

环境工程学报	ζ
Chinese Journal of	
Environmental Engineering	

第 16卷 第 5期 2022年 5月 Vol. 16, No.5 May 2022

http://www.cjee.ac.cn

E-mail: cjee@rcees.ac.cn

🦟 (010) 62941074

А

] 文章栏目:固体废物处理与资源化

DOI 10.12030/j.cjee.202111109 中图分类号 X753 文献标识码

李日文, 宁寻安, 沈君华, 等. 混气悬浮磁化焙烧铁尾矿及其磁分选效果[J]. 环境工程学报, 2022, 16(5): 1629-1638. [L1 Riwen, NING Xunan, SHENG Junhua, et al. Recycling Fe₃O₄ from iron tailings via suspension magnetized roasting by mixed gas and magnetic separation[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1629-1638.]

混气悬浮磁化焙烧铁尾矿及其磁分选效果

李日文^{1,2}, 宁寻安^{1,2,∞}, 沈君华³, 何晓^{1,2}, 王逸^{1,2}

1. 广东工业大学环境科学与工程学院,广州 510006; 2. 广东省环境催化与健康风险控制重点实验室,环境健康 与污染控制研究院,广州 510006; 3. 广东省韶关市鹏瑞环保科技有限公司,韶关 512000

摘 要 为实现铁尾矿资源化回收利用,以H₂、CO、CO₂和N₂模拟还原混气对铁尾矿进行悬浮磁化焙烧,通 过磁选获得铁精矿。探究温度、时间、H₂和CO占比对铁精矿铁品位和回收率的影响,采用X射线衍射、振动 样品强磁计、X射线光电子能谱、BET表面分析和扫描电子显微镜X光微区分析方法,探究悬浮磁化焙烧磁选 过程中晶相结构变化和反应机理。结果表明,铁尾矿在温度、时间和H₂:CO:CO₂:N₂(体积比)分别为600℃、 10 min和20:15:15:50时,铁精矿铁品位和回收率最优分别为62.06%和98.03%。铁精矿饱和磁化强度由 0.77 Am²·kg⁻¹提升到59.43 Am²·kg⁻¹。悬浮磁化焙烧能有效将赤铁矿针铁矿还原为磁铁矿,且BET表面积提升了 13.1676 m²·g⁻¹,并能通过磁选有效分离 Fe₃O₄和SiO₂等脉石。本研究可为从铁尾矿中回收铁资源提供参考。 关键词 铁尾矿;悬浮磁化焙烧;还原性气体;资源化;磁选

随着我国矿业得到更多重视和发展,采矿业发展必然带来大量的尾矿产生^[1]。2019年我国铁 尾矿产生量 5.36×10⁸ t,综合利用量 1.16×10⁸ t,铁尾矿综合利用率不足 30% 造成其堆积^[2],而尾矿 堆积引起的环境问题如累积潜在有毒元素等已成为全球性问题^[34]。铁尾矿的铅、锌、镉、铜、 镍、铬和锰等重金属,受到风化和沥滤等自然环境作用时,会产生具有毒性的酸性重金属废水污 染地表水和地下水,而产生不可忽视地经济损失^[5]。随着国家人民健康发展需求的日益增长,铁尾 矿安全处置已引起广大关注。

目前,学者对铁尾矿资源化利用研究已有报道,如烧结固化技术^[6-7]、制备改性材料^[8]和磁化 回收铁资源等。在烧结固化技术中,WANG等^[5]在铁尾矿中添加高岭土和飞灰制备烧结砖,满足 重金属浸出和抗压标准;在制备改性材料中,LI等^[8]以铁尾矿和粉煤灰制备高比表面积(1.185 m²·g⁻¹) 和高孔隙率(62%)的多孔人工陶粒滤料。但以上两种途径对铁尾矿资源化回收方式没利用铁尾矿 中赋存价值高的矿物,或是存在高能耗低价值等缺点^[5,8]。因而高效利用铁尾矿中赋存价值较高的 铁元素显得格外重要。

