Loading [MathJax]/jax/output/HTML-CSS/jax.js

污染地块巨厚含水层典型DNAPLs运移模拟及安全利用深度评估

谢文逸, 姜登登, 李旭伟, 孔令雅, 曹少华, 陈樯, 张胜田, 邓绍坡. 污染地块巨厚含水层典型DNAPLs运移模拟及安全利用深度评估[J]. 环境工程学报, 2022, 16(7): 2287-2295. doi: 10.12030/j.cjee.202201128
引用本文: 谢文逸, 姜登登, 李旭伟, 孔令雅, 曹少华, 陈樯, 张胜田, 邓绍坡. 污染地块巨厚含水层典型DNAPLs运移模拟及安全利用深度评估[J]. 环境工程学报, 2022, 16(7): 2287-2295. doi: 10.12030/j.cjee.202201128
XIE Wenyi, JIANG Dengdeng, LI Xuwei, KONG Lingya, CAO Shaohua, CHEN Qiang, ZHANG Shengtian, DENG Shaopo. Transport Simulation of Typical DNAPLs in Deep Aquifer and Safe Utilization Depth Evaluation of Polluted Plot[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2287-2295. doi: 10.12030/j.cjee.202201128
Citation: XIE Wenyi, JIANG Dengdeng, LI Xuwei, KONG Lingya, CAO Shaohua, CHEN Qiang, ZHANG Shengtian, DENG Shaopo. Transport Simulation of Typical DNAPLs in Deep Aquifer and Safe Utilization Depth Evaluation of Polluted Plot[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2287-2295. doi: 10.12030/j.cjee.202201128

污染地块巨厚含水层典型DNAPLs运移模拟及安全利用深度评估

    作者简介: 谢文逸(1987—),男,博士,助理研究员,wenyixie@foxmail.com
    通讯作者: 邓绍坡(1981—),男,博士,副研究员,dsp@nies.org
  • 基金项目:
    国家重点研发计划资助项目(2018YFC1803100)
  • 中图分类号: X523

Transport Simulation of Typical DNAPLs in Deep Aquifer and Safe Utilization Depth Evaluation of Polluted Plot

    Corresponding author: DENG Shaopo, dsp@nies.org
  • 摘要: 江苏省南部地区历史遗留化工污染地块同时存在巨厚含水层(厚度>30 m)和DNAPL类污染物,故导致再开发利用时调查和治理深度难以确定。利用UTChem 模型构建地块二维地下水DNAPLs迁移模型,对巨厚含水层底板上典型DNAPLs(氯仿、1,2-二氯乙烷、四氯化碳、四氯乙烯)随时间推移的迁移扩散情况进行了模拟,并对影响其扩散范围的因素进行了探讨,基于模拟研究结果对此类地块安全利用深度进行了分析。模拟研究表明,不存在抽水井的情况下,经过70 a,含水层底板上4种典型DNAPLs(氯仿、1,2-二氯乙烷、四氯化碳、四氯乙烯)污染羽迁移范围有限,其自底板垂直向上最大迁移距离分别为16.70、16.90、15.20、7.90 m,向下游迁移距离分别为332.12、337.77、322.10、243.40 m。在存在抽水井的情况下,抽水井会显著影响DNAPLs污染羽的迁移范围。影响DNAPLs污染物迁移扩散范围的主要因素为污染物溶解度、密度、黏度、弥散度及渗透系数。本研究结果可为典型化工类型退役地块的风险管控和安全利用提供参考。
  • 紫外高级氧化工艺(ultraviolet-based advanced oxidation process, UV-AOPs)作为一种高效的深度处理技术,已被广泛研究用于去除水中的微量有机污染物。UV/H2O2工艺是一种传统的UV-AOPs,在波长254 nm下,氧化剂H2O2光解产生具有强氧化性的羟基自由基(hydroxyl radicals, HO·,氧化还原电位为1.8~2.7 V[1]),其可非选择性地将大分子有机物降解,从而达到高效去除污染物的目的。该工艺具有氧化效率高、有害副产物少等特点,因而得到了大量的研究关注并在实际工程中进行了应用[2]

    目前关于UV/H2O2工艺的研究主要关注污染物的去除效率、机理、水质条件的影响等方面,且大部分是在实验室完全混合序批式反应器中进行的[3-6]。为预测目标污染物在不同水质条件下的降解效率,从而更合理、高效地利用及调控UV-AOPs,研究人员开发了基于自由基浓度稳态假设(steady-state assumption, SSA)的动力学模型[7]。SSA模型的前提假设为反应器内自由基的浓度处于稳态且溶液完全混合,通过整合反应过程中的主要化学反应,可以计算出不同水质条件下反应器内自由基的平均稳态浓度,进而得到对应反应时间下微污染物的降解效率。因此,SSA模型在完全混合的序批式反应器中具有较高准确性[3,9-10]。TU等[8]通过SSA模型准确预测了丙烯氰在序批式UV/H2O2反应器中的降解速率。然而,UV-AOPs在工程应用中基本都采用过流式反应器,其中的水流远未达到完全混合状态。根据目标污染物的降解动力学和光化学反应原理可知,污染物的降解速率与自由基的浓度成正比,而自由基的浓度与紫外辐照强度以及氧化剂的浓度有关。已有研究[11-12]表明,UV光强呈从灯管向外逐渐降低,氧化剂浓度则呈现从进水口到出水口递减的趋势,因此,在溶液未完全混合时,部分自由基可能难以被目标污染物利用,从而影响污染物的降解效率。为了更好地指导UV/H2O2工艺在实际工程中的应用,开展过流式UV/H2O2工艺降解微量有机污染物的研究并评估SSA模型应用于过流式反应器的准确性,具有重要意义。但截至目前,相关研究仍比较缺乏,尤其对于SSA模型的适用性评估,尚未见报道。

    基于此,本文选取阿特拉津(atrazine, ATZ)作为模型污染物,采用过流式UV/H2O2反应器对其进行降解,分别考察了H2O2浓度、反应器内径对污染物降解效率及经济性的影响。同时,建立UV/H2O2工艺的SSA模型,并与实验结果进行对比,评估分析SSA模型在过流式反应器中应用的准确性。

    实验所用阿特拉津为分析纯,购于梯希爱(上海)化成工业发展有限公司;过氧化氢(质量分数为30%)购于上海沪试实验室器材股份有限公司;所用甲酸、乙腈为色谱纯,硫酸氧钛溶液的质量分数15%,均购于Sigma-Aldrich公司。

    图1所示,本研究在3种不同内径的过流式UV/H2O2反应器中进行,溶液从下方进入,一次性流过反应器后从侧上方的出水口流出。反应器长度均为500 mm,内径分别为35、50和80 mm,记作D35、D50和D80,其对应有效体积为418、950和2 500 mL。功率为21 W的一体化UV灯(GCL436T5L,美国莱劭思)置于反应器中间,灯管长度为436 mm,弧长为356 mm,其在254 nm处的输出功率为6.5 W。UV灯密封于石英套管内,套管外径为20.5 mm。反应器外壁为石英玻璃材质,用黑布包裹以避免外界光线的影响并防止紫外线泄露。以100 mmol·L−1 H2O2为感光剂,测得UV灯的光子流量(q0)为1.71×10−5 Einstein·s−1。以2 µmol·L−1ATZ为感光剂,测得D35、D50和D80反应器的有效路径(b)分别为0.67、1.33和2.29 cm[13]

