起的慢性炎症和刺激可能会因DNA损伤而导致癌症。此外,常见的塑料添加剂,如邻苯二甲酸盐、阻燃剂、双酚A等,与生殖和发育障碍有关,可能引发乳腺癌、血液感染、青春期过早和生殖器缺陷[133]。目前开展的土壤MPs由食物链传递被吸食进入人体的研究还比较少,但已经在人类食物[129]和粪便[134]中检测到了MPs,甚至在人类胎盘、婴儿粪便、婴儿内脏中也发现了MPs的存在[135],虽然没有证据表明这些MPs是来源于土壤环境,但该结果应该足以引起人们对土壤MPs的重视。此外,大气MPs或许能通过反射阳光辐射对气候有冷却效果[136],而土壤中的MPs通过扬尘进入大气环境是否也有同样的效应,进而引起一系列的生态健康问题,如气候变化、水文调节及粮食安全等[137]

    • MPs因疏水性强、比表面积大[138],可以吸附多种有机和无机污染物,如多环芳烃(PAHs)、多氯联苯(PCBs)、重金属等[58, 95],或与自身释放的添加剂(如增塑剂、抗氧化剂、阻燃剂等)形成复合污染[96],从而影响土壤动植物的生长。对植物来说,Gao等[96]发现当加入邻苯二甲酸二丁酯(DBP)时,PS (100—1000 nm、>10000 nm)加重了DBP诱导的植物毒性,增强了对生菜(Lactuca sativa L. var . ramosa Hort)的负面影响,且小粒径PS(100—1000 nm)对生菜的不利影响略大。Liu等[139]发现土壤中PE(200—250 μm,0.5%、1%、2%、5%、8% W/W)和菲(100 mg·kg−1)共同污染比单一处理对小麦幼苗(Triticum aestivum L. cv. NAU 9918)的毒性更强,PE的单一污染破坏了小麦叶片的光合系统,而PE和菲复合污染则加剧了这种破坏。MPs与土壤中重金属等无机污染物的复合污染也引起了人们的关注。Dong等[140]研究发现,在As(Ⅲ)存在下,大尺寸的PS(5 µm)可以迁移到胡萝卜的叶和根部,这是由于As(Ⅲ)增加了PS表面的负电荷,同时As(Ⅲ)也会导致细胞壁扭曲和变形,并导致更多的MPs进入胡萝卜,降低其质量。另一项研究表明,PET(<2 mm)还可以作为载体将重金属运输到小麦根际区域[141]。而Zong等[142]的研究表明,与单一重金属处理相比,PS(0.5 µm, 100 mg·L−1)与Cu2+、Cd2+的结合增加了小麦中叶绿素含量,增强了光合作用,减少了活性氧(ROS)的积累,表明PS(0.5 µm, 100 mg·L−1)对Cu2+、Cd2+的生物利用度和毒性具有缓解作用。对动物来说,Zhou等[143]发现PP(<150 μm, 0.03%、0.3%、0.6%、0.9%)与重金属(Cd, 8 mg·kg−1)二者联合暴露会对蚯蚓(Eisenia foetida)产生更强的负面影响,降低蚯蚓的生长速度并增加其死亡率。而另一项研究却发现,PVC可能通过吸附/结合As(Ⅴ),降低As(Ⅴ)的生物利用度来缓解As(Ⅴ)对肠道菌群的影响,从而防止As(Ⅴ)的减少和总砷在肠道中的积累,降低对蚯蚓(Metaphire californica)的毒性[144]。然而,Sun等[145]发现,MPs(40—50 μm, 10 mg·kg−1、300 mg·kg−1)可显著增加毒氟磷杀虫剂在蚯蚓体(Eisenia fetida)内的生物蓄积性,加重对蚯蚓的氧化损伤和干扰代谢。Boughattas等[146]将MPs(100 µg·kg−1)和除草剂2,4-二氯苯氧乙酸(2-4-D)(7 mg·kg−1)共同暴露于土壤中,结果表明,MPs增加了蚯蚓中的2,4-D生物积累,破坏了溶酶体膜的稳定性和氧化状态,并增加了抗氧化基因的表达。

      目前,不管是对MPs的单一毒性研究还是与其他污染物的复合毒性研究,都存在受试动植物类别有限、土壤类型单一、研究周期短等问题,且MPs的种类、大小和浓度与实际土壤环境有一定的差异,如实验室研究中所用MPs浓度往往会高于实际土壤环境中MPs的最大浓度(6.7%)[147],未来的研究应在环境相关浓度条件下评估生态效应。更重要的是,没有充分考虑自然环境因素,真实土壤环境中MPs更多是处于老化或被生物膜定殖的状态,这无疑增加了MPs上的吸附位点,可能使得MPs上吸附的污染物更多,对陆地生态系统构成更严重的威胁。此外,粒径较小的MPs,特别是NPs,可能对陆地生态系统的健康风险更大[21],应作为重点评估的对象。

