-
铁是一种生物必须的营养元素,直接影响浮游植物的光合作用和碳水化合物形成,由于高含氧量和无机态铁的低溶解性,铁通常是制约HNLC海区(High nutrition low chlorophyll)初级生产力的关键微量元素[1-2]。大规模海洋施铁实验表明,水生态系统中生物可利用铁的增加可以显著提高浮游植物的生物量和光合作用率,从而提高初级生产力,并促使浮游植物的群落结构发生变化[3-7]。以往研究表明,光自养微生物对碳循环和全球气候起关键作用[8-9]。初级生产力的提高,深刻地影响着全球尺度的二氧化碳固定,对温室气体的控制具有重要意义。
水生态系统中,99%溶解性铁(dissolved iron,DFe)与有机配体结合。尽管大部分有机络合态铁不能直接被藻类利用,但通过一些地球化学转化过程,可转变为生物可利用铁[10-11]。Blazevic等[12]研究发现,海洋中腐殖酸结合态铁可以发生光还原反应,进而提高铁的生物可利用性。沼泽性河流是海洋DFe的重要来源[13]。沼泽性河流中大量存在的溶解性有机碳(DOC, dissolved organic carbon)与铁离子形成有机络合物,使水中保持较高浓度DFe。有机质中羧基和酚羟基是与铁络合的主要官能团。泥炭源中的酚酸类物质,含有稳定的芳香环结构。部分酚酸与铁有较高的配合能力,这类物质的存在保护了长距离迁移的DFe,保证了陆源DFe向水生态系统的有效输出[14]。
泥炭沼泽中存在多种类型酚酸,前人在金川泥炭中检测出了9种酚酸,包括对-羟基苯甲酸、丁香酸、香草酸、阿魏酸、对-香豆酸、没食子酸、原儿茶酸和咖啡酸,许多泥炭沼泽中都有这些酚酸的存在[14]。研究证实,酚酸等有机质可以和铁形成较为稳定的配合物,使其可以在淡水运输过程中迁移更长的距离[15]。其中,具有儿茶酚或者没食子酰基结构的原儿茶酸、没食子酸以及咖啡酸可以和Fe(Ⅱ)形成较为稳定的络合物,使得Fe(Ⅱ)在极易被氧化的碱性条件下也可以保存较长时间。而咖啡酸、没食子酸、原儿茶酸以及龙胆酸还对Fe(Ⅲ)有着明显的还原作用,同样有助于这两种铁形态之间的平衡[16]。
植物或微生物分泌代谢物质对环境中其他植物或微生物体产生不利或有利的影响,这种作用称为化感作用。在化感作用过程中分泌的物质即被称为化感物质,自然界的化感物质种类非常丰富,主要包括酚酸类、苯醌类、倍半萜类、黄酮类等几大类物质[17]。迄今发现的化感物质几乎都是植物的次生代谢物质,分子量较小,结构简单,其中酚酸类物质是一类重要的次生代谢产物,也是研究较多,被证实是化感活性较强的一类物质[18]。酚酸具有一定生物毒性。目前对于酚酸抑藻的机制还不十分清楚,其抑制作用可能通过多种方式实现。研究表明,酚酸与蛋白质分子易遵循疏水键-氢键多点键合理论结合。在酚酸存在的情况下,藻细胞的胞外磷酸酶活性受到抑制,碱性磷酸酶活性的抑制使藻利用磷的能力下降。酚酸与细胞膜蛋白的结合,会破坏生物体细胞膜结构,使植物多酚物质进一步穿过细胞膜,进入细胞体内,从而改变微生物细胞酶活性,减少藻类对外源性蛋白质的利用,并通过对细胞外酶的抑制达到抑藻的目的[19]。另外,如果酚酸进入细胞体后,通过与金属离子发生络合反应,形成沉淀而破坏微生物的正常新陈代谢也是植物多酚抑藻的原因所在[20]。尽管酚酸存在生物毒性,但适量前提下,对藻类生长有积极作用[21]。泥炭源典型酚酸与铁的络合物是否对藻类利用铁有显著影响尚待进一步研究。因此,探究酚-铁配合物络合稳定性及其生物可利用性有助于进一步了解生物对铁的吸收,更好地理解全球铁碳耦合循环。
铜绿微囊藻(microcystic aeruginosa) 是中国湖泊、水库及其他水域生态系统水体富营养化蓝藻水华的代表性藻类。本文铜绿微囊藻为培养对象,利用泥炭源典型酚酸及泥炭溶解有机质(DOM)开展了一系列培养试验,以期了解泥炭沼泽源酚酸以及酚-铁络合物对铜绿微囊藻生长的影响。
典型泥炭源酚铁络合物的藻类可利用性——以铜绿微囊藻为例
Algae availability of typical peat-derived iron phenol complexes: A study based on Microcystis aeruginosa
-