    图 1  过流式UV/H2O2反应装置示意图
    Figure 1.  Schematic diagram of a flow-through UV/H2O2 reactor

    实验所用ATZ初始浓度为2.2 µmol·L−1,进水水温为21 ℃,根据实验条件在水箱中加入一定量的H2O2溶液,搅拌混合均匀。UV灯在实验开始前预热15 min以保证输出功率稳定。打开蠕动泵,使ATZ和H2O2的混合溶液进入反应器,并在5次水力停留时间后进行取样以保证水质稳定。通过改变反应器进水流量,可得到不同辐照时间(紫外剂量)下ATZ的降解。对于处理高透光率溶液(UVT>95%)的UV反应器而言,反应器平均紫外强度和平均紫外剂量的近似计算如式(1)和式(2)所示。

    Eavg=q0bVU254 (1)
    Favg=Eavgt (2)

    式中:Eavg为平均紫外强度,mW·cm−2V为反应器有效体积,L;U254为254 nm光子的摩尔能量,为471 528 J·Einstein−1Favg为平均紫外剂量,mJ·cm−2t为辐照时间,即反应器水力停留时间(hydraulic retention time, HRT),s。在本研究中,3个过流式UV反应器(D35、D50和D80)的平均紫外强度分别为12.9、11.3和7.4 mW·cm−2。基于获得的不同辐照时间(紫外剂量)下ATZ的去除率,可以分析过流式反应器中ATZ的降解动力学等特征规律。

    H2O2浓度由紫外分光光度计(哈希DR6 000)测得,显色剂为TiOSO4,测量波长为410 nm。ATZ浓度采用高效液相色谱(安捷伦1 200)进行测量,采用紫外二极管阵列检测器,检测波长为234 nm,色谱柱为安捷伦C18柱(150 nm×2.1 nm,3 µm),流动相由0.2%的甲酸水和乙腈组成(10∶90,v∶v),流速为0.8 mL·min−1,进样量为50 µL,柱温为30 ℃。

    UV/H2O2降解ATZ过程涉及的主要化学反应及相关参数如表1所示。ATZ降解速率为直接光解速率与自由基氧化速率之和。根据稳态假设,反应器内自由基生成速率等于消耗速率,自由基浓度恒定不变。通过计算自由基的平均稳态浓度,可以得到对应反应时间下微污染物的自由基氧化降解效率。ATZ直接光解速率、HO·生成速率和消耗速率分别根据式(3)~(5)进行计算。

    表 1  UV/H2O2降解ATZ过程涉及的主要化学反应
    Table 1.  Chemical reactions involved in atrazine degradation by UV/H2O2 process
    反应式参数
    Ф1=0.048,ɛ1=3 397 L·(mol·cm)−1
    Ф2=0.5,ɛ2=18.7 L·(mol·cm)−1
    L·(mol·s)−1
    L·(mol·s)−1
     | Show Table
    DownLoad: CSV
    rd=Φ1q0f1(110A)V (3)
    rHO=2Φ2q0f2(110A)V (4)
    rHO=k1CACs+k2CHCs (5)

    式中:rd为ATZ直接光解速率,mol·(L·s)−1rHO·为HO·生成速率,mol·(L·s)−1r’HO·为消耗速率,mol·(L·s)−1Φ1Φ2分别为ATZ和H2O2的量子产率,mol·Einstein−1A是溶液在254 nm下的吸光度;f1f2分别为ATZ和H2O2的吸光度占总吸光度的比例;k1k2分别为HO·与ATZ和H2O2的二级反应速率常数,L·(mol·s)−1CACHCS分别为ATZ浓度、H2O2浓度和HO·的平均稳态浓度,mol·L−1。其中,A、f1f2分别根据式(6)~(8)进行计算。

    A=CAε1b+CHε2b (6)
    f1=CAε1bA (7)
    f2=CHε2bA (8)

    式中:ɛ1ɛ2分别为ATZ和H2O2的摩尔吸光系数,L·(mol·cm)−1。对高透光率溶液(A<0.02)而言,其中反应物的直接光解速率和HO·生成速率计算(式(3)和式(4))可进一步简化为式(9)和式(10)。

    rdln(10)Φ1q0ε1bVCA (9)
    rHO2ln(10)Φ2q0ε2bVCH (10)

    假定过流式UV/H2O2反应器内的相关反应符合稳态假设理论,即忽略其中非完全混合流态的影响,则根据式(5)和式(10)可计算得到CS,进而得到基于时间的ATZ降解速率和基于紫外剂量的ATZ降解速率,如式(11)~(13)所示。

    CS=2ln(10)Φ2q0ε2bCH(k1CA+k2CH)V (11)
    r=rd+k1CACS=kobsCA (12)
    r=rd+k1CACSEavg=kobsCA (13)

    式中:r为基于时间的ATZ降解速率,mol·(L·s)−1r’为基于紫外剂量的ATZ降解速率,mol·cm2·(L·mJ)−1kobs为ATZ基于时间的降解速率常数,s−1kobs为ATZ基于紫外剂量的降解速率常数,cm2·mJ−1

    根据定义,EEO为将单位体积中目标污染物浓度降低一个数量级(去除90%)所需的电能,kWh·(m3·order)−1,其计算过程如式(14)和式(15)所示。

    EEO=1000WLQlog(Ci/Cf) (14)
    log(Ci/Cf)=0.4343kobst (15)

    式中:WL为灯的输出功率,kW;Q为反应器进水流量,L·h−1CiCf分别是进水和出水中ATZ的浓度,mol·L−1kobs为基于时间的ATZ降解的拟一级反应速率常数,s−1t为反应器的水力停留时间,s。综合式(14)和式(15)可以得到式(16)。

    EEO=1000WL3600×0.4343Vk (16)

    式中:V为反应器的有效体积,L。

    同一反应器条件下改变进水流量,得到目标污染物ATZ的降解效率如图2所示。由图2可以看到,随着辐照时间(HRT)的增加,ATZ的对数浓度接近于线性下降,即过流式反应器中ATZ的降解仍基本符合拟一级反应动力学规律。这表明对UV/H2O2工艺过程而言,反应器中流量及相应流态的变化对污染物降解反应规律影响较小。在单独UV照射下,ATZ能被部分降解。这是因为,虽然ATZ直接光解的量子产率较小(0.048 mol·Einstein−1),但其摩尔吸光系数较大(3 397 L·(mol·cm)−1),从而导致其直接光解速率较大。当在溶液中添加氧化剂H2O2时,H2O2光解产生强氧化性的HO·,其与ATZ的二级反应速率常数为2.3×109 L·(mol·s)−1,使得ATZ的降解速率显著加快,且投加的H2O2浓度越高,污染物降解速率越快。值得一提的是,由于过流式反应器固有的出水水质波动问题,2次平行实验得到的ATZ对数去除率误差相对序批式反应器中的更大,尤其是当反应器内径较大时(图2(b)图2(c))。类似程度的实验结果偏差在采用过流式反应器的其他UV-AOPs工艺研究中也有过报道,故属正常现象[14]

