基于AQUATOX模型的集装箱养殖尾水净化塘生态系统模拟及调控预测

冯丽娟, 肖耿锋, 程香菊, 谢骏, 舒锐. 基于AQUATOX模型的集装箱养殖尾水净化塘生态系统模拟及调控预测[J]. 环境工程学报, 2022, 16(5): 1525-1536. doi: 10.12030/j.cjee.202201082
引用本文: 冯丽娟, 肖耿锋, 程香菊, 谢骏, 舒锐. 基于AQUATOX模型的集装箱养殖尾水净化塘生态系统模拟及调控预测[J]. 环境工程学报, 2022, 16(5): 1525-1536. doi: 10.12030/j.cjee.202201082
FENG Lijuan, XIAO Gengfeng, CHENG Xiangju, XIE Jun, SHU Rui. Simulation and regulation prediction of container aquaculture wastewater-ponds ecosystem based on AQUATOX model[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1525-1536. doi: 10.12030/j.cjee.202201082
Citation: FENG Lijuan, XIAO Gengfeng, CHENG Xiangju, XIE Jun, SHU Rui. Simulation and regulation prediction of container aquaculture wastewater-ponds ecosystem based on AQUATOX model[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1525-1536. doi: 10.12030/j.cjee.202201082

基于AQUATOX模型的集装箱养殖尾水净化塘生态系统模拟及调控预测

    作者简介: 冯丽娟(1997—),女,硕士研究生,13719469258@163.com
    通讯作者: 程香菊(1974—),女,博士,教授, chengxiangju@scut.edu.cn
  • 基金项目:
    国家重点研发计划“蓝色粮仓科技创新”专项(2019YFD0900302);清华大学水沙科学与水利水电工程国家重点实验室开放研究基金资助课题(sklhse-2021-B-02);广州市科技计划项目(202102020254)
  • 中图分类号: X714

Simulation and regulation prediction of container aquaculture wastewater-ponds ecosystem based on AQUATOX model

    Corresponding author: CHENG Xiangju, chengxiangju@scut.edu.cn
  • 摘要: 为解决传统养殖中养殖尾水的环境污染问题,促进池塘养殖可持续发展,基于新建的集装箱式循环水养殖系统,构建了三级养殖尾水净化塘水生态系统模型,对池塘水质、浮游植物及水生动物生物量以及池塘生态系统的演变进行了为期6个月的模拟预测,并设置添加沉水植物和添加低密度滤食性鱼类2种情景模拟。结果表明:水质模拟值的变化趋势与实测值基本一致,模拟值与实测值的平均相对误差为4.98% ~ 23.37%;模拟预测的设定条件下和模拟时段中,池塘生态系统的结构趋于稳定,形成以绿藻为主的藻类群落、以摇蚊和桡足类为主的水生动物群落;在尾水净化塘中,添加沉水植物对氮磷去除效果不明显,但对增加水体中溶解氧质量浓度作用明显,3个池塘溶解氧变化率最大值分别为23.11%、45.39%和77.90%;添加低密度滤食性鱼类有助于浮游植物的生长,3个池塘硅藻生物量的最大增幅为89.80%、47.22%和22.06%,绿藻生物量的最大增幅为76.95%、54.05%和23.29%,蓝藻生物量的最大增幅为45.99%、33.37%和20.30%。综上所述,基于AQUATOX构建串联的尾水净化塘水生态系统模型并模拟培植沉水植物和添加低密度滤食性鱼类的生物处理方法,不仅能够为管理者调整喂养结构提供借鉴与帮助,也可用于调控水生态系统组分,有利于水生态系统功能的恢复和平衡。本研究结果可为管理集装箱式循环水养殖模式的喂养结构、构建尾水净化塘生态系统、改进其他利用生物处理技术处理养殖尾水的养殖模式提供参考。
  • 当前全球人口不断增长,但土壤质量却不断下降,现代文明再次面临粮食危机[1]。过去几十年,污水灌溉、采矿、冶炼、废弃物处理、以及农药、化肥大量使用等人类活动导致土壤重金属积累与超标[2-3],继而影响着农产品安全,威胁着人类健康。土壤治理方法中原位稳定化技术因其具有成本低、见效快、操作简便、对污染点位扰动较小等优势而得到了广泛应用 [4]。但该技术使用的常见修复剂大多存在一定的缺陷,如石灰类材料碱性太强,易造成土壤板结;含磷矿物材料使用不当会间接造成水体污染;黏土矿物成分单一、有效活性组分较低,存在施用量过大等问题 [5]。因此合理选择或开发高效、经济、环境友好的修复剂是原位稳定化技术的关键[6]