中国因高品质铁矿石产量少,而成为高度依赖高品质铁矿石进口大国^[1]。我国政协十三届全国 委员会第四次会议也将铁矿列为战略性矿产,并大力加强铁矿石理论研究及其创新。可见,通过 回收国内铁尾矿的铁以补充国内高品质铁矿石需求符合当代提倡的内循环模式。目前,学者通过

收稿日期: 2021-11-18; 录用日期: 2022-03-27

基金项目: 2017年土壤中央专项资金资助项目(No.18HK0108); 韶关鹏瑞公司固体废物资源化利用研发项目(No. 21HK0178) 第一作者: 李日文(1997—), 男, 硕士研究生, 2111907007@mail2.gdut.edu.cn; ⊠通信作者: 宁寻安(1967—), 男, 博士, 教授, ningxunan666@126.com 磁化焙烧,对铁矿中的铁进行还原回收。按照还原剂不同,LI等^[9]采用50%H₂磁化焙烧铁尾矿获品位65.30%,回收率39.79%的铁精矿;YUAN等^[10]采用20%CO磁化焙烧铁尾矿获品位68.31%,回收率96.34%的铁精矿;HUANG等^[11]采用15%木屑磁化焙烧铁尾矿获品位62.84%,回收率94.58%的铁精矿。按照焙烧方式不同,其中YUAN等^[10]采用悬浮磁化焙烧铁尾矿;HUANG等^[11]采用固定床磁化焙烧铁尾矿。新颖的悬浮磁化焙烧法具有传热传质效率高等优点^[12],但目前使用的还原剂多为单一还原剂或为理想性比例混气为主^[9-10]。若采用还原性废气如高炉尾气和生物质造气等,按其主要成分为CO、H₂、CO₂和N₂进行模拟还原混气研究^[13-14],可寻找到一种低成本、节能、环保的工艺解决铁尾矿堆存资源浪费问题。

本研究以 CO、H₂、CO₂和 N₂混气作为还原混气,研究不同温度、时间、混气 H₂和 CO 占比 对铁尾矿磁化焙烧后铁品位和回收率的影响。利用 X 射线衍射 (XRD) 和扫描电子显微镜 (SEM) 研 究焙烧前后铁尾矿基本特性和晶相结构,利用振动样品磁强计 (VSM) 测试样品磁性变化,利用光 电子能谱仪 (XPS) 测试元素价态变化,利用 N₂吸脱附等温仪 (BET) 测试样品孔隙变化。本研究结 果可为铁尾矿的资源化利用提供参考。

1 材料与方法

1.1 供试材料

供试样品为广东省韶关市大宝山早期铁尾矿。铁尾矿元素含量分析如表1所示。可见,铁尾 矿中铁为主要金属元素,品位为43.71%。二氧

化硅及其氧化铝为主要杂质,并含有重金属。 铁主要以赤铁矿、褐铁矿形式存在,占97.92%。 本实验使用一氧化碳(CO,99.95%); 二氧化碳 (CO₂,99.9%); 氮气(N₂,99.9%)和由氢气发生装 置(SPH – 300A,北京中惠普)制备的H₂。

衣 I 获尾 4 兀 系 顶 重 分 致							
	Table 1	Element content of iron tailings %					
Fe_2O_3	SiO_2	Al_2O_3	SO_3	K_2O	ZnO	CuO	其他
46.78	27.90	19.59	4.11	0.54	0.20	0.17	0.71
			-				

1.2 实验方法

实验系统如图1所示。铁尾矿风干干燥,研磨至40%过200目,混合均匀储存密封袋中。待 立式悬浮焙烧炉(SK-G03123K-D,天津中环)达到规定温度时,将10g铁尾矿加入悬浮管,并组 装悬浮焙烧炉。通N,(0.5 L·min⁻¹)使物料保持悬浮,排出管中空气。通过4路混气系统(GSL-4Z,

图 1 悬浮磁化焙烧磁选装置图

Fig. 1 Suspension magnetization roasting magnetic separation device diagram

合肥科晶)将实验所配比的还原性混气(CO、H₂、CO₂、N₂)通入悬浮管后反应一定时间。焙烧完成 后, 通入 N₂来及时排走过多还原混气,并对焙烧矿进行冷却至常温。随后将焙烧矿研磨过 200 目,依次使用磁场强度为 120、80 和 60 mT 的无极调节磁选管(XCGS-50,永盛选矿设备)湿法磁 选获得铁精矿和磁选渣。最后在 60 ℃ 烘箱处理 12 h 获得铁精矿和磁选渣固体,以待后续实验使用。 1.3 分析方法