    图 2  过流式UV/H2O2反应器中ATZ降解效率及线性拟合
    Figure 2.  Atrazine degradation efficiency and linear fitting in the flow-through UV/H2O2 reactors

    根据图2中的实验结果得到不同反应器内径和H2O2浓度下ATZ降解的拟一级降解速率常数,并与相同条件下SSA模型计算得到的降解速率常数进行对比,结果如表2所示。由表2可知,不同反应条件下ATZ拟一级降解速率常数的实验值和模拟值的偏差为-19.8%~12.9%(其中反应器D35的44%偏差可能为取样问题导致),且单独UV辐照时模型均出现一定程度的低估。对全部的实验值和模拟值进行线性拟合(排除44%异常值,n=11),可以得到一条经过原点且斜率为1.02的直线(R2=0.98)。因此,与序批式完全混合反应器中类似,SSA模型依然可以准确模拟过流式UV/H2O2反应器中ATZ的降解效率。

    表 2  不同反应条件下实验和模拟得到的ATZ拟一级降解速率常数
    Table 2.  Observed and calculated pseudo-first order rate constants of atrazine degradation under various conditions
    反应器H2O2/(mmol·L−1)kobs/s−1kobs/(cm2·mJ−1)相对偏差/%
    实验值模拟值 实验值模拟值
    D3501.3×10−21.0×10−29.9×10−47.9×10−4−19.8
    0.052.8×10−23.1×10−22.1×10−32.4×10−312.9
    0.13.1×10−24.5×10−22.4×10−33.5×10−344.0
    0.25.8×10−26.2×10−24.5×10−34.8×10−37.0
    D5001.0×10−28.9×10−38.9×10−47.9×10−4−11.8
    0.052.9×10−22.7×10−22.6×10−32.4×10−3−5.7
    0.13.6×10−23.9×10−23.2×10−33.5×10−39.4
    0.25.6×10−25.4×10−25.0×10−34.7×10−3−5.2
    D8006.9×10−35.8×10−39.4×10−47.8×10−4−16.6
    0.051.7×10−21.8×10−22.3×10−32.4×10−31.8
    0.12.7×10−22.5×10−23.7×10−33.4×10−3−6.4
    0.23.2×10−23.5×10−24.3×10−34.7×10−37.8
     | Show Table
    DownLoad: CSV

    UV光解H2O2产生的HO·的不均匀分布是影响SSA模型在过流式反应器准确性的主要原因。不同于序批式反应器中通过搅拌实现反应物的近似完全混合,本研究中所用的过流式反应器中水流形态接近于推流,反应器内物质的径向混合程度有限,且具体混合效果与反应器内径和流量相关。在不同HRT下,3个反应器内水流的雷诺(Reynolds, Re)数结果如图3所示。由图3可知,在考察的流量条件下,反应器的雷诺数为25~344,远小于层流临界值2 300,这表明其中水流处于层流状态。同一紫外剂量下,反应器D80中的雷诺数最大,其次为D50、D35,这说明反应器内径越大,溶液的径向混合程度相对越高。这在一定程度上解释了SSA模型在D50和D80中的准确性更高的原因。此外,根据计算流体动力学模拟结果可知,当反应器流速较低时,未知中间产物的浓度将增大,从而导致模拟结果与实验值的偏差增大[15-16]。与其他2个反应器相比,相同紫外剂量下D35中的水流流速也更低,因而容易出现更大偏差。在UV/H2O2工艺的工程应用中,处理流量及水流雷诺数一般比本研究反应器D80中的要大,因此,SSA模型在过流式UV/H2O2反应器实际应用中仍具有较好的适用性。这为工程中UV/H2O2系统性能的快速评估提供了理论基础和技术方法。

    图 3  不同水力停留时间下反应器的雷诺数和平均紫外剂量
    Figure 3.  Reynolds number and average fluence rate of reactors at different HRTs

    图2表2所示,在反应器D35、D50和D80中,H2O2浓度增加均明显提高了ATZ的降解速率。当H2O2浓度增加至0.2 mmol·L−1时,ATZ的kobs分别增加至5.8×10−2、5.6×10−2和3.2×10−2 s−1,分别为单独UV辐照时的4.5、5.6和4.6倍。由式(10)可知,当H2O2浓度增加时,HO·的生成速率增加,从而促进了ATZ的降解。有研究[17]表明,当H2O2浓度为0.1 mmol·L−1和0.2 mmol·L−1时,序批式反应器中得到ATZ的kobs分别约为4.0×10−3 cm2·mJ−1和5.7×10−3 cm2·mJ−1,与本研究中所得结果(表2)较为接近。这表明在相同的紫外剂量下,UV/H2O2工艺降解目标污染物的效率可能不受反应器结构和水流流态的影响。事实上,MIKLOS等[2]在研究UV/H2O2工艺对污水厂出水中微量有机污染物的去除时也得到了类似结论,即目标污染物在序批式反应器和过流式反应器中的降解速率常数相差不大。

    进一步通过SSA模型计算不同反应器中H2O2浓度变化对ATZ降解速率的影响,结果如图4所示。与实验结果类似,在较低的浓度范围内,随着H2O2浓度的增加,3个反应器中ATZ的kobs均得到显著提升,其最大值出现在H2O2浓度约为3 mmol·L−1时,但当H2O2浓度继续增加时,ATZ降解速率缓慢降低。这是由于H2O2同时也是HO·的捕获剂,过量的H2O2会和HO·反应生成氧化性较弱的HO2,从而抑制ATZ降解速率的升高,甚至使反应速率降低[18]。在UV/H2O2工艺降解氧氟沙星[19]、美罗培南[20]、双酚A[21]等的研究中也有着类似的现象。高H2O2浓度下不同内径反应器中ATZ降解速率常数的下降幅度不一,这主要与有效路径不同导致的平均紫外强度下降程度差异有关。

    图 4  SSA模型计算H2O2浓度对ATZ降解速率常数的影响
    Figure 4.  Calculated atrazine degradation rate constants by SSA model at different H2O2 concentrations

    反应器内径对ATZ降解的影响可以分别从kobskobs进行分析。如表2所示,在相同H2O2浓度下,ATZ的kobs随着反应器内径的增加而逐步减小。其原因在于:一方面,在同一光源辐射下,反应器内径越大,其中平均紫外强度Eavg越小,使得ATZ直接光降解速率及HO·产生速率、浓度降低,最终导致ATZ降解速率常数的减小;另一方面,相同H2O2浓度下,3个不同内径的反应器中ATZ的kobs基本相同,如当H2O2浓度为0.2 mmol·L−1时,在反应器D35、D50和D80中分别为4.5×10−3、5.0×10−3和4.3×10−3 cm2·mJ−1。SSA模型模拟结果(表2)也进一步证实了相同紫外剂量下不同反应器中ATZ降解效率无显著差异。