    近年来,水铁矿-腐殖酸(Fh-HA)复合材料的制备及应用受到了广大学者的研究[7-9]。相较于单一修复剂而言,复合材料更能满足各种不同要求[10]。多种材料在性能上相互取长补短, 产生协同效应,使复合材料的综合性能往往优于原组成材料[11]。腐殖酸的引入,增加了水铁矿的官能团种类,改变了比表面积,并增大了孔径尺寸;此外,水铁矿在此过程中晶格结构不变,没有向其他铁氧化物转变[12]。腐殖酸仅存在于水铁矿的晶格夹缝间,阻碍水铁矿结晶转化,同时也减缓自身在土壤中的矿化降解[13],因此Fh-HA在稳定土壤重金属方面具有优越的性能。但是腐殖酸在一定条件下,具有较高的溶解性 [14-15],重金属离子在Fh-HA复合物表面的吸附也受到腐殖酸溶解性的影响[16]。自然环境下的酸雨、水淹等现象都可能导致腐殖酸溶解,引起复合材料结构破坏,吸附的重金属再次活化。溶解性腐殖酸与水铁矿的相互作用也会明显增强水铁矿中重金属的释放[17]。若对腐殖酸进行高温改性可使其羟基和羧基等官能团发生脱水反应,增强疏水性,达到不溶的目的[18],从而提高复合材料的稳定性。虽然改性过程减少了腐殖酸可用于吸附重金属的酸性基团,但对于酸性基团的金属络合常数并没有影响[19]。马明广[20]、陈荣平[21]等制备热改性腐殖酸吸附水中重金属,均展现出了高吸附效率,并且不易损失、可以重复利用。由此本文提出一种将腐殖酸高温改性形成不溶性腐殖酸,再与水铁矿结合成更稳定的Fh-IHA复合材料的思路。

    目前Fh-IHA对自然环境下碱性土壤重金属的吸附性能以及土壤基本理化性质的影响鲜有研究。然而评价修复材料稳定污染土壤重金属的效果时,不仅要关注重金属有效性,还要关注其本身对土壤基本理化性质的影响。因此本研究以甘肃白银某Cd、Pb污染农田为试验区,进行田间稳定化试验,旨在为重金属污染防控提供一种环境友好的修复材料。主要内容如下:(1)采用高温改性腐殖酸与水铁矿制备成Fh-IHA复合材料,并通过扫描电子显微镜、X射线衍射、傅里叶红外光谱、比表面积与Fh-HA进行表面性能对比分析;(2)经田间稳定化试验,分析Fh-IHA对土壤pH值,有机质,铵态氮、速效磷、有效钾的影响;(3)根据改进BCR法,探讨处理后污染土壤中Cd、Pb的形态变化特征,掌握Fh-IHA对重金属Cd、Pb的稳定规律。

    不溶性腐殖酸:腐殖酸购买于山东西亚化学股份有限公司(C含量为52.9%),将其置于马弗炉,在400 ℃温度下加热1 h,待其自然冷却后用2 mol·L−1 CaCl2溶液浸泡处理,然后抽滤,再用1 mol·L−1 NaNO3溶液和蒸馏水反复洗涤,烘干。最终所得固体为不溶性腐殖酸,储存在密封玻璃瓶中待用[22]