铁矿石品位测定依据《铁矿石全铁含量的测定三氯化钛还原重铬酸钾滴定法(常规方法)》 (GB/T 6730.65-2009)标准^[15],回收率计算公式如式(1)所示。

R =

$$\frac{cM}{c_0M_0}$$

式中: *R*是精矿铁回收率; *c*₀是磁化焙烧前原铁尾矿样品铁品位; *M*₀是磁化焙烧前铁尾矿样品质量, g; *c*是铁精矿样品铁品位; *M*是铁精矿总质量, g。

采用 XRD 分析铁尾矿悬浮磁化焙烧和磁选工艺前后物相结构变化;采用 XPS 分析悬浮磁化焙烧和磁选前后元素含量和价态变化;采用 VSM 对铁尾矿悬浮磁化焙烧和磁选前后磁性变化进行分析;采用比表面积分析仪测定悬浮磁化焙烧前后铁尾矿比表面积和孔径分布;采用 SEM – EDS 观察悬浮磁化焙烧前后铁尾矿的表面结构、形态特征和元素含量、

2 结果与讨论

2.1 悬浮磁化焙烧磁选

1) 焙烧温度。在焙烧 10 min、混气体积比 H₂:CO:CO₂:N₂ 为 10:20:15:55 条件下探究温度对铁 精矿铁品位和回收率影响如图 2 所示。从图 2 可知、温度对铁精矿铁品位和回收率影响较大,随 着温度上升,铁品位上升,而回收率稳定后急速下降。450 ℃ 时,铁尾矿磁化焙烧还原反应已能 进行,获得铁品位和回收率分别为 58.78% 和 95.73% 的铁精矿,但此时较低的铁品位将导致利用率 低下而增加炼铁厂成本^[16];从 450 ℃ 到 600 ℃ 的过程中,铁品位提高至 60.13%,而回收率仅下降 5.83%,可知样品中更多的 Fe 以磁性 Fe₃O₄ 的形式回收到铁精矿中;从 600 ℃ 提升至 700 ℃ 过程 中,铁精矿回收率急速降至 5.61%,即当前磁场无法回收铁精矿,而对于铁品位则提升至 62.90%。 600 ℃ 后,过高温度会让磁化焙烧副反应快速进行,导致铁尾矿原有的 Fe₂O₃ 生成磁性 Fe₃O₄ 后迅 速生成弱磁性 FeO 等导致无法磁选收集^[12,17];而铁品位的增加可能因为高温导致过还原的焙烧矿经 过弱磁场磁选后,有大部分 Fe 以弱磁性铁相流失,表现为回收率低下,但弱磁场保留铁精矿虽质 量少,但物质较纯,以强磁 Fe₃O₄ 形式存在,所以铁品位有所上升。此时物质较纯的原因可能是:

1)降低了精矿质量回收,从而降低了硅酸盐夹 带的概率^[18];2)降低了精矿质量回收,从而削 弱了磁团聚现象^[19]。综合考虑铁精矿产品质量 和成本要求,选择600℃为最佳温度,此时铁 品位和回收率分别为60.13%和89.90%。

2)反应时间。在焙烧温度 600 ℃、混气体 积比 H₂:CO:CO₂:N₂ 为 10:20:15:55 条件下探 究磁化焙烧时间对铁精矿铁品位和回收率的影 响。从图 3 可知,随着时间从 5 min 提升到 30 min,铁精矿品位维持在 60.00%~61.30%,而 回收率总体随时间呈现先上升后下降趋势。当 时间从 5 min 增加到 10 min 时,回收率从 79.36%

Fig. 2 Effect of temperature on grade and recovery of iron concentrate

(1)