    由式(1)可知,对高透光率反应体系而言,其中q0b/VEavg成正比。因此,不同反应器内的微量有机污染物的直接光解速率和自由基生成速率主要取决于反应器内的Eavg(式(9)和(10))。另一方面,反应器内自由基的消耗速率只与处理水质有关(式(5))而可认为是恒定值,则稳态自由基浓度也与Eavg成正比。综上所述,从稳态假设理论出发,3种内径的UV反应器中ATZ的kobs主要决定于相应的Eavg。将基于时间的降解速率除以Eavg可以得到kobs(式(13)),因此,在相同的ATZ及H2O2浓度下,不同反应器内的ATZ的kobs十分接近(表2)。随着H2O2浓度的增加,溶液在254 nm下的吸光度(A)大于0.02,导致式(3)和式(4)进行泰勒展开时误差较大,此时不能通过式(9)和式(10)预测反应器中ATZ的降解速率。结合SSA模型的模拟结果可知,当H2O2浓度大于0.5 mmol·L−1时,反应器内径将对ATZ的kobs产生影响(图4)。

    在考察评估实际UV-AOPs反应器性能时,通常比较的是相同水质和流量条件下反应器出口处目标污染物的浓度(或去除率)大小。在本研究中,由于3个反应器内径不同,相应的水力停留时间及基于时间的ATZ降解速率常数都将不同,直接比较各反应器的kobs值并不能准确评估其效率。另一方面,同一条件下各反应器中得到的ATZ的kobs无明显差别,因此也不适合用作性能参数。根据拟一级反应原理,微量有机污染物在反应器出口处浓度的对数与速率常数和时间(或剂量)的乘积呈线性相关,因此,应综合kobs和HRT或kobsFavg结果来评估反应器性能或经济性。事实上,UV-AOPs工艺中常用的单位能耗(electrical energy per order, EEO)正是综合反应速率和处理流量后的性能评估参数。本研究将采用该参数分析上述3个反应器在不同H2O2浓度下的经济性。

    不同条件下过流式UV/H2O2反应器降解ATZ的EEO实验和模拟值结果如图5所示。与3.1部分的结果类似,在反应器D35中(图5(a)),SSA计算所得EEO值与实验值具有一定偏差,而在反应器D50(图5(b))和D80(图5(c))中,两者基本吻合。此外,在实验条件内,EEO值为0.17~2.52 kWh·(m3·order)−1。有研究[22]表明,UV-AOPs处理微量有机污染物的EEO低于2.5 kWh·(m3·order)−1时具有经济可行性,因此,UV/H2O2工艺在处理水中微量ATZ上具有良好的应用前景。在同一反应器内,随着H2O2浓度的增加,ATZ的降解速率常数逐渐增大,从而导致EEO值逐渐减小。在H2O2浓度相同时,虽然反应器内径的增加会降低ATZ基于时间的降解速率常数,但由于其有效体积的增大,UV/H2O2工艺处理ATZ的EEO值将降低。综上所述,增大H2O2浓度或反应器内径均能降低单位处理能耗,从而提高UV/H2O2工艺的经济效益。

    图 5  不同条件下ATZ降解的EEO实验和模拟值
    Figure 5.  Observed and calculated EEO of atrazine degradation under different conditions

    1)过流式UV/H2O2反应器可以有效降解去除水中微量有机污染物。在不同处理流量下,反应器中ATZ的降解基本符合拟一级反应动力学规律(R2>0.95),且其基于紫外剂量的速率常数与在序批式反应器中的接近。

    2)虽然反应器内水流流态不同于序批式反应器中的完全混合,基于稳态假设的SSA模型仍能准确模拟过流式反应器中ATZ的降解速率,其偏差基本在20%以内。这为实际应用中UV/H2O2系统性能的快速评估提供了理论和技术可行性。

    3)在考察的浓度范围内,H2O2浓度增加会导致HO·的生成速率增加,从而促进ATZ的降解,并提高反应器的经济性。当H2O2浓度过高时,会与HO·反应并抑制ATZ的降解。H2O2浓度大约为3 mmol·L−1时,ATZ的降解速率最快。

    4)不同内径反应器中ATZ基于紫外剂量的降解速率常数无明显差异。反应器内径增大虽然降低了ATZ基于时间的降解速率常数,但由于有效体积的增大,反应器的EEO值将降低,从而使UV/H2O2工艺的效益得到提高。

  • 图 1  污染物运移情景示意

    Figure 1.  Sketch map of pollution migration

    图 2  典型DNAPLs在模拟期末(70 a)的迁移结果

    Figure 2.  Migration process of typical DNAPLs in groundwater (70 a)

    图 3  不同情景在模拟期末(70 a)运移结果

    Figure 3.  Pollutant migration results at the end of simulation period (70 a) under different scenarios

    表 1  不同岩层渗透系数表

    Table 1.  Conductivity of different rock

    岩性水平渗透系数/ (m·d−1)垂直渗透系数/ (m·d−1)
    杂填土4.0002.000
    粉土0.0250.016
    粉砂夹粉土2.9801.740
    粉砂4.4202.540
    粉质粘土层0.0030.002
    岩性水平渗透系数/ (m·d−1)垂直渗透系数/ (m·d−1)
    杂填土4.0002.000
    粉土0.0250.016
    粉砂夹粉土2.9801.740
    粉砂4.4202.540
    粉质粘土层0.0030.002
    下载: 导出CSV

    表 2  DNAPLs污染物主要性质参数表[11-12]

    Table 2.  Main characteristic parameters of typical DNAPLs

    污染物是否挥发标准CAS溶解度/(mg·L−1)密度/ (g·cm−3)黏度
    氯仿67-66-37 9501.4790.55
    1,2-二氯乙烷107-06-28 6001.2450.80
    四氯乙烯127-18-42501.6230.80
    四氯化碳56-23-57931.5940.90
    污染物是否挥发标准CAS溶解度/(mg·L−1)密度/ (g·cm−3)黏度
    氯仿67-66-37 9501.4790.55
    1,2-二氯乙烷107-06-28 6001.2450.80
    四氯乙烯127-18-42501.6230.80
    四氯化碳56-23-57931.5940.90
    下载: 导出CSV

    表 3  地下水高风险污染物风险控制值

    Table 3.  Risk control values of high-risk pollutants in groundwater

    检出污染物CAS号基于室内蒸汽入侵的 风险控制值/(mg·L−1)基于室外蒸汽入侵的 风险控制值/(mg·L−1)
    氯仿67-66-30.3310.62
    1,2-二氯乙烷107-06-20.8118.77
    四氯乙烯127-18-48.66382.62
    四氯化碳56-23-50.2311.07
    检出污染物CAS号基于室内蒸汽入侵的 风险控制值/(mg·L−1)基于室外蒸汽入侵的 风险控制值/(mg·L−1)
    氯仿67-66-30.3310.62
    1,2-二氯乙烷107-06-20.8118.77
    四氯乙烯127-18-48.66382.62
    四氯化碳56-23-50.2311.07
    下载: 导出CSV

