Loading [MathJax]/jax/output/HTML-CSS/jax.js

混气悬浮磁化焙烧铁尾矿及其磁分选效果

李日文, 宁寻安, 沈君华, 何峣, 王逸. 混气悬浮磁化焙烧铁尾矿及其磁分选效果[J]. 环境工程学报, 2022, 16(5): 1629-1638. doi: 10.12030/j.cjee.202111109
引用本文: 李日文, 宁寻安, 沈君华, 何峣, 王逸. 混气悬浮磁化焙烧铁尾矿及其磁分选效果[J]. 环境工程学报, 2022, 16(5): 1629-1638. doi: 10.12030/j.cjee.202111109
LI Riwen, NING Xunan, SHENG Junhua, HE Yao, WANG Yi. Recycling Fe3O4 from iron tailings via suspension magnetized roasting by mixed gas and magnetic separation[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1629-1638. doi: 10.12030/j.cjee.202111109
Citation: LI Riwen, NING Xunan, SHENG Junhua, HE Yao, WANG Yi. Recycling Fe3O4 from iron tailings via suspension magnetized roasting by mixed gas and magnetic separation[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1629-1638. doi: 10.12030/j.cjee.202111109

混气悬浮磁化焙烧铁尾矿及其磁分选效果

    作者简介: 李日文(1997—),男,硕士研究生,2111907007@mail2.gdut.edu.cn
    通讯作者: 宁寻安(1967—),男,博士,教授,ningxunan666@126.com
  • 基金项目:
    2017年土壤中央专项资金资助项目(No.18HK0108);韶关鹏瑞公司固体废物资源化利用研发项目(No. 21HK0178)
  • 中图分类号: X753

Recycling Fe3O4 from iron tailings via suspension magnetized roasting by mixed gas and magnetic separation

    Corresponding author: NING Xunan, ningxunan666@126.com
  • 摘要: 为实现铁尾矿资源化回收利用,以H2、CO、CO2和N2模拟还原混气对铁尾矿进行悬浮磁化焙烧,通过磁选获得铁精矿。探究温度、时间、H2和CO占比对铁精矿铁品位和回收率的影响,采用X射线衍射、振动样品强磁计、X射线光电子能谱、BET表面分析和扫描电子显微镜X光微区分析方法,探究悬浮磁化焙烧磁选过程中晶相结构变化和反应机理。结果表明,铁尾矿在温度、时间和H2∶CO∶CO2∶N2(体积比)分别为600 ℃、10 min和20∶15∶15∶50时,铁精矿铁品位和回收率最优分别为62.06%和98.03%。铁精矿饱和磁化强度由0.77 Am2·kg−1提升到59.43 Am2·kg-1。悬浮磁化焙烧能有效将赤铁矿针铁矿还原为磁铁矿,且BET表面积提升了13.1676 m2·g−1,并能通过磁选有效分离Fe3O4和SiO2等脉石。本研究可为从铁尾矿中回收铁资源提供参考。
  • 磷是生命体不可或缺的营养元素,在生物的生长、发育和繁殖过程中起着至关重要的作用[1]1。它是一种不可再生资源,主要源自磷矿石的开采。有研究表明,按目前的开采速率,现存的磷矿储备最多仅够维持372a[2]。另一方面,水体中过量的磷容易引发水体富营养化,进而破坏生态环境[3]。为了保护资源和环境,磷回收技术应运而生,并逐渐受到人们的关注。其中,鸟粪石(MgNH4PO4·6H2O)结晶法由于具备氮磷去除效果好、反应速率快、产品为优质缓释肥料等特点而备受青睐[4-5]

    鸟粪石产品的商品化是鸟粪石法能否实际应用的关键,而鸟粪石的商品化价值取决于其产品质量。鸟粪石的产品质量与所使用的结晶反应器密切相关,目前主流的鸟粪石结晶反应器为搅拌釜和流化床[6]。有研究表明,完全混合式的搅拌釜无法将杂质与鸟粪石产品进行有效分离,所得的鸟粪石污染物含量较高;流化床采用上升水流作为物料混合和颗粒流化的推动力,可实现轴向上的水力分级,大幅降低产品中杂质含量,所得产品纯度高,安全性好[7-8]

    截至目前,鸟粪石结晶流化床尚无设计规范。研究人员多根据经验或半经验公式计算流化速度,并设计不同的管径以实现鸟粪石在反应器中的分级[9-11]。管径的变化除了具备分级效果,还可创造一定的湍流以促进物料的混合及晶体的聚并[12]。目前较为常见的流化床构型主要有多段式和锥体式。FATTAH等[11]使用多段式流化床对污水处理厂的污泥压滤浓缩液开展磷回收,磷酸盐去除率超过90%,磷回收率高于85%,所得产品中鸟粪石纯度高达96%。李咏梅等[7]采用锥体式流化床反应器对污泥脱水上清液进行处理,PO34-P的去除率最高可达90.5%,产生颗粒的最大粒径在2.0~3.2 mm之间,纯度在80%以上。2种流化床反应器构型均具备理想的磷去除效果及产品特性,但结构较复杂,加工难度大。鸟粪石微晶的流失会导致总磷(TP)去除率下降,是鸟粪石流化床面临的首要问题,目前主要通过设置沉淀池、安装筛网或投加混凝剂进行截留[13-15]。其中,外置沉淀池的目的是为了保证沉淀效果,须设计较大容积的沉淀池,从而增加了基建成本;安装筛网虽经济有效,但须频繁清理,人工维护成本较高;投加混凝剂则需额外的药剂费用及污泥处置费用。综上所述,无论是复杂的反应器外部构型或是额外的微晶截留措施,均不可避免地增加了加工难度及运行维护成本。鉴于结晶反应器内流体运动的复杂性,完全从实验角度开展反应器优化研究将会非常费时、费力。随着计算机性能的不断提高,计算流体力学(computational fluid dynamics,CFD)已被广泛应用于反应器结构的优化,其避免了传统经验方法中繁复的实验过程,对结晶反应器的设计、优化及放大提供更加可靠的依据和详尽的信息。

    针对鸟粪石结晶流化床构型设计的不确定性及复杂性,本研究首先采用数值模拟的方法,探明多粒径体系下不同构型流化床的湍流强度、分级特性和微晶截留效率;然后通过实验研究新构型鸟粪石结晶流化床的磷去除效果与产品特性,以验证数值模拟优化方法的可靠性和合理性。