    • MPs在土壤中的长期积累可以进一步老化或降解[21]。除光照辐射、机械磨损、风化侵蚀外,土壤环境中动物群和微生物(如细菌和真菌)也可以降解MPs[21, 107, 148]。从土壤中分离得到的假单胞菌属细菌AKS2对LDPE的降解率在45 d内达到4%—6%[149],在地膜中分离得到的红球菌C208对PE塑料薄膜的降解率在30 d内达8%[150]。但目前从土壤中分离出能降解MPs的菌株种类较少,因此探究用于降解土壤MPs的微生物可能是进一步研究的方向之一。而生物体可以通过咬、咀嚼或消化碎片来物理降解MPs[151-152]。蜡螟(Waxworms)、印度谷螟(Indian Mealmoths)已被证实能吞食PE并在其肠道微生物的帮助下降解塑料聚合物[153]。此外,大麦虫(Zophobas Morio)、黄粉虫(Tenebrio molitor)、蚯蚓等均具有降解MPs的能力[154-156]。老化/降解会改变MPs的表面结构、疏水性、结晶度和比表面积,并增加MPs表面C—O、C=O、—OH等含氧官能团的数量[8, 97],导致老化或降解MPs具有更高的吸附能力,使其可以吸附其他污染物质,对土壤生态系统构成更大的威胁。

      目前,关于土壤MPs的老化或降解对陆地生态系统的危害研究并不多,主要是以下几个方面。首先,长期风化会使MPs分解成为NPs,许多研究已证明粒径较小的NPs可能较MPs具有更大的环境流动性和毒性[111]。Muhammad等[157]发现家蚕(Bombyx mori)暴露于PS MPs(5—5.9 μm, 10 μg·mL−1)的个体在感染后存活得更好,而暴露于PS NPs(50—100 nm, 10 μg·mL−1)的个体则表现出更高的死亡率。Liu等[158]也得出了类似的结果,相较于100 nm PS NPs,20 nm PS NPs(0.1—100 μg·L−1)对线虫(Caenorhabditis elegans)表现出更强的毒性。其次,老化MPs对污染物表现为更强的吸附能力,且老化的可降解MPs更强[51, 159]。Zhang等[159]研究发现,搁浅的PS泡沫对土霉素的吸附能力高于原始PS泡沫的吸附能力,Fan等[55]的研究也发现通过紫外线的老化过程,PLA、PVC对四环素、环丙沙星的吸附能力增加,且可降解PLA表现出更好的吸附能力,这些研究表明更多的有机污染物可以吸附并浓缩到老化的MPs上,形成的复合污染可能对生物体造成更严重的危害。最后,一些研究还探究了在超纯水和模拟肠液中,抗生素在原生/老化MPs上的解吸行为,发现与原生MPs相比,抗生素在老化MPs上解吸量更大,且模拟肠液中的抗生素解吸量比超纯水中大,这可能会对生物体造成更严重的危害[55]。除了老化MPs对生物体的危害外,也可能会带来其他的环境问题,如老化后形成的NPs由于粒径太小,如何从土壤环境中检测丰度及去除也是一大难题。综上,老化MPs的生态毒性问题及其带来的环境污染问题值得高度关注。

    • (1)土壤MPs的来源途径很多,包括未合理处置的塑料垃圾、污泥堆肥、有机肥的施用、农业灌溉、地膜覆盖等,但当前的研究仅停留在对土壤MPs来源的描述上,很少聚焦MPs的溯源研究,现有的技术条件无法将MPs从环境中根除,因此从源头管控就显得尤为重要。但如今土壤MPs溯源几乎处于空白状态,建议加强这方面的研究,为土壤中MPs的源头控制提供关键支撑。

      (2)MPs污染在全球土壤环境中普遍存在,应加大力度调查土壤MPs丰度。不同地点、土地类型、不同深度土壤中MPs污染水平和特征存在较大差异,频繁的农业活动导致农田土壤MPs污染较为严重,PE、PP、PS是土壤中最常见的MPs类型。通过大气传输、植物积累、动物摄食、翻耕等多种途径,MPs最终可迁移到深层土壤甚至含水层,因此检测深层土壤中MPs的含量才能全面评估土壤MPs的污染状况。迁移到地下水中的MPs可能带来新的环境问题,但相关的环境风险预测、评估和防控仍缺乏。

      (3)土壤MPs的存在会对动植物的生长产生不同影响,关于这方面的研究存在暴露时间短、受试动植物类别有限、土壤类型单一以及MPs种类、粒径大小和浓度与实际土壤环境有一定差异等问题,未来应结合实际土壤环境状况加强这方面的研究。土壤MPs经陆生食物链的传递和积累,可能对人类健康构成严重威胁,但关于环境相关浓度土壤MPs对不同类型动植物的阈值毒性水平及其在食物链中转移的研究还不足,这些问题在后续研究中需重点考虑,以全面揭示陆地生态系统中MPs带来的生态风险。

      (4)MPs因疏水性强、比表面积大,可以吸附多种有机和无机污染物,从而影响土壤生物的生长,MPs还可与自身释放的添加剂等形成复合污染,使得MPs的环境行为更加复杂。但目前关于土壤MPs与其携带的污染物结合和释放的机理尚不清楚,与多种有害污染物共同暴露对陆生生物的毒性效应和人体健康的风险亟待研究。未来的研究重点应关注MPs进入到土壤中如何参与其他元素(如重金属)和污染物的环境地球化学行为及生物效应。

      (5)土壤MPs的存在可改变微生物的群落结构和功能,反过来,在微生物、土壤动物、光照辐射等作用下MPs可进一步老化或降解,可能对土壤生态系统构成更大的威胁。但MPs影响土壤微生物的机制和途径暂不明晰,未来探究MPs对微生物群落结构、微生物活性的影响,MPs对全球生态系统和生物地球化学循环及对ARGs的影响是研究的重点方向之一。此外,还应寻找绿色、高效且环保的控制措施,以减少生物体对MPs的吸收,并降低其在土壤生态系统中的迁移。

    参考文献 (159)

目录

/

返回文章
返回