    Fh-HA复合材料(C/Fe=0.5,物质的量比):将FeCl3·6H2O、腐殖酸分别溶于水、NaOH溶液,再将二者混合,然后通过NaOH溶液快速将混合溶液pH调节至7.5。搅拌2 h后,将混合物静置分层后虹吸除去上清液,沉淀物用去离子水清洗离心,最后用真空冷冻干燥机冷冻干燥48 h后密封冷藏于4 ℃条件下备用。

    Fh-IHA复合材料(C/Fe=0.5,物质的量比):采用不溶性腐殖酸,其余步骤与制备Fh-HA复合材料相同。

    试验田位于甘肃白银某Cd、Pb污染农田,土壤呈碱性,气温低、温差大、降水量少,其基本理化性质见表1。全铅含量为95.47 mg·kg−1,全镉含量为 10.93 mg·kg−1,与《土壤环境质量 农用地污染镉污染风险管控标准(试行)》(GB 15618—2018)相比,该农田属于重度Cd污染、轻微Pb污染。稳定试验在田间进行,分别处理3处半径为0.3 m、深0.6 m的土壤。空白对照(CK)为不添加钝化剂的混合土壤,#1、#2、#3为添加 3 % (W/W)Fh-IHA处理的不同点位土壤。土壤充分混匀后装于Ф10 cm×60 cm的有机玻璃土柱中置于田间稳定化 90 d,土柱上覆盖塑料膜(扎孔通气)进行保湿,期间分别在10、20、30、60、90 d采样,各处理一式三份,密封装袋带回实验室分析。

    表 1  土壤基本理化性质
    Table 1.  Basic physical and chemical properties of soil
    pH阳离子交换量/(cmol·kg-1)CEC有机质/(g·kg−1) OM铵态氮/(mg·kg−1)A-N有效磷/(mg·kg−1)A-P速效钾/(mg·kg−1)A-K镉/(mg·kg-1)Cd铅/(mg·kg-1)Pb
    8.158.837.5529.5742.70129.4210.9395.47
     | Show Table
    DownLoad: CSV

    Fh-HA与Fh-IHA的微观形貌通过低真空扫描电子显微镜(JSM-5600LV)在6000倍下观察;比表面积是以N2吸附/脱附的BET法用比表面积分析仪(ASAP 2020)测定;傅里叶变换红外光谱在扫描范围为400—4000 cm−1之间,分辨率为8 cm−1下用傅里叶变换红外光谱仪(NEXUS 670)分析;X射线衍射是将样品用玛瑙研钵研磨并过筛后放入药瓶槽内,以(2θ)0.02° 为增量,从(2θ)10° 到80° 用粉末X射线衍射仪(JSM-5600LV)扫描。

    土壤pH值采用电位法(HJ 962—2018)以水土比为1:2.5(W/V),室温下剧烈振荡2 min,静止30 min后用pH计测定;土壤有机质采用重铬酸钾滴定法(NY/T 1121.6—2006),以过量重铬酸钾-硫酸溶液氧化0.5 g土壤有机碳,然后用硫酸亚铁滴定消耗量计算;土壤铵态氮、有效磷、速效钾采用联合浸提比色法(NY/T 1848—2010),称取2.5 g风干土样,加入无磷活性炭与土壤联合浸提剂,在25 ℃、220 r·min−1下振荡 10 min过滤,滤液用于测定;土壤Cd和Pb总量是通过向土壤中按体积比5:1:1添加HNO3、HF和H2O2后用微波消解仪(MARS6)消解,然后将消解液用火焰原子吸收光谱仪(ZEEnitt700P)测定;土壤Cd、Pb酸可溶态、可还原态、可氧化态以及残渣态的测定是通过称取1 g风干土样按照改进BCR连续浸提法[23]分步提取。