    采用冷态数值模拟的方法研究流化床外部构型对鸟粪石产品分级情况与湍流强度的影响以及内部构件对鸟粪石微晶截留的影响,确定适宜鸟粪石流化床的外部构型及内部构件。

    考察的流化床外部构型包括目前常见的多段圆柱式、一段锥体式和一段圆柱式。3种构型的流化床均由反应区和沉淀区组成。所对比的流化床内部构件为三相分离器及斜板,安装于沉淀区中,用以考察其对鸟粪石微晶的截留效果。鉴于流化床结构的规则性,采用Gambit 2.4软件建立流化床二维模型(X-Z平面),并采用四边形结构性网格进行划分。流化床外部构型及内部构件的具体构型与尺寸如图1所示。

    图 1  不同外部构型/内部构件流化床几何建模及网格划分
    Figure 1.  Geometries and mesh of FBR with different outer shapes and inner modules

    根据文献中报道的鸟粪石粒径设置模拟粒径[10],考察流化床外部构型对3类混合粒径的分级情况及湍流特性,同时明确内部构件对小粒径鸟粪石的截留情况。具体条件设定如表1所示。

    表 1  模拟条件设定
    Table 1.  Modeling conditions set-up
    工况粒径组成特征粒径/mm外部构型内部构件
    1宽粒径组合0.5/1.0/4.0锥体/多段/一段
    2小粒径组合0.2/0.5/1.0锥体/多段/一段
    3大粒径组合2.0/3.0/4.0锥体/多段/一段
    4宽粒径组合0.2/0.5/1.0一段三相分离器
    5宽粒径组合0.2/0.5/1.0一段斜板
     | Show Table
    DownLoad: CSV

    研究表明,曳力是固液相间运动的主要作用力。前期研究结果[16]已证实了曳力模型对鸟粪石流化体系模拟精度的重要性。由于Syamlal-O′Brien曳力模型在较宽的流速及粒径范围内对鸟粪石床层膨胀的模拟精度优于其他曳力模型,因此,本研究选用Syamlal-O′Brien曳力模型开展模拟研究。其余控制方程的表达式见鸟粪石冷态流化模拟的研究[16],模拟参数设定如下。基本设置:分离式求解器,欧拉双流体模型,Dispersed湍流模型,一阶迎风格式,残差为1×10−3,最大迭代次数为100次;边界条件:速度进口v=0.05 m·s−1,压力出口,无滑移壁面,标准壁面函数;液相参数:密度为998.2 kg·m−3,黏度为1.003×10−3;固相参数:密度为1 580.23 kg·m−3,粒径分别为0.2、0.5、1.0、2.0、3.0和4.0 mm,初始固相体积分数为60%,颗粒床层体积为380 cm3

    流化床反应器数值模拟计算采用Fluent 14.5,后处理采用Ensight 10.0。程序运行平台的主要参数:Intel Xeon十二核处理器(2颗),主频3.1 GHz,64 GB DDR3双通道内存。

    为验证数值模拟结果的可靠性,明确结构优化后流化床的运行效果,本研究采用人工配水的方式考察不同进水磷浓度条件下,流化床的磷去除及产品颗粒粒径分布情况。配制的进水磷浓度为240、480和1 000 mg·L−1,采用磷酸二氢铵(纯度≥98%,武汉无机盐化肥有限公司)为磷源和氮源,采用六水合氯化镁(纯度≥99%,REDOX公司)为镁源,控制反应过程Mg/N/P摩尔比为1∶1∶1。采用氢氧化钠(纯度≥96%,沪试)调节反应液pH。

    实验装置为一段式流化床,材质为有机玻璃,有效容积为50 L,由流化区和沉淀区组成(图2)。实验过程pH设置为8.5,进水流量为33 L·h−1。采用流化床出水回流作为物料混合及流化的推动力,设置流化区的上升流速为50 mm·s−1

    图 2  一段式流化床实验装置图
    Figure 2.  Illustration of the one-sectional fluidized bed reactor

    pH采用PC-3100(Suntex)在线pH计进行测定;PO34-P和TP采用钼锑抗分光光度法测定(HACH DR5000,USA);鸟粪石产品于38 ℃烘干24 h,采用标准筛(0.3 mm/1.25 mm/2.5 mm/3.2 mm)测定粒径;使用扫描电子显微镜(S-4800,Hitachi,Japan)观察鸟粪石产品的微观形貌。

    数值计算的基础是网格划分。当前的主流偏微分方程数值离散方法都是先计算节点上的物理量,而后通过插值方式求得节点间的值。因此,理论上网格点布置得越密集,所得到的计算结果也越精确。但网格加密带来了较大的计算量及舍入误差,所以从计算的效率及求解结果的精度来说,网格并非越多越好。网格过疏或过密均可能产生误差过大的计算结果。只有当网格数的增加对计算结果影响不大时,此时的数值模拟计算结果才具有意义,因此,首先必须进行网格无关性检验,可采用一段式流化床进行网格无关性研究(图3)。设置2.0、3.0、4.2、5.0、6.0和8.0 mm这6种网格尺寸,对应的网格数量分别为53 433、23 863、12 099、8 624、5 844和3 335个。通过对比体积平均粒径为1 mm和3 mm的鸟粪石颗粒在特定上升流速和初始堆积高度条件下的床层膨胀情况来判断其网格无关性。

    图 3  网格无关性检验
    Figure 3.  Grid-independence analysis

    图3为不同网格尺寸下,模拟床层与实验床层的膨胀情况对比。由图3可知,所建立的冷态流化模型对3 mm颗粒的模拟精度较好,不同网格尺寸差异较小,与实验结果偏差均在6%以内;但对1 mm颗粒的模拟结果波动较大,与实验偏差为3.3%~12.4%,其中,网格尺寸为3 mm和4.2 mm的精度最佳。综合考虑模拟精度与计算成本,选择尺寸为4.2 mm、数量为12 099个网格以供后续模拟。

    图4模拟了3种不同构型流化床在流化区进口上升流速为50 mm·s−1时,鸟粪石固含率随时间的分布云图。为了突出流化床构型对不同粒径鸟粪石产品的空间分级特性,选择颗粒粒径分别为0.5、2.0和4.0 mm。由图4可知,水流从流化床底部沿轴线穿过颗粒床层向上运动,此时空隙率的增大造成床层抬升,床层平均密度下降。在密度差的作用下,颗粒在反应器内循环运动。由于粒径的自由沉降速度随颗粒粒径的增大而增加,在相同的上升流速下,不同粒径颗粒的膨胀高度不同。反应器构型上的差异也导致了不同轴向高度上流速的不同。除了一段式流化床在流化区内上升流速不变外,锥体式流化床与多段式流化床的上升流速均随轴向高度的升高而减小,其中,锥体式流化床为逐步减小,而多段式流化床为阶梯性减小(图1)。粒径的不同与上升流速的变化综合导致了颗粒分级效果的差异。由图4可知,在相同操作条件下,多段式和一段式流化床均能对3种粒径的鸟粪石颗粒实现空间分级(图4(d)~(f)(g)~(i)),锥体式流化床对大粒径颗粒的分级效果较差(图4(b)图4(c))。