提升到 92.57%,提高了 13.21%,而铁精矿的品 位几乎不变。而从 10 min 继续增加焙烧时间 时,回收率总体呈现下降趋势至 69.35%。可知, 焙烧时间对铁精矿回收率影响较大,在 5 min 时,磁化焙烧进行未完全,仍然残留着 Fe₂O₃ 未被还原,而 10 min 时,铁尾矿的 Fe₂O₃几乎 以强磁 Fe₃O₄形式存在,能尽可能回收;而继 续增加焙烧时间后,磁化焙烧的副反应导致生 成的 Fe₃O₄过还原,降低了磁性,导致回收率 下降^[12]。综合考虑铁精矿产品质量和成本要求, 选择 10 min 为最佳时间,此时铁品位和回收率 分别为 61.21% 和 92.57%。

3)还原混气配比。在焙烧温度 600 ℃、焙 烧时间 10 min 条件下探究混气中 2 种还原性气体 H₂ 和 CO 占比对铁精矿铁品位和回收率的影响。 从图 4 中可以看出,随着 H₂或 CO 占比的上升,铁精矿铁品位先下降后于 61.00%~62.00% 间波 动;而回收率则先上升后稳定于 95.00% 以上。对比 600 ℃下,H₂:CO 为 5:0、10:0、15:0 和 20:0 时的回收率均比对应的 0:5、0:10、0:15 和 0:20 高,可见此温度下,单独还原气 H₂ 的还原性 比单独还原气 CO 的强;同时,对比 H₂:CO 为 10:0、0:10 与 5:5 的回收率可知,在还原性气体总 占比一定时,H₂与 CO 混合气的共同作用与 H₂单独作用对回收率影响不明显,而远远高于 CO 单 独作用 ^[20]。当总还原气体未过剩时,随着还原气体占比增大,铁品位从 66.04% 下降至 60.00%~62.00%,而回收率从 3.16% 上升至 95.00%。这是因为还原气体未过剩,随着其占比增加, 更多 Fe₂O₃ 被还原成 Fe₃O₄,从而回收率上升,并随着铁精矿质量增加,物质间包夹作用和磁团聚

增强^[18,19],铁精矿铁品位下降。当总还原性气体过剩且占比逐渐加大时,铁品位和回收率会趋于 稳定区间,可见在最佳温度和时间下,过还原反应受还原性气体浓度小幅度过量影响较小。这是 因为在适宜温度 600 ℃下,过还原反应不发生或反应较慢^[10]。从铁精矿产品最佳而言,最佳理论 还原性混气比例应为 H₂:CO:CO₂:N₂为 20:15:15:50,此时铁精矿的铁品位和回收率分别为 62.06% 和 98.03%。

2.2 产物性质及机理探究

1)物相分析。悬浮磁化焙烧磁选工艺出现的各种矿物形式、不同温度下焙烧矿和不同时间下 焙烧矿的 x 射线衍射谱图见图 5。可知,铁尾矿通过悬浮磁化焙烧磁选后,铁相从赤铁矿和针铁矿 的形式转换成磁铁矿的形式富集于铁精矿中。原矿中含有石英相,是导致铁尾矿铁品位较低的主 要原因^[21]。悬浮磁化焙烧后,从焙烧矿衍射图谱与原矿对比可知,赤铁矿针铁矿的铁相消失,取 代其的是磁铁矿出现,完成铁相转变^[22]。并通过磁选过后,从铁精矿和磁选渣谱图对比可以看 出,几乎所有石英相均于磁选渣中,而铁精矿以主要相磁铁矿的形式存在,完成铁的富集^[12]。综 上,悬浮磁化焙烧磁选工艺确实能对铁尾矿进行铁富集回收,有效去除石英,提高精矿质量。

从图 5(b)可知,温度变化对铁尾矿磁化焙烧铁相存在形式影响较大。随着温度从 500 ℃ 上升 到 600 ℃,赤铁矿针铁矿衍射峰强度逐渐降低至消失,取而代之的是磁铁矿衍射峰增强,可知磁 化反应顺利进行;提高温度至 600 ℃ 时,焙烧矿不再出现赤铁矿衍射峰,铁相几乎全以磁铁矿的 形式存在;随温度的继续上升,焙烧矿中磁铁矿衍射峰强度减弱,而出现了浮氏体这一弱磁性铁 相。这就表明,600 ℃ 后提高温度会让过还原反应加快进行,导致磁铁矿含量下降,出现弱磁性 浮氏体,导致铁流失在磁选渣中^[23]。这一现象也能说明最佳温度为 600 ℃,如继续提高温度导致 铁回收率急速下降。