    表 4  工况1条件下典型DNAPLs污染物质迁移模拟结果

    Table 4.  Simulation results of pollutant migration of typical DNAPLs

    污染物标准CAS向上迁移距离/m向下游迁移距离/m
    20 a50 a70 a20 a50 a70 a
    氯仿67-66-39.7013.5016.70140.51260.34332.12
    1,2-二氯乙烷107-06-211.1015.0016.90142.40264.71337.77
    四氯乙烯127-18-45.006.907.9097.12187.41243.40
    四氯化碳56-23-59.2013.2015.20135.21252.82322.10
    污染物标准CAS向上迁移距离/m向下游迁移距离/m
    20 a50 a70 a20 a50 a70 a
    氯仿67-66-39.7013.5016.70140.51260.34332.12
    1,2-二氯乙烷107-06-211.1015.0016.90142.40264.71337.77
    四氯乙烯127-18-45.006.907.9097.12187.41243.40
    四氯化碳56-23-59.2013.2015.20135.21252.82322.10
    下载: 导出CSV

    表 5  工况2条件下1,2-二氯乙烷污染物质迁移模拟结果

    Table 5.  Simulation results of pollutant migration of 1,2- dichloroethane

    污染物 迁移情景向上迁移距离度/m向下游迁移距离/m
    20a50a70a20a50a70a
    情景111.2913.1013.7169.34159.03218.76
    情景211.7114.9215.98140.88261.83331.82
    情景39.750035.7900
    情景416.5125.8027.90164.12266.72318.36
    情景518.2300298.1700
    情景618.7235.5138.22220.61291.12293.29
    污染物 迁移情景向上迁移距离度/m向下游迁移距离/m
    20a50a70a20a50a70a
    情景111.2913.1013.7169.34159.03218.76
    情景211.7114.9215.98140.88261.83331.82
    情景39.750035.7900
    情景416.5125.8027.90164.12266.72318.36
    情景518.2300298.1700
    情景618.7235.5138.22220.61291.12293.29
    下载: 导出CSV

    表 6  不同弥散度条件下敏感性系数结果

    Table 6.  Sensitivity analyses under different dispersion conditions

    弥散度变化幅度垂向迁移距离SAF横向迁移距离SAF
    −10%0.4490.200
    −5%0.5990.181
    +5%0.4190.200
    +10%0.3290.196
    弥散度变化幅度垂向迁移距离SAF横向迁移距离SAF
    −10%0.4490.200
    −5%0.5990.181
    +5%0.4190.200
    +10%0.3290.196
    下载: 导出CSV

    表 7  不同渗透系数条件下敏感性系数结果

    Table 7.  Sensitivity analyses results under different conductivity conditions

    渗透系数变化幅度垂向迁移距离SAF横向迁移距离SAF
    −10%0.3590.749
    −5%0.2990.729
    +5%0.7780.747
    +10%0.5090.744
    渗透系数变化幅度垂向迁移距离SAF横向迁移距离SAF
    −10%0.3590.749
    −5%0.2990.729
    +5%0.7780.747
    +10%0.5090.744
    下载: 导出CSV
  • [1] 赵希涛, 胡道功, 吴中海, 等. 长江三角洲地区晚新生代地质与环境研究进展述评[J]. 地质力学学报, 2017, 23(1): 1-64. doi: 10.3969/j.issn.1006-6616.2017.01.001
    [2] 暴志蕾. 长三角地区饮用水源地有机污染物特征分析研究[J]. 石家庄:河北师范大学, 2016: 1-3.
    [3] 高尚, 王磊, 龙涛, 等. 污染地块中高密度非水相液体(DNAPLs)迁移特征及判定调查技术研究进展[J]. 生态与农村环境学报, 2018, 34(4): 289-299. doi: 10.11934/j.issn.1673-4831.2018.04.001
    [4] 中华人民共和国生态环境部. 建设用地土壤污染风险管控和修复监测技术导则: HJ 25[J]. 2-2019[S]. 北京:中国环境出版集团出版, 2019: 3-4.
    [5] 中华人民共和国国土资源部. 地下水监测井建设规范: DZ/T 0270-2014[J]. 中国标准出版社, 2014: 5-6.
    [6] ASADOLLAHFARD G, KHODADI A, JAVADIFAR N. UTCHEM model application for prediction of crude oil removal from contaminated sand columns[J]. Journal of the Geological Society of India, 2013, 82(6): 712-718. doi: 10.1007/s12594-013-0209-1
    [7] KHALILINEZHAD S S, HASHEMI A, MOBARAKI S, et al. Experimental analysis and numerical modeling of polymer flooding in heavy oil recovery enhancement: a Pore-Level investigation[J]. Arabian Journal for Science and Engineering, 2019, 44: 10447-10465. doi: 10.1007/s13369-019-04005-3
    [8] PICKENS J, JACKSON R E, STATHAM W H, et al. Simulation of DNAPL migration and surfactant-enhanced aquifer remediation//Fifth Annual Environmental Management and Technology Conference Proceedings Volume[J]. Southwest, 1993: 391-412.
    [9] 陈梦佳, 吴剑锋, 孙晓敏, 等. 地下水典型非水相液体污染运移模拟的尺度提升研究[J]. 水文地质工程地质, 2020, 47(1): 11-18. doi: 10.16030/j.cnki.issn.1000-3665.201901032
    [10] 中华人民共和国生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3-2019[S]. 北京: 中国环境出版集团, 2019, 10-15.
    [11] 刘锐, 孟凡勇, 文晓刚, 等. 挥发性氯代烃在土壤中的吸附行为研究进展[J]. 土壤学报, 2012, 49: 8. doi: 10.11766/trxb201010090415
    [12] 沈雨生, 刘敏. 有机化合物的粘度及粘度的温度系数[J]. 中南民族学院学报(自然科学版), 1997, 3: 7-12.
    [13] 宋健, 吴剑锋, 杨蕴, 等. 基于含水层DNAPL污染修复替代模型的多目标优化研究[J]. 中国环境科学, 2016, 36(11): 3390-3396. doi: 10.3969/j.issn.1000-6923.2016.11.024
    [14] 易立新, 徐鹤. 地下水数值模拟: GMS应用基础与实例[J]. 北京:化学工业出版社, 2009: 174.
    [15] PUTZLOCHER R, KUEPER B H. Relative velocities of DNAPL and aquous phase plume migration[J]. Journal of Contaminant Hydrology, 2006, 88(3/4): 321-326.
    [16] 郭芷琳, 马瑞, 张勇, 等. 地下水污染物在高度非均质介质中的迁移过程: 机理与数值模拟综述[J]. 中国科学:地球科学, 2021, 51(11): 20.
    [17] 高燕维, 郑菲, 施小清, 等. 基于透射光法探讨水流流速对DNAPL运移分布的影响[J]. 环境科学, 2015(7): 2532-2539. doi: 10.13227/j.hjkx.2015.07.028
    [18] 田蕾, 胡立堂, 张梦琳. 低渗透石化污染场地多相抽提修复效率的数值模拟[J]. 中国环境科学, 2022, 42(2): 11. doi: 10.3969/j.issn.1000-6923.2022.02.047
    [19] DEKKLER T J, Abriola L M. The influence of field-scale heterogeneity on the infiltration and entrapment of dense nonaqueous phase liquids in saturated formations[J]. Journal of Contaminant Hydrology, 2000, 42(2/3/4): 187-218.
    [20] 高彦斌, 张松波, 李韬, 等. 饱和黏性土中重质非水相有机污染物纵向迁移数值模拟[J]. 同济大学学报(自然科学版), 2020, 48(1): 28-36.
  • 加载中
图( 3) 表( 7)
计量
  • 文章访问数:  4398
  • HTML全文浏览数:  4398
  • PDF下载数:  118
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-02-07
  • 录用日期:  2022-06-22
  • 刊出日期:  2022-07-31
谢文逸, 姜登登, 李旭伟, 孔令雅, 曹少华, 陈樯, 张胜田, 邓绍坡. 污染地块巨厚含水层典型DNAPLs运移模拟及安全利用深度评估[J]. 环境工程学报, 2022, 16(7): 2287-2295. doi: 10.12030/j.cjee.202201128
引用本文: 谢文逸, 姜登登, 李旭伟, 孔令雅, 曹少华, 陈樯, 张胜田, 邓绍坡. 污染地块巨厚含水层典型DNAPLs运移模拟及安全利用深度评估[J]. 环境工程学报, 2022, 16(7): 2287-2295. doi: 10.12030/j.cjee.202201128
XIE Wenyi, JIANG Dengdeng, LI Xuwei, KONG Lingya, CAO Shaohua, CHEN Qiang, ZHANG Shengtian, DENG Shaopo. Transport Simulation of Typical DNAPLs in Deep Aquifer and Safe Utilization Depth Evaluation of Polluted Plot[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2287-2295. doi: 10.12030/j.cjee.202201128
Citation: XIE Wenyi, JIANG Dengdeng, LI Xuwei, KONG Lingya, CAO Shaohua, CHEN Qiang, ZHANG Shengtian, DENG Shaopo. Transport Simulation of Typical DNAPLs in Deep Aquifer and Safe Utilization Depth Evaluation of Polluted Plot[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2287-2295. doi: 10.12030/j.cjee.202201128