    图 4  不同构型流化床的鸟粪石固含率分布云图
    Figure 4.  Solid hold-ups of struvite under different structure of FBRs

    流化床结构是影响颗粒分级特性的关键因素。图5系统对比了不同鸟粪石粒径组合在3种不同流化床构型下的分级情况。

    图 5  不同外部构型流化床产品分级效果对比
    Figure 5.  Comparison of product classification profiles under different FBR geometries

    当鸟粪石粒径较大时(0.5、2.0和4.0 mm),锥体式流化床仅能将0.5 mm的颗粒与2.0 mm和4.0 mm的颗粒分离开,但不能将2.0 mm颗粒与4.0 mm颗粒分开(图5(a));多段式与一段式流化床均展示了良好的分级效果,3种粒径颗粒分布在不同的轴向位置(图5(d)图5(g))。

    当鸟粪石粒径较大时(2.0、3.0和4.0 mm),3种粒径的颗粒在锥体式流化床内混合在一起,分布在同一轴向高度上(图5(b))。多段式流化床仅能将部分4.0 mm颗粒与2.0 mm和3.0 mm颗粒分开,而对2.0 mm和3.0 mm颗粒无分级效果(图5(e)),这与多段式流化床的流化区管径设置有关[17]。在此案例中,为了确保3种流化床的流化段体积相同,多段式流化床的底部第1流化段管径较小,体积有限,4.0 mm颗粒部分被挤至中部第2流化段。另一方面,第2流化段的上升流速由于管径的增大而下降,仅略高于2.0 mm和3.0 mm颗粒的初始流化速度[17],因此,无法分离这2种粒径的颗粒。一段式流化床由于整个流化段管径无变化,水流的上升流速维持恒定,不同粒径颗粒所承受的上升推动力差异较大,因此,能较好地实现大粒径鸟粪石颗粒的分级(图5(h))。

    当鸟粪石粒径较小时(0.2、0.5和1.0 mm),锥体式和多段式流化床均无法实现颗粒的分级(图5(c)图5(f)),一段式流化床也仅能将1.0 mm颗粒与0.2 mm和0.5 mm颗粒分开,而对0.2 mm和0.5 mm颗粒无分级效果(图5(i))。

    根据以上数值模拟结果,当流化段体积相同时,一段式流化床对3种不同粒径组合的分级效果最优,多段式流化床次之,锥体式流化床无分级效果。当采用多段式流化床时,为确保分离效果,流化段的管径与高度选择至关重要。

    截至目前,湍流对鸟粪石颗粒化的影响并不明确。FATTAH等[18]通过调节上升流速,间接得出当上升流速高于500 cm·min−1时,上升水流产生的湍流会导致颗粒破碎的结论。YE等[10]明确了上升流速与鸟粪石颗粒粒径的正相关性。尽管上升水流形成的湍流是物料混合和颗粒流化及碰撞的推动力,但以上研究均没有直接分析湍流大小。由于实验测定湍流难度较大,本节采用数值模拟的方式对比3种构型流化床流化段的湍动能,来表征流化床结构对湍流的影响程度。

    图6可知,3种构型流化床的湍动能大小为锥体式最大,多段式次之,一段式最小,且随着流化粒径的减小而增大。由于存在变径,锥体式和多段式流化床内大粒径颗粒(如2.0、3.0和4.0 mm)的湍动能与小粒径(如0.2、0.5和1.0 mm)相差较小,导致鸟粪石粒径变大后速度波动仍然剧烈,对流明显,碰撞强度较大,这可能是前人报道的大粒径破碎的主要原因[18]。一段式流化床不存在变径,颗粒的运动速度随粒径的增大而减小,因此,颗粒粒径增大后碰撞强度降低。综上所述,一段式流化床的湍流特征可能更有助于鸟粪石造粒,此推测在2.2节的实验中也得到证实。

    图 6  不同构型流化床流化段湍动能对比
    Figure 6.  Comparison of turbulent kinetic energies under different FBR geometries

    流化床采用上升水流作为物料混合和流化的推动力,细小的鸟粪石微晶易受上升水流夹带而流失,进而影响流化床的磷回收率。已有研究表明,提高回流比或降低上升流速等方式能有效减少微晶的流失[10]。但在相同的处理负荷条件下,提高回流比将增大流化床容积,同时须使用更大的回流水泵,从而不可避免地增加了基建与运行成本。降低上升流速从力学角度上虽能减少部分微晶流失,但同时也降低了物料混合效果,易造成构晶离子的局部过饱和,进而产生更多的微晶。

    增加内部固液分离构件是增强颗粒沉淀效果的一种方式,本节通过数值模拟,在一段式流化床内流化粒径为0.2 mm的鸟粪石微晶,比较流化床沉淀区内安装构件前后鸟粪石微晶的截留效果。

    图7所示,增加内部构件后,流化前期(200 s和400 s)的微晶流失量略高于不加内部构件的工况,这是由于内部构件的设置减小了上升水流的过流面积,致使流速增大,加快了微晶的流失。在流化后期(800 s),3个工况的微晶总流失量差别不大,因此,通过增加内部固液分离构件来增强鸟粪石微晶截留的效果并不显著。

    图 7  不同内部构件微晶流失对比
    Figure 7.  Comparison of fines entrainment using different inner modules

    采用不带内部固液分离构件的一段式流化床反应器开展鸟粪石结晶连续实验。由于操作条件对除磷效果影响的研究已较为成熟,主要考察不同进水浓度下,一段式流化床反应器对磷的去除效果及鸟粪石的产品特性。

    图8所示,PO34-P去除率及TP去除率均随着进水磷浓度的升高而降低。当进水磷浓度为240 mg·L−1时,PO34-P去除率与TP去除率相当,分别为90.9%和90.4%,说明在该浓度下,生成的鸟粪石均能截留在流化床内,几乎没有鸟粪石微晶流失。当进水磷浓度增至480 mg·L−1时,PO34-P和TP的去除率分别降至87.4%和73.9%;继续增高至1 000 mg·L−1时,二者的去除率分别为81.0%和68.2%。在相同的pH、Mg/N/P及水力条件下,PO34-P去除率的略微降低主要缘于水力停留时间不足,而TP去除率的降低说明存在鸟粪石微晶的流失。在处理高浓度含磷废水时,反应段构晶离子局部的过饱和现象是导致微晶生成及流失的主要原因,可通过提高回流比和分散进料等方式[10]进行改善。有研究[10]表明,多段式流化床同样存在类似的问题。因此,从磷去除的角度来看,一段式流化床与多段式流化床并无显著差别。