从图 5(c)可知,时间变化对铁尾矿磁化焙烧铁相的存在形式影响较小,这也与随着时间变 化,铁品位变化不大的现象一致。在焙烧时间为 10 min 时,焙烧矿中赤铁矿针铁矿衍射峰消失, 铁相主要以磁铁矿的形式存在,但出现了微弱的浮氏体衍射峰,表明焙烧已经进行完全。结合继 续提高焙烧时间时焙烧矿的磁铁矿衍射峰无明显变化,表明 10 min 焙烧时间已经足够。此时若继 续提高焙烧时间不仅会提高工艺成本,而且无利于提高铁精矿质量^[24]。

2) 磁性分析 VSM。样品磁滞回线如图 6 所示,磁性参数如表 2 所示。由图 6 和表 2 可知,经 过悬浮磁化焙烧的焙烧矿相比原矿,磁性有较大提升。饱和磁化强度和剩磁强度分别由 0.77 和 0.05 Am²·kg⁻¹提升至 52.31 和 10.82 Am²·kg⁻¹,提升了 51.54 和 10.77 Am²·kg⁻¹。这就说明,悬浮磁化 焙烧能较高提升矿物磁性能^[10,12]。通过磁选工艺,能将磁性差异较大的磁铁矿和石英等进行分

离,从而得到饱和磁化强度更接近纯磁铁矿的 铁精矿,其饱和磁化强度和剩磁强度达到 59.43和13.72Am²·kg⁻¹。这也能侧面印证出悬 浮磁化焙烧磁选工艺能提高铁精矿铁品位,同 时保证较高的铁回收率,从而满足低成本炼钢 炼铁要求。

3) XPS 分析。样品 XPS 分析总谱如图 7 所示, 谱图均采用 C1s 的 284.80 eV 进行荷电校 正。由总谱可知,元素 Fe、O、Si、Al 和 C 都 有对应峰响应,且样品不同,Fe2p、O1s、Si2p 和 Al2p 都有不同程度变化。Fe2p 峰响应强度 在焙烧矿中比原铁尾矿高,且结合 O1s 峰响应 强度随着悬浮磁化焙烧磁选过程逐渐降低,可 揭示过程中还原气 CO 和 H₂ 夺走铁尾矿部分 O 而生成 Fe₃O₄^[21]。Si2p 和 Al2p 的峰响应强度 在原铁尾矿和焙烧矿中变化不大,而铁精矿中 几乎不存在 Si2p 和 Al2p 的峰响应,同时磁选 渣中有较强的 Si2p 和 Al2p 的峰响应。可知, 磁选这一过程能很好分离出 Si 和 Al 物质,以 达到提高铁精矿品质^[12]。这一结果与 XRD 分 析结果保持一致。

样品 XPS 分析的 Fe2p 窄谱如图 8 所示,

表 2 样品及纯物质磁性参数 Table 2 Magnetic parameters of samples and pure substances Am²·kg⁻¹

样品	饱和磁化强度	剩磁
原矿	0.77	0.05
焙烧矿	52.31	10.82
铁精矿	59.43	13.72
纯赤铁矿	0.40	-
纯磁铁矿	92.00	-

XPS 分析谱图

Fig. 7 XPS analysis spectra of iron tailing, roasted ore, iron concentrate and magnetic separation slag

谱图 約采用 C1s 的 284.80 eV 进行荷电校正。从图 8(a)可知,原铁尾矿含有 Fe2p3/2 和 Fe2p1/2 结合 能,分别在 711.78 和 725.48 eV,两者间相差 13.7(~13.6)eV。这些结合能位置信息暗示着原铁尾矿 的 Fe 以 Fe₂O₃ 和 FeOOH 的 Fe⁺³存在^[25],这也与 XRD 分析结果高度一致。对于图 8(b) 和 8 图 (c) 所 示焙烧矿和铁精矿而言,Fe2p3/2 和 Fe2p1/2 分别为 710.98、724.38 eV 和 710.98、724.68 eV,其结合 能对比原铁尾矿发生明显向右位移,即结合能下降,谱图出现了 Fe²⁺。这是因为,在悬浮磁化焙烧