污染地块巨厚含水层典型DNAPLs运移模拟及安全利用深度评估

    通讯作者: 邓绍坡(1981—),男,博士,副研究员,dsp@nies.org
    作者简介: 谢文逸(1987—),男,博士,助理研究员,wenyixie@foxmail.com
  • 1. 生态环境部南京环境科学研究所,江苏 南京 210042
  • 2. 国家环境保护土壤环境管理与污染控制重点实验室,江苏 南京 210042
基金项目:
国家重点研发计划资助项目(2018YFC1803100)

摘要: 江苏省南部地区历史遗留化工污染地块同时存在巨厚含水层(厚度>30 m)和DNAPL类污染物,故导致再开发利用时调查和治理深度难以确定。利用UTChem 模型构建地块二维地下水DNAPLs迁移模型,对巨厚含水层底板上典型DNAPLs(氯仿、1,2-二氯乙烷、四氯化碳、四氯乙烯)随时间推移的迁移扩散情况进行了模拟,并对影响其扩散范围的因素进行了探讨,基于模拟研究结果对此类地块安全利用深度进行了分析。模拟研究表明,不存在抽水井的情况下,经过70 a,含水层底板上4种典型DNAPLs(氯仿、1,2-二氯乙烷、四氯化碳、四氯乙烯)污染羽迁移范围有限,其自底板垂直向上最大迁移距离分别为16.70、16.90、15.20、7.90 m,向下游迁移距离分别为332.12、337.77、322.10、243.40 m。在存在抽水井的情况下,抽水井会显著影响DNAPLs污染羽的迁移范围。影响DNAPLs污染物迁移扩散范围的主要因素为污染物溶解度、密度、黏度、弥散度及渗透系数。本研究结果可为典型化工类型退役地块的风险管控和安全利用提供参考。

English Abstract

  • 长江三角洲地区松散沉积物沉积地层厚、砂层厚度大[1],是我国化工、农药行业企业的主要分布区域。随着我国“退二进三”产业结构调整和“退城入园”产业布局调整,出现了大量农药、化工企业退役地块。这些污染地块数量多、面积大、生产历史悠久,且多分布在沿江沿河及敏感受体密集区域,严重威胁人体健康和生态环境安全[2]。通常,污染物会在重力或淋溶作用下迁移进入土壤及地下水。随着污染源持续释放,污染物可以穿过整个非饱和带到达潜水面,部分污染物能够缓慢溶解于地下水并随地下水流动而形成污染羽。密度大于1.01 g·cm−3且在水中溶解度小于20 g·L−1的有机污染物,易形成重非水相污染物(Dense Non-aqueous Phase Liquid,DNAPL)在饱和带中继续向下迁移,直至到达含水层底部形成DNAPL池[3]。按照我国现行相关标准和技术规范要求,对于存在DNAPL类污染物的地块,要求调查到第一隔水顶板[4],这对于巨厚含水层(大于30 m)地块[5]的污染修复是巨大的挑战。DNAPLs污染物在含水层底板上的迁移行为较为复杂,使得DNAPLs污染场地的修复具有挑战性。同时,DNAPLs污染物的迁移也深刻影响地块调查和修复深度、制约地块的后续安全利用。

    目前,DNAPLs在地下水中的迁移过程通常采用数值模拟方法进行模拟与预测。DNAPLs运移存在多相流过程,同时涉及多组分运移。因此,其运移机制复杂,数值求解具有一定的难度。UTChem(University of Texas Chemical Compositional Simulator)是一种应用广泛的求解多相流过程的模拟程序,被广泛用于求解描述DNPALs运移及活性剂修复过程的数值模拟,该软件在野外实际场地和实验室等各种尺度被广泛使用。ASADOLLAHFARD等[6]利用UTChem进行了受原油污染砂柱的修复模拟研究,结果发现,在pH为11、表面活性剂质量分数在0.1%~0.2%、砂柱渗透率增加的情况下,砂柱的修复效率能够得到提升,数值模拟得到的结果与实验室得到的结果较为吻合。KHALILINEZHAD等[7]采用UTChem模拟了低分子量聚合物溶液和重油在多孔介质中同时流动情况下的孔隙尺度驱替过程,模拟结果表明,聚合物溶液的粘度对聚合物浓度的增加比盐度更敏感。PICKENS等[8]利用UTChem建立实验室及场地尺度聚乙烯(PCE)在地下水中的两相流及表面活性剂修复过程,模拟结果表明,表面活性剂修复含水层中PCE是一种实用的修复技术,其修复效果取决于表面活性剂溶液溶解DNAPL的能力等不同因素。陈梦佳等[9]将拉普拉斯-外壳法引入UTChem,建立了一种典型的NAPLs污染物运移模型,结果表明,建立的模型能够较好地刻画NAPLs污染羽的时空分布变化规律。虽然DNAPL污染物数值模拟研究较为丰富,但大部分研究均局限于DNAPL污染物垂直向下迁移及修复效果的模拟,对于DNAPL污染物向下游及向上迁移的研究较少。

    本研究选择江苏省南部地区某典型化工厂地块为研究对象,基于UTChem构建二维剖面典型DNAPLs运移模型,根据地块人体健康风险评价结果,确定地块污染物边界浓度,开展DNAPLs运移模拟,探究不同工况条件下巨厚含水层底板上DNAPLs池在垂向及水平方向的迁移规律,为确定污染地块调查深度和修复治理深度提供参考。