    图 8  不同进水磷浓度下一段式流化床磷去除情况
    Figure 8.  Phosphorus removal profiles of one-sectional FBR under different influent phosphate concentrations

    在3种进水磷浓度下,一段式流化床所得的鸟粪石产品粒径较大。其中,大于1.25 mm的产品占比分别为88.1%、96.4%和70.1%(图9),且呈规则椭球状(图10)。从2.1节的数值模拟结果得知,一段式流化床具有良好的颗粒分级特性及适合造粒的湍流强度,实验所得的颗粒特征也较好地验证了这一结论。

    图 9  不同进水磷浓度下一段式流化床产品粒径分布
    Figure 9.  Product particle size distributions under different influent phosphate concentrations using one-sectional FBR
    图 10  不同进水磷浓度下一段式流化床产品形貌
    Figure 10.  Product morphology under different influent phosphate concentrations using one-sectional FBR

    1)一段式流化床的颗粒分级效果最佳,多段式次之,锥体式较差。针对不同粒径混合体系,一段式流化床均能表现出良好的分级效果。

    2)锥体式流化床的湍流强度最大,多段式次之,一段式最小,且随着流化粒径的减小而增大;一段式流化床的湍流特征可能更有助于鸟粪石造粒。

    3)增设内部固液分离构件对增强鸟粪石微晶截留效果不显著。

    4)验证实验结果表明,在不同的进水磷浓度条件下,一段式流化床的磷去除率与多段式流化床相当,所得的鸟粪石产品粒径多大于1.25 mm,呈规则椭球状,确证了一段式流化床是理想的鸟粪石结晶反应器。

  • 图 1  悬浮磁化焙烧磁选装置图

    Figure 1.  Suspension magnetization roasting magnetic separation device diagram

    图 2  温度对铁精矿品位和回收率的影响

    Figure 2.  Effect of temperature on grade and recovery of iron concentrate

    图 3  时间对铁精矿品位和回收率的影响

    Figure 3.  Effect of time on grade and recovery of iron concentrate

    图 4  CO和H2占比对铁精矿品位和回收率的影响

    Figure 4.  Effect of CO and H2 ratio on grade and recovery of iron concentrate

    图 5  X射线衍射图谱

    Figure 5.  X-ray diffraction pattern

    图 6  铁尾矿、焙烧矿和铁精矿的磁滞回线

    Figure 6.  Hysteresis loop of iron tailing, roasted ore and iron concentrate

    图 7  铁尾矿、焙烧矿、铁精矿和磁选渣的XPS分析谱图

    Figure 7.  XPS analysis spectra of iron tailing, roasted ore, iron concentrate and magnetic separation slag

    图 8  Fe2p XPS精细谱图

    Figure 8.  Fine XPS spectrum of Fe2p

    图 9  N2吸附-解吸等温线

    Figure 9.  N2 adsorption desorption isotherm

    图 10  SEM-EDS分析图像

    Figure 10.  SEM-EDS analysis image

    表 1  铁尾矿元素质量分数

    Table 1.  Element content of iron tailings %

    Fe2O3SiO2Al2O3SO3K2OZnOCuO其他
    46.7827.9019.594.110.540.200.170.71
    Fe2O3SiO2Al2O3SO3K2OZnOCuO其他
    46.7827.9019.594.110.540.200.170.71
    下载: 导出CSV

    表 2  样品及纯物质磁性参数

    Table 2.  Magnetic parameters of samples and pure substances Am2·kg-1

    样品饱和磁化强度剩磁
    原矿0.770.05
    焙烧矿52.3110.82
    铁精矿59.4313.72
    纯赤铁矿0.40-
    纯磁铁矿92.00-
    样品饱和磁化强度剩磁
    原矿0.770.05
    焙烧矿52.3110.82
    铁精矿59.4313.72
    纯赤铁矿0.40-
    纯磁铁矿92.00-
    下载: 导出CSV

    表 4  原矿焙烧矿EDS分析Fe、O元素占比

    Table 4.  EDS analysis of raw ore roasted ore Fe and O elements account wt%

    样品FeO
    铁尾矿61.9833.71
    焙烧矿66.0124.02
    样品FeO
    铁尾矿61.9833.71
    焙烧矿66.0124.02
    下载: 导出CSV