Fig. 8 Fine XPS spectrum of Fe2p

过程中,一部分的 Fe³⁺被还原成 Fe²⁺,形成 Fe₃O₄,所以导致 Fe2p3/2 和 Fe2p1/2 结合能右移^[26-27]。 8(d) 图磁选渣中 Fe2p 响应相比较低,且不存在 Fe²⁺。综上,XPS 分析结果进一步证实了悬浮磁化 焙烧 Fe 相从 Fe₂O₃、FeOOH 到 Fe₃O₄转变的机理,并可明确通过悬浮磁化焙烧磁选工艺,获得高品 质铁精矿是可行的。

4) 微观结构分析。原铁尾矿和焙烧矿的 N2 吸附-脱附等温曲线如图 9 所示。从图 9 可知,铁尾

Fig. 9 N₂ adsorption desorption isotherm

矿和焙烧矿的等温曲线类型是Ⅱ与Ⅳ型结合。 在相对压力 (P/P_a) 较低的情况下, 原铁尾矿和 焙烧矿的吸附容量均表现较低, 微孔数量较 少,这是Ⅱ型的表现;在相对压力(P/P₀)较高 的情况下, 原铁尾矿和焙烧矿等温线出现 H3型滞后环,表明产物存在狭缝状孔,这是 Ⅳ型的表现^[12]。由表3可知,铁尾矿经过悬浮 磁化焙烧后 BET 表面积、朗缪尔表面积、孔隙 体积和孔径分别提升了 13.167 6 m²·g⁻¹、274.842 2 m²·g⁻¹、0.044 121 cm³·g⁻¹ 和 2.599 8 nm。较大孔 隙能大大降低后续焙烧矿的研磨成本^[23]。原铁 尾矿和焙烧矿的 BET 表面积、朗缪尔表面积、 孔隙体积和孔径如表4所示。综上,铁尾矿悬 浮磁化焙烧过程,能较大程度提高铁尾矿的比 表面积和孔隙等微观性能,可为后续焙烧矿研 磨磁选提供便利。

原铁尾矿和焙烧矿的 SEM-EDS 分析如图 10 所示。由图 10(a) 和 (b) 可知,原铁尾矿以有 棱角的块状结构存在,质地紧密,表面吸附着 片状块状且尺寸较小的物质;由图 10(c) 和 (d) 可知,焙烧矿以块状棒状团聚的形式存 在,质地疏松。综上所述,经过悬浮磁化焙烧 后,铁尾矿块状结构发生气固反应破裂,以尺 寸更小的块状和棒状团聚形式存在,存在更多 的孔隙^[23]。这也和 BET 分析结果一致。从图 10(e)原铁尾矿和图 10(f)焙烧矿 EDS 对比可 知,经过悬浮磁化焙烧后,Fe 的相对含量上 升,O相对含量下降。这个揭示了焙烧过程中 Fe₂O₃经过 CO和 H₂还原生成 Fe₃O₄的反应机 理,这也与 XRD、XPS 分析结果相一致。

3 结论

 1) 焙烧温度 600 ℃、焙烧时间 10 min、 H₂:CO:CO₂:N₂体积比为 20:15:15:50 时,铁精 矿产品铁品位和回收率分别为 62.06% 和 98.03% 达到最优。

2) 悬浮磁化焙烧能有效将铁尾矿铁相转化 成磁铁矿相, 使饱和磁化强度由 0.77 Am²·kg⁻¹ 表 3 BET 分析的相关参数

Table 3 Relevant parameters of bet analysis

供试样品	BET表面积/	朗缪尔表面积/	孔隙体积/	孔径/
铁尾矿	8.122 6	81.491 1	0.018681	9.199 4
焙烧矿	21.290 2	356.333 3	0.062802	11.799 2