    • 本研究地块为某农药化工企业退役地块,原企业于1959年生产,2007年完全停产,2010年对该地块开展调查。本研究筛选的4类典型DNAPLs污染物氯仿、1,2-二氯乙烷、四氯乙烯、四氯化碳为原企业重要原辅材料和溶剂。在对该地块进行调查期间,在调查深度(30 m以浅)范围内的地下水中发现此4类DNAPLs污染物存在不同程度检出,氯仿最大检出质量浓度为26.40 mg·L−1,1,2-二氯乙烷最大检出质量浓度为21.40 mg·L−1,四氯乙烯最大检出质量浓度为4.09 mg·L−1,四氯化碳最大检出质量浓度为2.20 mg·L−1

    • 该地块所处区域地形平坦,场地平均标高+3.90 m(1985国家高程基准)左右,地貌属长江三角洲冲积平原,地基土为第四纪全新世河口相交错沉积物。污染场地地层岩性简单,上部覆盖松散杂填土、粉土、粉砂夹粉土及粉砂,上部松散层总厚度在50 m左右,构成富水性较好的潜水含水层,含水层下部为1层厚度15 m以上且分布均匀连续的粉质粘土层,构成相对隔水层。勘察过程中,通过室内土工试验测得了不同岩层的渗透系数,具体结果如表1所示。

      地块所处区域场地地下水类型属浅层孔隙潜水,地下水水力坡度较缓(1‰)。地下水主要补给来源为大气降水、地表水和同一含水层的侧向补给。地下水排泄方式主要为大气蒸发和侧向径流。污染地块及其周边的浅部地下水属自由潜水类型,主要受大气降水、地表径流影响,水位变幅随季节性降雨量略有升降。2018年11月16日至12月12日勘探期间初见水位在自然地面下1.50 m左右,相应标高约+2.40 m;稳定地下水埋深约1.40 m,相应标高约+2.50 m。

    • 地下水含水层底板上的DNAPLs池通过溶解、稀释形成污染羽。DNAPL污染羽主要存在于地块下部松散岩类孔隙潜水含水层中。因此,本次模拟选取该含水层作为目标含水层。该含水层厚度约为50 m,地下水位埋深约1.40 m,主要由上更新统粉土和全新统冲洪积粉砂组成,潜水含水层底部是透水性较差的粉质粘土层。地下水流向由西向东流动,水力梯度约为1‰。

      本研究把污染场地东和西边界概化作为已知水头边界,其余边界根据地下水流线概化为零通量边界。目标含水层的上边界为潜水含水层顶部的自由表面,目标含水层通过该边界与外界产生蒸发排泄以及降水入渗等垂向上的水量交换。本研究中将目标含水层的水流和DNAPLs污染物运移概化为二维多相流运移模型,且目标含水层水文地质参数概化为均质各向异性。场地水文地质概念模型压力水头西侧边界44.5 m、东侧边界43.5 m,含水层厚度50 m,孔隙度0.35,纵向弥散度5.00 m,横向弥散度0.05 m。

    • 本次模拟研究假设含水层中DNAPL污染物已处理且均低于检出限,模拟2种工况。工况1考虑仅有含水层底板存在DNAPLs池,且模拟期内周边无地下水开采,模拟分析在对流、弥散及重力等作用下,4种DNAPLs污染物在垂直向上和沿地下水流方向的迁移扩散情况。工况2考虑在场地不同位置、潜水含水层不同深度进行抽水时,DNAPL污染物(以1,2-二氯乙烷为例)的运移情况,并假设6种地下水开采情景。情景1,抽水井设置在DNAPL池上游50 m处,抽水层位在地表以下48~50 m,抽水量为5 m3·d−1;情景2,抽水井设置在DNAPL池上游50 m处,抽水层位于地表以下23~25 m,抽水量为5 m3·d−1;情景3,抽水井设置在DNAPL池污染源处,抽水层位在地表以下48~50 m,抽水量为5 m3·d−1;情景4,抽水井设置在DNAPL池污染源处,抽水层位在地表以下23~25 m,抽水量为5 m3·d−1;情景5,抽水井设置在DNAPL池下游300 m,抽水层位在地表以下48~50 m,抽水量为5 m3·d−1;情景6,抽水井设置在DNAPL池下游300 m,抽水层位在地表以下23~25 m,抽水量为5 m3·d−1

      DNAPL 运移情景示意如图1所示,4种典型DNAPLs主要物化性质参数如表2所示。本研究中污染羽边界质量浓度设定为建设用地一类用地地下水污染物风险控制值,该值的计算参考《建设用地土壤污染风险评估技术导则》[10](HJ25.3-2019)。地下水暴露情景不考虑饮用地下水暴露途径,仅考虑吸入室外和室内空气中来自地下水的气态污染物途径。其中,气态污染物途径风险控制值取室内和室外中的较小值,计算得到的地下水高风险污染物控制值结果如表3所示。

    • 本次研究釆用由UTChem软件对进行求解,UTChem所需模型参数参考文献[7, 9, 13-14]中的取值。多相流模型参数:水相残余饱和度为0.40、DNAPL相残余饱和度为0.20、水相相对渗透率端点为0.75、DNAPL相相对渗透率端点为0.80、水相相对渗透率指数为1.20、DNAPL相相对渗透率指数为1.10、毛细压力端点为5.00、毛细压力指数为−0.90。

    • 在垂直方向上,把模型划分成23层;在水平方向上,模型的剖分情况为1行×100列。模型总共有2 400个单元格,每个单元格为长宽高均为2 m的立方体。其中,1~2层为杂填土层、3~4层为粉土层、5~9层为粉砂夹粉土层、10~23层为粉砂层。本次模拟在第23层某单元格给定一处体积约3 m3的DNAPL池,此后DNAPL溶解运移70 a。

    • 常用的敏感性分析方法有局部分析法和全局分析法、数学方法和图解法、筛选方法和精炼分析法。其中,局部分析法和全局分析法是最为常见的一类敏感性分析方法,且被广泛接受。局部分析法仅检验单参数对模型的影响,简单快捷应用广泛。本研究选择局部分析法进行敏感性分析,数计算方法见式(1)

      式中:ΔA/A,表示评价指标的变动比率;ΔF/F,表示不确定因素的变化率。SAF>0,表示评价指标与不确定性因素同方向变化;SAF<0,表示评价指标与不确定性因素反方向变化;|SAF|越大,表明评价指标A对于不确定性因素F越敏感,反之则不敏感。

      本敏感性分析,选择工况1条件下1,2-二氯乙烷运移模型的弥散度和粉砂层渗透系数分别作为不确定性因素,选择污染物向下游迁移距离和垂直向上最大迁移距离为评价指标,分析模型参数对运移结果的敏感性。

    • 本研究利用污染物自底板垂直向上最大迁移距离和向下游迁移距离来表征DNAPLs对含水层的影响。污染物自底板垂直向上最大迁移距离是指污染羽边界距离含水层底板的最大距离,向下游迁移距离是指纵向污染羽前锋距离DNAPL污染源的距离。图2展示了4种典型DNAPLs污染物运移情况,图中污染羽边界值为根据第一类用地室内蒸汽入侵途径推算的地下水中污染物的风险控制值。表4展示了工况1中4种典型DNAPLs污染物迁移距离随时间变化情况。