    表 3  BET分析的相关参数

    Table 3.  Relevant parameters of bet analysis

    供试样品BET表面积/(m2·g−1)朗缪尔表面积/(m2·g−1)孔隙体积/(cm3·g−1)孔径/nm
    铁尾矿8.122 681.491 10.0186819.199 4
    焙烧矿21.290 2356.333 30.0628 0211.799 2
    供试样品BET表面积/(m2·g−1)朗缪尔表面积/(m2·g−1)孔隙体积/(cm3·g−1)孔径/nm
    铁尾矿8.122 681.491 10.0186819.199 4
    焙烧矿21.290 2356.333 30.0628 0211.799 2
    下载: 导出CSV
  • [1] SUN Y S, ZHU X R, HAN Y X, et al. Iron recovery from refractory limonite ore using suspension magnetization roasting: A pilot-scale study[J]. Journal of Cleaner Production, 2020, 261: 121221. doi: 10.1016/j.jclepro.2020.121221
    [2] 2020中国环境统计年鉴[EB/OL]. [2020-1-1]. http://www.mee.gov.cn.
    [3] BUCH A C, NIEMEYER J C, MARQUES E D, et al. Ecological risk assessment of trace metals in soils affected by mine tailings[J]. Journal of Hazardous Materials, 2021, 403: 123852. doi: 10.1016/j.jhazmat.2020.123852
    [4] ŽIBRET G, GOSAR M, MILER M, et al. Impacts of mining and smelting activities on environment and landscape degradation—Slovenian case studies[J]. Land Degradation & Development, 2018, 29(12): 4457-4470.
    [5] WANG G W, NING X A, LU X W, et al. Effect of sintering temperature on mineral composition and heavy metals mobility in tailings bricks[J]. Waste Management, 2019, 93: 112-121. doi: 10.1016/j.wasman.2019.04.001
    [6] 周伟伦, 廖正家, 陈涛, 等. 利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报, 2021, 15(5): 1670-1678.
    [7] 严捍东, 陈秀峰. 粉煤灰和铁尾矿对烧结海泥多孔砖泛霜程度的影响[J]. 环境工程学报, 2012, 6(8): 2846-2852.
    [8] LI P W, LUO S H, ZHANG L, et al. Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment[J]. Separation and Purification Technology, 2021, 276: 119380. doi: 10.1016/j.seppur.2021.119380
    [9] LI W B, HAN Y X, LIU X, et al. Effect of fluidized magnetizing roasting on iron recovery and transformation of weakly magnetic iron mineral phase in iron tailings[J]. Physicochemical Problems of Mineral Processing, 2019, 55(4): 906-916.
    [10] YUAN S, ZHOU W T, HAN Y X, et al. Individual enrichment of manganese and iron from complex refractory ferromanganese ore by suspension magnetization roasting and magnetic separation[J]. Powder Technology, 2020, 373: 689-701. doi: 10.1016/j.powtec.2020.07.005
    [11] 黄玥, 陈海斌, 蒙李燕, 等. 木屑对铁尾矿磁化焙烧磁选工艺的影响[J]. 环境工程学报, 2020, 14(11): 1-8.
    [12] LI Y J, ZHANG Q, YUAN S, et al. High-efficiency extraction of iron from early iron tailings via the suspension roasting-magnetic separation[J]. Powder Technology, 2021, 379: 466-477. doi: 10.1016/j.powtec.2020.10.005
    [13] SKRINSKY J, VERES J, KOLONICNY J. Explosion characteristics of blast furnace gas[J]. Inzynieria Mineralna, 2018, 19(1): 131-136.
    [14] COUHERT C, COMMANDRE J-M, SALVADOR S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin?[J]. Fuel, 2009, 88(3): 408-417. doi: 10.1016/j.fuel.2008.09.019
    [15] 中华人民共和国质量监督检验检疫总局, 中国标准化管理委员会. 铁矿石《总铁含量的测定》三氯化钛还原重铬酸钾滴定法(常规方法): GB/T 6730.65-2009 [S]. 北京: 中国环境科学出版社, 2009
    [16] ZHOU D D, CHENG S S, WANG Y S, et al. The production of large blast furnaces during 2016 and future development of ironmaking in China[J]. Ironmaking & Steelmaking, 2017, 44(10): 714-720.
    [17] YUAN S, ZHOU W T, HAN Y X, et al. Selective enrichment of iron from fine-grained complex limonite using suspension magnetization roasting followed by magnetic separation[J]. Separation Science and Technology, 2019, 55(18): 3427-3437.
    [18] DWORZANOWSKI M. Maximizing the recovery of fine iron ore using magnetic separation[J]. Journal - South African Institute of Mining and Metallurgy, 2012, 112(3): 197-202.
    [19] GUO X F, ZHANG M R, REN W J, et al. Influence of particle size on the magnetism of magnetite and the development of an energy-efficient three-product magnetic separator[J]. Separation Science and Technology, 2020, 56(8): 1397-1406.
    [20] TANG Z D, ZHANG Q, SUN Y S, et al. Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H2 followed by magnetic separation[J]. Resources, Conservation and Recycling, 2021, 172: 105680. doi: 10.1016/j.resconrec.2021.105680
    [21] YUAN S, ZHOU W T, HAN Y X, et al. Separation of manganese and iron for low-grade ferromanganese ore via fluidization magnetization roasting and magnetic separation technology[J]. Minerals Engineering, 2020, 152: 106359. doi: 10.1016/j.mineng.2020.106359
    [22] YUAN S, LIU X, GAO P, et al. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud[J]. Journal of Hazardous Materials, 2020, 394: 122579. doi: 10.1016/j.jhazmat.2020.122579
    [23] YUAN S, ZHANG Q, YIN H, et al. Efficient iron recovery from iron tailings using advanced suspension reduction technology: A study of reaction kinetics, phase transformation, and structure evolution[J]. Journal of Hazardous Materials, 2020, 404(Pt B): 124067.
    [24] YUAN S, ZHOU W T, HAN Y X, et al. An innovative technology for full component recovery of iron and manganese from low grade iron-bearing manganese ore[J]. Powder Technology, 2020, 373: 73-81. doi: 10.1016/j.powtec.2020.06.032
    [25] GAO W G, YAN J C, QIAN L B, et al. Surface catalyzing action of hematite (α-Fe2O3) on reduction of Cr(VI) to Cr(III) by citrate[J]. Environmental Technology & Innovation, 2018, 9: 82-90.
    [26] KENDELEWICZ T, LIU P, DOYLE C S, et al. Spectroscopic study of the reaction of aqueous Cr(VI) with Fe3O4 (111) surfaces[J]. Surface Science, 2000, 469(2-3): 144-163. doi: 10.1016/S0039-6028(00)00808-6
    [27] OMRAN M, FABRITIUS T, ELMAHDY A M, et al. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore[J]. Applied Surface Science, 2015, 345(1): 127-140.
  • 加载中
图( 10) 表( 4)
计量
  • 文章访问数:  4050
  • HTML全文浏览数:  4050
  • PDF下载数:  79
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-18
  • 录用日期:  2022-03-27
  • 刊出日期:  2022-05-10
李日文, 宁寻安, 沈君华, 何峣, 王逸. 混气悬浮磁化焙烧铁尾矿及其磁分选效果[J]. 环境工程学报, 2022, 16(5): 1629-1638. doi: 10.12030/j.cjee.202111109
引用本文: 李日文, 宁寻安, 沈君华, 何峣, 王逸. 混气悬浮磁化焙烧铁尾矿及其磁分选效果[J]. 环境工程学报, 2022, 16(5): 1629-1638. doi: 10.12030/j.cjee.202111109
LI Riwen, NING Xunan, SHENG Junhua, HE Yao, WANG Yi. Recycling Fe3O4 from iron tailings via suspension magnetized roasting by mixed gas and magnetic separation[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1629-1638. doi: 10.12030/j.cjee.202111109
Citation: LI Riwen, NING Xunan, SHENG Junhua, HE Yao, WANG Yi. Recycling Fe3O4 from iron tailings via suspension magnetized roasting by mixed gas and magnetic separation[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1629-1638. doi: 10.12030/j.cjee.202111109

混气悬浮磁化焙烧铁尾矿及其磁分选效果

    通讯作者: 宁寻安(1967—),男,博士,教授,ningxunan666@126.com
    作者简介: 李日文(1997—),男,硕士研究生,2111907007@mail2.gdut.edu.cn
  • 1. 广东工业大学环境科学与工程学院,广州 510006
  • 2. 广东省环境催化与健康风险控制重点实验室,环境健康与污染控制研究院,广州 510006
  • 3. 广东省韶关市鹏瑞环保科技有限公司,韶关 512000
基金项目:
2017年土壤中央专项资金资助项目(No.18HK0108);韶关鹏瑞公司固体废物资源化利用研发项目(No. 21HK0178)