表 4 原矿焙烧矿 EDS 分析 Fe、O 元素占比 Table 4 EDS analysis of raw ore roasted ore Fe and O

elements account wt%

样品	Fe	О
铁尾矿	61.98	33.71
焙烧矿	66.01	24.02

<u>しM,______</u> 5 10 15 20 结合能/keV (f) 焙焼矿EDS谱图

图 10 SEM-EDS 分析图像

Fig. 10 SEM-EDS analysis image

提升到 59.43 Am²·kg⁻¹,且磁选能有效将磁铁矿和石英分离。过高温度和过长时间会产生弱磁性浮 氏体而阻碍铁的回收。

3) 经悬浮磁化焙烧后, 焙烧矿颗粒出现裂缝, 比表面积和孔隙率均有较大提升。

参考文献

- SUN Y S, ZHU X R, HAN Y X, et al. Iron recovery from refractory limonite ore using suspension magnetization roasting: A pilot-scale study[J]. Journal of Cleaner Production, 2020, 261: 121221.
- [2] 2020中国环境统计年鉴[EB/OL]. [2020-1-1]. http://www.mee.gov.cn.
- [3] BUCH A C, NIEMEYER J C, MARQUES E D, et al. Ecological risk assessment of trace metals in soils affected by mine tailings[J]. Journal of Hazardous Materials, 2021, 403: 123852.
- [4] ŽIBRET G, GOSAR M, MILER M, et al. Impacts of mining and smelting activities on environment and landscape degradation —Slovenian case studies[J]. Land Degradation & Development, 2018, 29(12): 4457-4470.
- [5] WANG G W, NING X A, LU X W, et al. Effect of sintering temperature on mineral composition and heavy metals mobility in tailings bricks[J]. Waste Management, 2019, 93: 112-121.
- [6] 周伟伦,廖正家,陈涛,等.利用铁尾矿制备烧结砖的可行性及烧结固 化机理[J].环境工程学报,2021,15(5):1670-1678.
- [7] 严捍东,陈秀峰.粉煤灰和铁尾矿对烧结海泥多孔砖泛霜程度的影响 [J].环境工程学报,2012,6(8):2846-2852.
- [8] LI P W, LUO S H, ZHANG L, et al. Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment[J]. Separation and Purification Technology, 2021, 276: 119380.
- [9] LI W B, HAN Y X, LIU X, et al. Effect of fluidized magnetizing roasting on iron recovery and transformation of weakly magnetic iron mineral phase in iron tailings[J]. Physicochemical Problems of Mineral Processing, 2019, 55(4): 906-916.
- [10] YUAN S, ZHOU W T, HAN Y X, et al Individual enrichment of manganese and iron from complex refractory ferromanganese ore by suspension magnetization roasting and magnetic separation[J]. Powder Technology, 2020, 373, 689-701.
- [11] 黄玥,陈海斌,蒙李燕,等.木屑对铁尾矿磁化焙烧磁选工艺的影响
 [J].环境工程学报,2020,14(11):1-8.
- [12] LI Y J, ZHANG Q, YUAN S, et al. High-efficiency extraction of iron from early iron tailings via the suspension roasting-magnetic separation[J], Powder Technology, 2021, 379: 466-477.
- [13] SKRINSKY J, VERES J, KOLONICNY J. Explosion characteristics of blast furnace gas[J]. Inzynieria Mineralna, 2018, 19(1): 131-136.
- [14] COUHERT C, COMMANDRE J-M, SALVADOR S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin?[J]. Fuel, 2009, 88(3): 408-417.