摘要: 铁是影响水生态系统初级生产力的关键微量元素。泥炭沼泽普遍含有丰富的溶解有机质,其中酚酸类物质具有稳定的芳香环结构,与铁有较强的络合能力,提高了陆源溶解性铁向水生态系统的有效输出。泥炭沼泽源酚铁配合物的生物可利用性对藻类生长及铁的生物地球化学循环有重要影响。本文通过一系列培养试验,研究了泥炭源典型酚铁络合物的藻类可利用性及其影响因素。结果表明,4种酚酸对藻类生长的影响均呈现“低促高抑”的规律,从藻类生物量和叶绿素含量来看,抑藻效果从高到低:水杨酸>对羟基苯甲酸>对香豆酸>咖啡酸。当水杨酸浓度达到20 mg·L−1时,对藻类的光合作用抑制最强。对照试验表明,水杨酸络合态铁更难被藻类利用,这与其络合物稳定性较高有关。利用不同分子量段泥炭源DOM-Fe的培养试验显示,对藻类生长的促进作用从高到低依次为:>3 KD,1—3 KD,<1 KD。低分子量DOM(<1KD )络合态铁,由于其在培养体系中更加稳定,相对不易被藻类利用。Abstract: Iron is a key trace element that affects the primary productivity of aquatic ecosystems. Pealands are generally rich in dissolved organic matter. Among them, phenolic acids have a stable aromatic ring structure and have a high complexing ability with iron, which improves the effective output of terrestrial dissolved iron to the water ecosystem. The bioavailability of the peat-derived phenol-iron complex has an important impact on the growth of algae and the biogeochemical cycle of iron. In this paper, through a series of culture experiments, the algae availability and influencing factors of typical phenolic iron complexes from peat sources were studied. The results show that the effects of the four phenolic acids on the growth of algae present the law of “low concentration promotes, and high concentration inhibits”. From the perspective of algal biomass and chlorophyll content, the algae inhibitory effect is from high to low: salicylic acid>p-hydroxybenzoic acid> To coumaric acid>caffeic acid. When the concentration of salicylic acid reaches 20 mg·L−1, the photosynthesis inhibition of algae is the strongest. Control experiments show that the iron in the complexed form of salicylic acid is more difficult to be used by algae, which is related to the higher stability of the complex. Cultivation experiments using peat DOM-Fe of different molecular weights showed that the promotion of algae growth from high to low was: >3 KD, 1—3 KD, <1 KD. Low molecular weight DOM (<1 KD) complexed iron, because it is more stable in the culture system, is relatively difficult to be used by algae.