摘要: 为实现铁尾矿资源化回收利用,以H2、CO、CO2和N2模拟还原混气对铁尾矿进行悬浮磁化焙烧,通过磁选获得铁精矿。探究温度、时间、H2和CO占比对铁精矿铁品位和回收率的影响,采用X射线衍射、振动样品强磁计、X射线光电子能谱、BET表面分析和扫描电子显微镜X光微区分析方法,探究悬浮磁化焙烧磁选过程中晶相结构变化和反应机理。结果表明,铁尾矿在温度、时间和H2∶CO∶CO2∶N2(体积比)分别为600 ℃、10 min和20∶15∶15∶50时,铁精矿铁品位和回收率最优分别为62.06%和98.03%。铁精矿饱和磁化强度由0.77 Am2·kg−1提升到59.43 Am2·kg-1。悬浮磁化焙烧能有效将赤铁矿针铁矿还原为磁铁矿,且BET表面积提升了13.1676 m2·g−1,并能通过磁选有效分离Fe3O4和SiO2等脉石。本研究可为从铁尾矿中回收铁资源提供参考。

English Abstract

  • 随着我国矿业得到更多重视和发展,采矿业发展必然带来大量的尾矿产生[1]。2019年我国铁尾矿产生量 5.36×108 t,综合利用量 1.16×108 t,铁尾矿综合利用率不足30%造成其堆积[2],而尾矿堆积引起的环境问题如累积潜在有毒元素等已成为全球性问题[3-4]。铁尾矿的铅、锌、镉、铜、镍、铬和锰等重金属,受到风化和沥滤等自然环境作用时,会产生具有毒性的酸性重金属废水污染地表水和地下水,而产生不可忽视地经济损失[5]。随着国家人民健康发展需求的日益增长,铁尾矿安全处置已引起广大关注。

    目前,学者对铁尾矿资源化利用研究已有报道,如烧结固化技术[6-7]、制备改性材料[8]和磁化回收铁资源等。在烧结固化技术中,WANG等[5]在铁尾矿中添加高岭土和飞灰制备烧结砖,满足重金属浸出和抗压标准;在制备改性材料中,LI等[8]以铁尾矿和粉煤灰制备高比表面积(1.185 m2·g−1)和高孔隙率(62%)的多孔人工陶粒滤料。但以上两种途径对铁尾矿资源化回收方式没利用铁尾矿中赋存价值高的矿物,或是存在高能耗低价值等缺点[5, 8]。因而高效利用铁尾矿中赋存价值较高的铁元素显得格外重要。

    中国因高品质铁矿石产量少,而成为高度依赖高品质铁矿石进口大国[1]。我国政协十三届全国委员会第四次会议也将铁矿列为战略性矿产,并大力加强铁矿石理论研究及其创新。可见,通过回收国内铁尾矿的铁以补充国内高品质铁矿石需求符合当代提倡的内循环模式。目前,学者通过磁化焙烧,对铁矿中的铁进行还原回收。按照还原剂不同,LI等[9]采用50% H2磁化焙烧铁尾矿获品位65.30%,回收率39.79%的铁精矿;YUAN等[10]采用20% CO磁化焙烧铁尾矿获品位68.31%,回收率96.34%的铁精矿;HUANG等[11]采用15%木屑磁化焙烧铁尾矿获品位62.84%,回收率94.58%的铁精矿。按照焙烧方式不同,其中YUAN等[10]采用悬浮磁化焙烧铁尾矿;HUANG等[11]采用固定床磁化焙烧铁尾矿。新颖的悬浮磁化焙烧法具有传热传质效率高等优点[12],但目前使用的还原剂多为单一还原剂或为理想性比例混气为主[9-10]。若采用还原性废气如高炉尾气和生物质造气等,按其主要成分为CO、H2、CO2和N2进行模拟还原混气研究[13-14],可寻找到一种低成本、节能、环保的工艺解决铁尾矿堆存资源浪费问题。

    本研究以CO、H2、CO2和N2混气作为还原混气,研究不同温度、时间、混气H2和CO占比对铁尾矿磁化焙烧后铁品位和回收率的影响。利用X射线衍射(XRD)和扫描电子显微镜(SEM)研究焙烧前后铁尾矿基本特性和晶相结构,利用振动样品磁强计(VSM)测试样品磁性变化,利用光电子能谱仪(XPS)测试元素价态变化,利用N2吸脱附等温仪(BET)测试样品孔隙变化。本研究结果可为铁尾矿的资源化利用提供参考。

    • 供试样品为广东省韶关市大宝山早期铁尾矿。铁尾矿元素含量分析如表1所示。可见,铁尾矿中铁为主要金属元素,品位为43.71%。二氧化硅及其氧化铝为主要杂质,并含有重金属。铁主要以赤铁矿、褐铁矿形式存在,占97.92%。本实验使用一氧化碳(CO, 99.95%);二氧化碳(CO2, 99.9%);氮气(N2, 99.9%)和由氢气发生装置(SPH – 300A,北京中惠普)制备的H2

    • 实验系统如图1所示。铁尾矿风干干燥,研磨至40%过200目,混合均匀储存密封袋中。待立式悬浮焙烧炉(SK–G03123K–D,天津中环)达到规定温度时,将10 g铁尾矿加入悬浮管,并组装悬浮焙烧炉。通N2(0.5 L·min−1)使物料保持悬浮,排出管中空气。通过4路混气系统(GSL–4Z,合肥科晶)将实验所配比的还原性混气(CO、H2、CO2、N2)通入悬浮管后反应一定时间。焙烧完成后,通入N2来及时排走过多还原混气,并对焙烧矿进行冷却至常温。随后将焙烧矿研磨过200目,依次使用磁场强度为120、80和60 mT的无极调节磁选管(XCGS–50,永盛选矿设备)湿法磁选获得铁精矿和磁选渣。最后在60 ℃烘箱处理12 h获得铁精矿和磁选渣固体,以待后续实验使用。

    • 铁矿石品位测定依据《铁矿石全铁含量的测定三氯化钛还原重铬酸钾滴定法(常规方法)》(GB/T 6730.65-2009)标准[15],回收率计算公式如式(1)所示。

      式中:R是精矿铁回收率; c0是磁化焙烧前原铁尾矿样品铁品位;M0是磁化焙烧前铁尾矿样品质量,g;c是铁精矿样品铁品位;M是铁精矿总质量,g。

      采用XRD分析铁尾矿悬浮磁化焙烧和磁选工艺前后物相结构变化;采用XPS分析悬浮磁化焙烧和磁选前后元素含量和价态变化;采用VSM对铁尾矿悬浮磁化焙烧和磁选前后磁性变化进行分析;采用比表面积分析仪测定悬浮磁化焙烧前后铁尾矿比表面积和孔径分布;采用SEM – EDS观察悬浮磁化焙烧前后铁尾矿的表面结构、形态特征和元素含量。