- [15] 中华人民共和国质量监督检验检疫总局,中国标准化管理委员会.铁 矿石《总铁含量的测定》三氯化钛还原重铬酸钾滴定法(常规方法): GB/T 6730.65-2009 [S].北京:中国环境科学出版社,2009
- [16] ZHOU D D, CHENG S S, WANG Y S, et al. The production of large blast furnaces during 2016 and future development of ironmaking in China[J]. Ironmaking & Steelmaking, 2017, 44(10): 714-720.
- [17] YUAN S, ZHOU W T, HAN Y X, et al. Selective enrichment of iron from fine-grained complex limonite using suspension magnetization roasting followed by magnetic separation[J]. Separation Science and Technology, 2019, 55(18): 3427-3437.
- [18] DWORZANOWSKI M. Maximizing the recovery of fine iron ore using magnetic separation[J]. Journal - South African Institute of Mining and Metallurgy, 2012, 112(3): 197-202.
- [19] GUO X F, ZHANG M R, REN W J, et al. Influence of particle size on the magnetism of magnetite and the development of an energy-efficient three-product magnetic separator[J]. Separation Science and Technology, 2020, 56(8): 1397-1406.
- [20] TANG Z D, ZHANG Q, SUN Y S, et al. Pilot-scale extraction of iron from flotation tailings via suspension magnetization roasting in a mixture of CO and H₂ followed by magnetic separation[J]. Resources, Conservation and Recycling, 2021, 172: 105680.
- [21] YUAN S, ZHOU W T, HAN Y X, et al. Separation of manganese and iron for low-grade ferromanganese ore via fluidization magnetization roasting and magnetic separation technology[J]. Minerals Engineering, 2020, 152: 106359.
- [22] YUAN S, LIU X, GAO P, et al. A semi-industrial experiment of suspension magnetization roasting technology for separation of iron minerals from red mud[J]. Journal of Hazardous Materials, 2020, 394: 122579.
- [23] YUAN S, ZHANG Q, YIN H, et al. Efficient iron recovery from iron tailings using advanced suspension reduction technology: A study of reaction kinetics, phase transformation, and structure evolution[J]. Journal of Hazardous Materials, 2020, 404(Pt B): 124067.
- [24] YUAN S, ZHOU W T, HAN Y X, et al. An innovative technology for full component recovery of iron and manganese from low grade ironbearing manganese ore[J]. Powder Technology, 2020, 373: 73-81.
- [25] GAO W G, YAN J C, QIAN L B, et al. Surface catalyzing action of hematite (α-Fe₂O₃) on reduction of Cr(VI) to Cr(III) by citrate[J]. Environmental Technology & Innovation, 2018, 9: 82-90.
- [26] KENDELEWICZ T, LIU P, DOYLE C S, et al. Spectroscopic study of the reaction of aqueous Cr(VI) with Fe₃O₄ (111) surfaces[J]. Surface

Science, 2000, 469(2-3): 144-163.

[27] OMRAN M, FABRITIUS T, ELMAHDY A M, et al. XPS and FTIR (责任编辑:金曙光) spectroscopic study on microwave treated high phosphorus iron ore[J]. Applied Surface Science, 2015, 345(1): 127-140.

Recycling Fe_3O_4 from iron tailings via suspension magnetized roasting by mixed gas and magnetic separation

LI Riwen^{1,2}, NING Xunan^{1,2,*}, SHENG Junhua³, HE Yao^{1,2}, WANG Yi^{1,2}

1. School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; 2. Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China; 3. Pengrui Environmental Protection Technology Co., Ltd., Shaoguan 512000, China

*Corresponding author, E-mail: ningxunan666@126.com

Abstract For recycling Fe_3O_4 from iron tailing, iron tailing was reduced by mixed gas of H₂, CO, CO₂ and N₂, and then magnetic separated. In this study, the effects of temperature, time, proportion of H₂ and CO on iron grade and recovery ratio were investigated. XRD, VSM, XPS, BET and SEM-EDS methods were used to reveal the diversification of crystal structure and reaction mechanisms in the process of suspension magnetized roasting and magnetic separation. The optimal iron grade of 62.06% and recovery ratio of 98.03% was obtained via suspension magnetized roasted at 600 °C, 10 min, and H₂: CO: CO₂: N₂ of 20: 15: 15: 50. The saturation magnetization of iron concentrate had been increased from 0.77 to 59.43 Am²·kg⁻¹. The suspension magnetized roasting was increased by 13.1676 m²·g⁻¹. Finally, magnetic separation was used for effectively separating Fe₃O₄ and SiO₂ form reduced iron tailing. This study provided an effective method to recovery iron form the disposed iron tailing for sustainable development of the mine environment.

Keywords iron tailings; suspension magnetized roasting; reducing gas; resource utilization; magnetic separation