-
Key words:
- peat /
- phenolic acid /
- iron /
- microcystic aeruginosa /
- bioavailability
-
表 1 铜绿微囊藻的Fv/Fm
Table 1. Fv/Fm of Microcystis aeruginosa
对羟基苯甲酸
P-hydroxybenzoic acid对香豆酸
P-coumaric acid水杨酸
Salicylic acid咖啡酸
Caffeic acid0
10×10−6
20×10−6
40×10−6
60×10−6
80×10−60.308
0.310
0.292
0.302
0.039
0.0000.308
0.310
0.314
0.324
0.049
0.0000.308
0.309
0.023
0.014
0.000
0.0000.308
0.331
0.276
0.360
0.038
0.000注:0—80×10−6分别对应添加的4种酚酸浓度,表中数据是在微囊藻培养期结束时测得的Fv/Fm。 Note: 0—80×10−6 respectively correspond to the four added phenolic acid concentrations. The data in the table are the Fv/Fm measured at the end of the Microcystis culture period. 表 2 铜绿微囊藻叶绿素含量(g·L-1)
Table 2. Chlorophyll content of Microcystis aeruginosa
对羟基苯甲酸
P-hydroxybenzoic acid对香豆酸
P-coumaric acid水杨酸
Salicylic acid咖啡酸
Caffeic acid0
10×10−6
20×10−6
40×10−6
60×10−6
80×10−60.568
1.014
1.138
0.775
0.000
0.0000.568
0.737
0.862
0.568
0.000
0.0000.568
0.796
0.009
0.000
0.000
0.0000.568
2.093
2.201
1.359
0.000
0.000注:0—80×10−6分别对应添加的4种酚酸浓度,表中数据是微囊藻培养期结束时测得的叶绿素含量。 Note: 0—80×10−6 respectively correspond to the four phenolic acid concentrations added. The data in the table is the chlorophyll content measured at the end of the Microcystis culture period. 表 3 第11天不同试验组微囊藻浓度变化的相关性矩阵
Table 3. Correlation matrix of changes in the concentration of Microcystis in different test groups on the 11th day
1_3 Fe1_3 A B C D E F G H 1_3 1 0.963 0.971 −0.358 0.474 0.657 0.246 0.461 0.983 0.491 Fe1_3 0.963 1.00 1.000* −0.095 0.221 0.835 −0.022 0.682 0.996 0.707 A 0.971 1.000* 1.00 −0.126 0.251 0.818 0.008 0.659 0.999* 0.685 B −0.358 −0.095 −0.126 1.00 −0.992 0.468 −0.993 0.663 −0.179 0.637 C 0.474 0.221 0.251 −0.992 1.00 −0.352 0.970 −0.563 0.302 −0.534 D 0.657 0.835 0.818 0.468 −0.352 1.00 −0.569 0.972 0.785 0.979 E 0.246 −0.022 0.008 −0.993 0.970 −0.569 1.00 −0.746 0.062 −0.723 F 0.461 0.682 0.659 0.663 0.663 0.972 −0.746 1.00 0.618 0.999* G 0.983 0.996 0.999* −0.179 0.302 0.785 0.062 0.618 1.00 0.645 H 0.491 0.707 0.685 0.637 −0.534 0.979 −0.723 0.999* 0.645 1.00 注:*. 在 0.05 水平(双侧)上显著相关。Notes:*. Significant correlation at 0.05(bilateral) level. 表 4 第11天不同试验组铜绿微囊藻生长浓度变化的相关性矩阵
Table 4. Correlation matrix of growth concentration changes of Microcystis aeruginosa in different test groups on the 11th day
A B C D E A 1 −.751 .350 −.167 .770 B −.751 1 −.881 .776 −.158 C .350 −.881 1 −.982 −.327 D −.167 .776 −.982 1 .500 E .770 −.158 −.327 .500 1 注:*. 在 0.05 水平(双侧)上显著相关. Notes:*. Significant correlation at 0.05(bilateral) level. -
[1] GEIDER R J. Biological oceanography: Complex lessons of iron uptake [J]. Nature, 1999, 400(6747): 815. doi: 10.1038/23582 [2] BILLER D V, BRULAND K W. The central california current transition zone: A broad region exhibiting evidence for iron limitation [J]. Progress in Oceanography, 2014, 120: 370-382. doi: 10.1016/j.pocean.2013.11.002 [3] WATSON A, LISS P, DUCE R. Design of a small‐scale in situ iron fertilization experiment [J]. Limnology and Oceanography, 1991, 36(8): 1960-1965. doi: 10.4319/lo.1991.36.8.1960 [4] DAI M H, MARTIN J M. First data on trace metal level and behaviour in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia [J]. Earth and Planetary Science Letters, 1995, 131(3-4): 127-141. doi: 10.1016/0012-821X(95)00021-4 [5] COALE K H, FITZWATER S E, GORDON R M, et al. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean [J]. Nature, 1996, 379(6566): 621. doi: 10.1038/379621a0 [6] MARTIN J H, FITZWATER S E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic [J]. Nature, 1988, 331(6154): 341. doi: 10.1038/331341a0 [7] 穆景利, 韩建波, 霍传林, 等. 海洋铁施肥研究进展 [J]. 海洋环境科学, 2011, 30(2): 282-286. doi: 10.3969/j.issn.1007-6336.2011.02.031 MU J L, HAN J B, HUO C L, et al. Study progress on ocean iron fertilization [J]. Marine Environmental Science, 2011, 30(2): 282-286(in Chinese). doi: 10.3969/j.issn.1007-6336.2011.02.031
[8] RAVEN J A, GEIDER R J. Temperature and algal growth [J]. New Phytologist, 1988, 110(4): 441-461. doi: 10.1111/j.1469-8137.1988.tb00282.x [9] GREGG W W, CONKRIGHT M E. Decadal changes in global ocean chlorophyll[J]. Geophysical Research Letters, 2002, 29(15): 20-1–20-4. [10] KONDO Y, TAKEDA S, FURUYA K. Distinct trends in dissolved Fe speciation between shallow and deep waters in the Pacific Ocean [J]. Marine Chemistry, 2012, 134: 18-28. [11] KUHN K M, MAURICE P A, NEUBAUER E, et al. Accessibility of humic-associated Fe to a microbial siderophore: Implications for bioavailability [J]. Environmental Science & Technology, 2014, 48(2): 1015-1022. [12] BLAZEVIC A, ORLOWSKA E, KANDIOLLER W, et al. Photoreduction of terrigenous Fe‐Humic substances leads to bioavailable iron in oceans [J]. Angewandte Chemie International Edition, 2016, 55(22): 6417-6422. doi: 10.1002/anie.201600852 [13] KRACHLER R, KRACHLER R F, von der KAMMER F, et al. Relevance of peat-draining rivers for the riverine input of dissolved iron into the ocean [J]. The Science of the Total Environment, 2010, 408(11): 2402-2408. doi: 10.1016/j.scitotenv.2010.02.018 [14] WANG Y, XIANG W, YANG W, et al. Photo-stability of iron-phenolic complexes derived from peatland upon irradiation in waters under simulated sunlight [J]. Chemical Geology, 2018, 485: 14-23. doi: 10.1016/j.chemgeo.2018.03.016 [15] HARWOOD C S, PARALES R E. The beta-ketoadipate pathway and the biology of self-identity [J]. Annual Review of Microbiology, 1996, 50: 553-590. doi: 10.1146/annurev.micro.50.1.553 [16] WU Y, XIANG W, FU X F, et al. Geochemical interactions between iron and phenolics originated from peatland in Hani, China: Implications for effective transport of iron from terrestrial systems to marine [J]. Environmental Earth Sciences, 2016, 75(4): 1-12. [17] 倪利晓, 任高翔, 陈世金, 等. 酚酸和不饱和脂肪酸对铜绿微囊藻的联合作用 [J]. 环境化学, 2011, 30(8): 1428-1432. NI L X, REN G X, CHEN S J, et al. Study on joint action of phenolic acids and unsaturated fatty acids to Microcystis aeruginosa [J]. Environmental Chemistry, 2011, 30(8): 1428-1432(in Chinese).