      结合图2表4运移结果可发现,4种DNAPL 向下游迁移距离较远,在模拟期末(70 a)向下游迁移的距离均超过了200 m,但其垂直向上最大迁移距离有限,在模拟期末其垂直向上最大迁移距离均未超过17 m。其中,氯仿在模拟期末垂直向上最大迁移距离为16.70 m,向下游迁移距离为332.12 m;1,2-二氯乙烷在模拟期末垂直向上最大迁移距离为16.90 m,向下游迁移距离为337.77 m;四氯乙烯在模拟期末垂直向上最大迁移距离为7.90 m,向下游迁移距离为243.40 m;四氯化碳在模拟期末垂直向上最大迁移距离为15.20 m,向下游迁移距离为322.10 m。

      综合可知,4种典型DNAPL污染物中,1,2-二氯乙烷溶解度较大,因而该污染物易由自由态转变为溶解态,加之其密度较小、黏度较低,更容易在地下水中沿水流方向迁移。因此,1,2-二氯乙烷在垂向和水平方向的迁移距离最大、影响范围也最大。这可能与砂岩含水层底部DNAPL扩散速度受黏度等参数影响较大有关[15]。而四氯乙烯虽然黏度低,但由于其溶解度较小、密度较大,因而其在地下水垂向和水平方向的迁移中影响范围小。相关研究[15-16]表明,在天然条件下,DNAPL污染物虽然垂直向上迁移距离有限,但其将在未来较长时间内存在于地下水含水层中。一方面,污染物次弥散型反常迁移的存在,导致了DNAPL污染物难以在短期内被清除;另一方面,DNAPL超弥散型反常迁移的存在,导致了DNAPL在含水层中污染空间范围迅速扩大。

      场地污染调查一般要求调查至第1隔水层顶板,但受钻探设备及含水层厚度等条件限制,部分含水层较厚的场地难以调查至第1隔水层顶板。本次DNAPL地下水数值模拟结果显示,在含水层较厚的地块中,含水层底板纵使富集有DNAPL池,在自然条件下经过70a迁移扩散,DNAPL物质自底板垂直向上的扩散迁移距离有限。4种典型DNAPLs中,污染羽边界自底板垂直向上最大迁移距离为16.9 m(1,2-二氯乙烷)。相较于场地50 m含水层,污染羽边界距离地表仍有33.10 m的距离。因此,在对类似此类巨厚含水层地块进行调查和修复时,可对地块DNAPL迁移进行模拟分析,以制定科学合理的调查及修复深度。

    • 图3(a)所示,在情景1条件下,污染源上游的抽水井能够有效阻止污染物向下游迁移的速度,模拟期末(70 a)其向下游迁移距离仅为218.76 m,其垂直向上迁移距离为13.71 m,较原工况1下降了3.19 m。如图3(b)所示,在情景2条件下,污染源上游的浅层抽水井对污染物迁移扩散的控制作用不明显,在模拟期末其向下游迁移距离较工况1减小5.95 m,其垂直向上迁移距离较工况1减小9.02 m。如图3(c)所示,在情景3条件下,污染源处的深层抽水井准确捕捉DNAPL污染源,能够有效去除污染源,明显控制污染羽迁移的扩散,其在4 a末污染物向下游迁移距离较工况1减小321.77 m,其垂直向上迁移距离较工况1减小8.00 m,污染物在模拟期其在地下水中的浓度均低于风险控制值。如图3(d)所示,在情景4条件下,污染物在模拟期末(70 a)向下游迁移距离较工况1减小19.41 m,其垂直向上迁移距离较工况1增大11.00 m。在该情景下,污染物垂直向上迁移距离明显增大,向下游扩散距离得到一定控制。如图3(e)所示,在情景5条件下,污染物在模拟期其在地下水中的浓度均低于风险控制值。该情景加速了污染物向下游迁移的速率,但在污染物到达开采位置时,污染物能够被有效控制,不再往下游继续扩散,直至质量浓度降低至风险控制值以下。如图3(f)所示,在情景6条件下,污染物在模拟期末(70 a)向下游迁移距离较工况1减小44.48 m,其垂直向上迁移距离较工况1增大21.32 m (表5),该情景下污染物垂直向上迁移距离明显增大,向下游扩散距离得到一定控制。

      工况2模拟结果表明,深层井开采能够有效抑制污染物运移扩散,尤其当抽水井设置于原位时,抑制效果尤为明显,地下水中的污染物在5 a末即基本降至风险控制值以下;浅层抽水井一定程度上能够控制污染物向开采井下游扩散,但其明显加剧了污染物在垂向的扩散范围。此外,污染物在未到达抽水井处时,其横向迁移速率较快,在到达抽水井处时,其进一步向下游扩散的趋势被抑制。造成这一现象的原因可能是,增大地下水流速能够加强DNAPL在水平和垂直方向上的运移,使得DNAPL运移路径倾斜。同时,地下水流速的增大进一步提高了DNAPL在横向和垂向的扩散速度,导致污染区域增大[17]。但相关研究表明,DNAPL池要溶解在的地下水中需要较长时间[18],但随着DNAPLs多相抽提井深度的增加,污染物抽提的效率也随之增加[19]

    • 在工况1条件下,随着弥散度和渗透系数的增大,污染物迁移距离均随之增大。其中,弥散度和渗透系数对垂直方向迁移距离的平均敏感性系数分别为0.45和0.48,渗透系数的影响相对较强;弥散度和渗透系数对横向迁移距离的平均敏感性系数分别为0.195和0.740,渗透系数对横向迁移的影响明显更强,敏感性分析结果见表6~表7。DEKKER等[19]研究发现,含水层介质的渗透率特征会显著影响DNAPL污染物的运移和分布情况,而水力梯度与残余饱和度等其他参数之间的关系对污染物饱和度分布的影响不大,这与本研究得到的结果相近。当含水层渗透系数较小时,溶解态DNAPL受溶解作用和两相流作用影响更大,此时对流弥散作用的影响相对较小[20]。因此,弥散度在本研究中敏感性较小的结果较为合理。

    • 1)经过70 a时间,4种典型DNAPL 物质在底板上向地下水下游和垂直底板向上的迁移影响范围有限。其形成的污染羽最上边界距离含水层底板最大距离为16.90 m,自DNAPL池向下游的最大迁移距离为337.77 m。

      2)抽水井能够显著影响底板上DNAPLs向下游和自含水层底板向上的迁移扩散范围,当抽水井抽水位置位于DNAPL池或其附近时,能够有效去除并遏制DNAPL污染物的迁移扩散;当抽水井位于含水层下游时,会加快DNAPL污染物迁移扩散,导致其影响范围变大。

      3)本研究模拟得到的4种DNAPL在含水层中的迁移范围,对于以保障地表人居活动安全为目标的场地土壤环境调查评估及修复治理深度的确定有启示意义,但当研究区所在区域或周边存在以地下水为饮用水水源时,应考虑对地下水资源的保护。同时,当研究区所在区域或周边存在敏感生态保护区时,也应当考虑地下水污染对生态环境的影响。

    参考文献 (20)

返回顶部

目录

/

返回文章
返回