    • 1)焙烧温度。在焙烧10 min、混气体积比H2∶CO∶CO2∶N2为10∶20∶15∶55条件下探究温度对铁精矿铁品位和回收率影响如图2所示。从图2可知,温度对铁精矿铁品位和回收率影响较大,随着温度上升,铁品位上升,而回收率稳定后急速下降。450 ℃时,铁尾矿磁化焙烧还原反应已能进行,获得铁品位和回收率分别为58.78%和95.73%的铁精矿,但此时较低的铁品位将导致利用率低下而增加炼铁厂成本[16];从450 ℃到600 ℃的过程中,铁品位提高至60.13%,而回收率仅下降5.83%,可知样品中更多的Fe以磁性Fe3O4的形式回收到铁精矿中;从600 ℃提升至700 ℃过程中,铁精矿回收率急速降至5.61%,即当前磁场无法回收铁精矿,而对于铁品位则提升至62.90%。600 ℃后,过高温度会让磁化焙烧副反应快速进行,导致铁尾矿原有的Fe2O3生成磁性Fe3O4后迅速生成弱磁性FeO等导致无法磁选收集[12,17];而铁品位的增加可能因为高温导致过还原的焙烧矿经过弱磁场磁选后,有大部分Fe以弱磁性铁相流失,表现为回收率低下,但弱磁场保留铁精矿虽质量少,但物质较纯,以强磁Fe3O4形式存在,所以铁品位有所上升。此时物质较纯的原因可能是:1)降低了精矿质量回收,从而降低了硅酸盐夹带的概率[18];2)降低了精矿质量回收,从而削弱了磁团聚现象[19]。综合考虑铁精矿产品质量和成本要求,选择600 ℃为最佳温度,此时铁品位和回收率分别为60.13%和89.90%。

      2)反应时间。在焙烧温度600 ℃、混气体积比H2∶CO∶CO2∶N2为10∶20∶15∶55条件下探究磁化焙烧时间对铁精矿铁品位和回收率的影响。从图3可知,随着时间从5 min提升到30 min,铁精矿品位维持在60.00%~61.30%,而回收率总体随时间呈现先上升后下降趋势。当时间从5 min增加到10 min时,回收率从79.36%提升到92.57%,提高了13.21%,而铁精矿的品位几乎不变。而从10 min继续增加焙烧时间时,回收率总体呈现下降趋势至69.35%。可知,焙烧时间对铁精矿回收率影响较大,在5 min时,磁化焙烧进行未完全,仍然残留着Fe2O3未被还原,而10 min时,铁尾矿的Fe2O3几乎以强磁Fe3O4形式存在,能尽可能回收;而继续增加焙烧时间后,磁化焙烧的副反应导致生成的Fe3O4过还原,降低了磁性,导致回收率下降[12]。综合考虑铁精矿产品质量和成本要求,选择10 min为最佳时间,此时铁品位和回收率分别为61.21%和92.57%。

      3)还原混气配比。在焙烧温度600 ℃、焙烧时间10 min条件下探究混气中2种还原性气体H2和CO占比对铁精矿铁品位和回收率的影响。从图4中可以看出,随着H2或CO占比的上升,铁精矿铁品位先下降后于61.00%~62.00%间波动;而回收率则先上升后稳定于95.00%以上。对比600 ℃下,H2∶CO为5∶0、10∶0、15∶0和20∶0时的回收率均比对应的0∶5、0∶10、0∶15和0∶20高,可见此温度下,单独还原气H2的还原性比单独还原气CO的强;同时,对比H2∶CO为10∶0、0∶10与5∶5的回收率可知,在还原性气体总占比一定时,H2与CO混合气的共同作用与H2单独作用对回收率影响不明显,而远远高于CO单独作用[20]。当总还原气体未过剩时,随着还原气体占比增大,铁品位从66.04%下降至60.00%~62.00%,而回收率从3.16%上升至95.00%。这是因为还原气体未过剩,随着其占比增加,更多Fe2O3被还原成Fe3O4,从而回收率上升,并随着铁精矿质量增加,物质间包夹作用和磁团聚增强[18, 19],铁精矿铁品位下降。当总还原性气体过剩且占比逐渐加大时,铁品位和回收率会趋于稳定区间,可见在最佳温度和时间下,过还原反应受还原性气体浓度小幅度过量影响较小。这是因为在适宜温度600 ℃下,过还原反应不发生或反应较慢[10]。从铁精矿产品最佳而言,最佳理论还原性混气比例应为H2∶CO∶CO2∶N2为20∶15∶15∶50,此时铁精矿的铁品位和回收率分别为62.06%和98.03%。

    • 1)物相分析。悬浮磁化焙烧磁选工艺出现的各种矿物形式、不同温度下焙烧矿和不同时间下焙烧矿的x射线衍射谱图见图5。可知,铁尾矿通过悬浮磁化焙烧磁选后,铁相从赤铁矿和针铁矿的形式转换成磁铁矿的形式富集于铁精矿中。原矿中含有石英相,是导致铁尾矿铁品位较低的主要原因[21]。悬浮磁化焙烧后,从焙烧矿衍射图谱与原矿对比可知,赤铁矿针铁矿的铁相消失,取代其的是磁铁矿出现,完成铁相转变[22]。并通过磁选过后,从铁精矿和磁选渣谱图对比可以看出,几乎所有石英相均于磁选渣中,而铁精矿以主要相磁铁矿的形式存在,完成铁的富集[12]。综上, 悬浮磁化焙烧磁选工艺确实能对铁尾矿进行铁富集回收,有效去除石英,提高精矿质量。

      图5(b)可知,温度变化对铁尾矿磁化焙烧铁相存在形式影响较大。随着温度从500 ℃上升到600 ℃,赤铁矿针铁矿衍射峰强度逐渐降低至消失,取而代之的是磁铁矿衍射峰增强,可知磁化反应顺利进行;提高温度至600 ℃时,焙烧矿不再出现赤铁矿衍射峰,铁相几乎全以磁铁矿的形式存在;随温度的继续上升,焙烧矿中磁铁矿衍射峰强度减弱,而出现了浮氏体这一弱磁性铁相。这就表明,600 ℃后提高温度会让过还原反应加快进行,导致磁铁矿含量下降,出现弱磁性浮氏体,导致铁流失在磁选渣中[23]。这一现象也能说明最佳温度为600 ℃,如继续提高温度导致铁回收率急速下降。