[18] 吴安平, 张庭廷, 何梅, 等. 水杨酸对水华鱼腥藻的化感抑制作用及相关毒理学的初步研究 [J]. 生物学杂志, 2008, 25(5): 44-47. doi: 10.3969/j.issn.2095-1736.2008.05.013 WU A P, ZHANG T T, HE M, et al. A preliminary study on Anabena Flos-aquae minitigation of salicylic acid and its related toxicity [J]. Journal of Biology, 2008, 25(5): 44-47(in Chinese). doi: 10.3969/j.issn.2095-1736.2008.05.013
[19] 李慧. 植物多酚用于饮用水消毒的试验研究[D]. 北京: 北京建筑工程学院, 2005. LI H. The Study on Plant Polyphenols Used in Disinfection of Drinking Water. Beijing Institute of Architectural Engineering[D]. Beijing, Beijing Institute of Architectural Engineering, , 2005(in Chinese).
[20] KORNER S. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophyes [J]. Journal of Phycology, 2002, 38: 862-871. doi: 10.1046/j.1529-8817.2002.t01-1-02001.x [21] ORLOWSKA E, ROLLER A, PIGNITTER M, et al. Synthetic iron complexes as models for natural iron-humic compounds: Synthesis, characterization and algal growth experiments [J]. The Science of the Total Environment, 2017, 577: 94-104. doi: 10.1016/j.scitotenv.2016.10.109 [22] 陈辰, 何小定, 秦金舟, 等. 4种含笑叶片叶绿素荧光参数Fv/Fm特性的比较 [J]. 安徽农业大学学报, 2013(1): 32-37. CHEN C, HE X D, QIN J Z, et al. Comparison of chlorophyll fluorescence Fv/Fm characteristics of four Michelia trees [J]. Journal of Anhui Agricultural University, 2013(1): 32-37(in Chinese).
[23] ANNIKA J, GAKU K. Short-Term responses in maximum quantum yield of PSII (Fv/Fm) to ex situ temperature treatment of populations of bryophytes originating from different sites in Hokkaido, Northern Japan [J]. Plants, 2016, 5(2): 22. doi: 10.3390/plants5020022 [24] JOE M, CHRIS B. Iron utilization in marine cyanobacteria and eukaryotic algae [J]. Frontiers in Microbiology, 2012, 3(43): 1-13. [25] HOPKINSON B M, MOREL F M M. The role of siderophores in iron acquisition by photosynthetic marine microorganisms [J]. BioMetals, 2009, 22(4): 659-669. doi: 10.1007/s10534-009-9235-2 [26] ROSE A L, WAITE T D. Predicting iron speciation in coastal waters from the kinetics of sunlight-mediated iron redox cycling [J]. Aquatic Sciences, 2003, 65(4): 375-383. doi: 10.1007/s00027-003-0676-3 [27] ORLOWSKA E, ROLLER A, WIESINGER H, et al. Benzoic hydroxamate-based iron complexes as model compounds for humic substances: Synthesis, characterization and algal growth [J]. Royal Society of Chemistry Experiments, 2016, 6(46): 40238-40249. doi: 10.1039/C5RA25256C [28] SANTANA-CASIANO J M, GONZALEZ-DAVLIA M , MILLERO F J. Comment on “oxygenation of Fe(II) in natural waters revisited: Kinetic modelling approaches, rate constant estimation and the importance of various reaction pathways”by pham and waite (2008) [J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5150-5153. doi: 10.1016/j.gca.2009.12.032 [29] WELLS M L, ZORKIN N G, LEWIS A G. The role of colloid chemistry in providing a source of iron to phytoplankton [J]. Journal of Marine Research, 1983, 41: 731-746. doi: 10.1357/002224083788520478 [30] 黄玉冰, 赵甜甜, 向武, 等. 大九湖泥炭沼泽源铁有机配合物的络合稳定性及其生态环境意义[J]. 地球科学, 2021, 46(5): 1862-1870. ZHUANG Y B, HAO T T , XIANG W, et al. Stability of organic iron complexes in Dajiuhu Peats and its ecological significance[J]. Earth Science, 2021, 46(5): 1862-1870 (in Chinese).