      图5(c)可知,时间变化对铁尾矿磁化焙烧铁相的存在形式影响较小,这也与随着时间变化,铁品位变化不大的现象一致。在焙烧时间为10 min时,焙烧矿中赤铁矿针铁矿衍射峰消失,铁相主要以磁铁矿的形式存在,但出现了微弱的浮氏体衍射峰,表明焙烧已经进行完全。结合继续提高焙烧时间时焙烧矿的磁铁矿衍射峰无明显变化,表明10 min焙烧时间已经足够。此时若继续提高焙烧时间不仅会提高工艺成本,而且无利于提高铁精矿质量[24]

      2) 磁性分析VSM。样品磁滞回线如图6所示,磁性参数如表2所示。由图6表2可知,经过悬浮磁化焙烧的焙烧矿相比原矿,磁性有较大提升。饱和磁化强度和剩磁强度分别由0.77和0.05 Am2·kg−1提升至52.31和10.82 Am2·kg−1,提升了51.54和10.77 Am2·kg−1。这就说明,悬浮磁化焙烧能较高提升矿物磁性能[10, 12]。通过磁选工艺,能将磁性差异较大的磁铁矿和石英等进行分离,从而得到饱和磁化强度更接近纯磁铁矿的铁精矿,其饱和磁化强度和剩磁强度达到59.43和13.72Am2·kg−1。这也能侧面印证出悬浮磁化焙烧磁选工艺能提高铁精矿铁品位,同时保证较高的铁回收率,从而满足低成本炼钢炼铁要求。

      3) XPS分析。样品XPS分析总谱如图7所示,谱图均采用C1s的284.80 eV进行荷电校正。由总谱可知,元素Fe、O、Si、Al和C都有对应峰响应,且样品不同,Fe2p、O1s、Si2p和Al2p都有不同程度变化。Fe2p峰响应强度在焙烧矿中比原铁尾矿高,且结合O1s峰响应强度随着悬浮磁化焙烧磁选过程逐渐降低,可揭示过程中还原气CO和H2夺走铁尾矿部分O而生成Fe3O4[21]。Si2p和Al2p的峰响应强度在原铁尾矿和焙烧矿中变化不大,而铁精矿中几乎不存在Si2p和Al2p的峰响应,同时磁选渣中有较强的Si2p和Al2p的峰响应。可知,磁选这一过程能很好分离出Si和Al物质,以达到提高铁精矿品质[12]。这一结果与XRD分析结果保持一致。

      样品XPS分析的Fe2p窄谱如图8所示,谱图均采用C1s的284.80 eV进行荷电校正。从图8(a)可知,原铁尾矿含有Fe2p3/2和Fe2p1/2结合能,分别在711.78和725.48 eV,两者间相差13.7(~13.6)eV。这些结合能位置信息暗示着原铁尾矿的Fe以Fe2O3和FeOOH的Fe+3存在[25],这也与XRD分析结果高度一致。对于图8(b)和8图(c)所示焙烧矿和铁精矿而言,Fe2p3/2和Fe2p1/2分别为710.98、724.38 eV和710.98、724.68 eV,其结合能对比原铁尾矿发生明显向右位移,即结合能下降,谱图出现了Fe2+。这是因为,在悬浮磁化焙烧过程中,一部分的Fe3+被还原成Fe2+,形成Fe3O4,所以导致Fe2p3/2和Fe2p1/2结合能右移[26-27]。8(d)图磁选渣中Fe2p响应相比较低,且不存在Fe2+。综上,XPS分析结果进一步证实了悬浮磁化焙烧Fe相从Fe2O3、FeOOH到Fe3O4转变的机理,并可明确通过悬浮磁化焙烧磁选工艺,获得高品质铁精矿是可行的。

      4)微观结构分析。原铁尾矿和焙烧矿的N2吸附-脱附等温曲线如图9所示。从图9可知,铁尾矿和焙烧矿的等温曲线类型是Ⅱ与Ⅳ型结合。在相对压力(P/P0)较低的情况下,原铁尾矿和焙烧矿的吸附容量均表现较低,微孔数量较少,这是Ⅱ型的表现;在相对压力(P/P0)较高的情况下,原铁尾矿和焙烧矿等温线出现H3型滞后环,表明产物存在狭缝状孔,这是Ⅳ型的表现[12]。由表3可知,铁尾矿经过悬浮磁化焙烧后BET表面积、朗缪尔表面积、孔隙体积和孔径分别提升了13.167 6 m2·g−1、274.842 2 m2·g−1、0.044 121 cm3·g−1和2.599 8 nm。较大孔隙能大大降低后续焙烧矿的研磨成本[23]。原铁尾矿和焙烧矿的BET表面积、朗缪尔表面积、孔隙体积和孔径如表4所示。综上,铁尾矿悬浮磁化焙烧过程,能较大程度提高铁尾矿的比表面积和孔隙等微观性能,可为后续焙烧矿研磨磁选提供便利。

      原铁尾矿和焙烧矿的SEM-EDS分析如图10所示。由图10(a)和(b)可知,原铁尾矿以有棱角的块状结构存在,质地紧密,表面吸附着片状块状且尺寸较小的物质;由图10(c)和(d)可知,焙烧矿以块状棒状团聚的形式存在,质地疏松。综上所述,经过悬浮磁化焙烧后,铁尾矿块状结构发生气固反应破裂,以尺寸更小的块状和棒状团聚形式存在,存在更多的孔隙[23]。这也和BET分析结果一致。从图10(e)原铁尾矿和图10(f)焙烧矿EDS对比可知,经过悬浮磁化焙烧后,Fe的相对含量上升,O相对含量下降。这个揭示了焙烧过程中Fe2O3经过CO和H2还原生成Fe3O4的反应机理,这也与XRD、XPS分析结果相一致。

    • 1) 焙烧温度600 ℃、焙烧时间10 min、H2∶CO∶CO2∶N2体积比为20∶15∶15∶50时,铁精矿产品铁品位和回收率分别为62.06%和98.03%达到最优。

      2) 悬浮磁化焙烧能有效将铁尾矿铁相转化成磁铁矿相,使饱和磁化强度由0.77 Am2·kg−1提升到59.43 Am2·kg−1,且磁选能有效将磁铁矿和石英分离。过高温度和过长时间会产生弱磁性浮氏体而阻碍铁的回收。

      3) 经悬浮磁化焙烧后,焙烧矿颗粒出现裂缝,比表面积和孔隙率均有较大提升。

    参考文献 (27)

返回顶部

目录

/

返回文章
返回