    3次重复试验结果的平均值和标准偏差由Microsoft Office Excel 2010计算,并用Origin 2018进行作图。使用SPSS25.0软件进行单因素方差分析,当两组数据间存在显著性差异(P<0.05)时,采用最小显著性差异检验进行多重比较。

    Fh-IHA与Fh-HA的X射线衍射(XRD)图谱如图1所示。两种材料在2θ为35° 和62°附近显示出两个宽峰,与2-线水铁矿的标准衍射卡片(PDF 29—0712)基本一致,表明实验室制备的Fh-IHA与Fh-HA的晶体结构与2-线水铁矿的晶体结构相同,是一种低序的铁(氢)氧化物[24]。由图可以发现,制备的材料没有出现尖锐的衍射峰,峰型相对宽化,表明材料的结晶度较低,这也说明水铁矿没有发生结晶转化,腐殖酸与水铁矿成功复合。对比Fh-HA,Fh-IHA的衍射峰没有明显变化,也没有出现新的峰,说明热改性腐殖酸不会影响复合材料的晶体结构。该结果也得到了Shimizu [25]、Liang 等[26]的证实。经比表面积分析测定,Fh-HA的比表面积为258.9 m2·g−1,经过腐殖酸改性后Fh-IHA的比表面积增加到288.5 m2·g−1。观察扫描电子显微镜(SEM)图(图2)可以看出,比表面积的不同是由于两种复合材料的表面形貌具有明显差异导致。Fh-HA表面呈现出相对规则、光滑的形貌;而Fh-IHA表面更为粗糙,附着有不规则的细小颗粒,因此具有更大的比表面积。优化腐殖酸使复合材料具有更为优越的表面性质,相比凹凸棒石/纳米铁、沸石/纳米零价铁镍、腐殖酸/海泡石等复合材料[27-29],Fh-IHA的比表面积也更大。高比表面积可以使Fh-IHA复合材料暴露更多的功能基团,为重金属提供更多的物理吸附空间和化学吸附活性位点,从而增强吸附重金属的能力[30]

    图 1  Fh-HA 和 Fh-IHA的X射线衍射图谱
    Figure 1.  X-ray diffraction pattern of the Fh-HA and Fh-IHA
    图 2  Fh-HA和 Fh-IHA的扫描电镜图(×6000倍)
    Figure 2.  Scanning electron microscopy of the Fh-HA and Fh-IHA(×6000 times)

    土壤的基本理化性质对重金属的活性及植物生长发育起着至关重要的作用[31-32]。在酸性土壤中,常通过添加材料提高土壤pH值,来降低重金属的活性;而对于碱性土壤,pH提高过大会造成土壤过碱,不利于植物生长[33]。本研究中添加Fh-IHA复合材料处理 90 d后,3个土柱中土壤pH值总体上轻微降低。结果如图3a所示,稳定后3个土柱中土壤pH仍为碱性,相比土壤初始pH值,#1号土柱仅微弱变化了0.01个单位(P<0.05),#2、#3号土柱分别降低了0.06和0.16个单位(P<0.05),3个土柱中土壤pH值总体上呈现降低的趋势,但降低幅度相对较小。这一方面可能是由于土壤本身具有一定的酸碱缓冲性[34] ,另一方面主要是水铁矿对H+具有亲和力,而腐殖酸是一种带负电荷的胶体粒子,二者相互作用下一定程度上抵消了对土壤pH的影响[7],因此在碱性土壤中Fh-IHA复合材料不会因为改变土壤的酸碱环境而影响重金属的活性。

    图 3  Fh-IHA处理90 d后土壤pH值(a)、有机质含量(b)和养分含量(c)的变化
    Figure 3.  Changes of soil pH value, organic matter content and nutrient content after 90 days of treatment with Fh-IHA

    有机质是反映土壤肥力的重要特征。图3b显示了添加Fh-IHA复合材料处理90 d后,土壤中有机质含量的变化。与空白对照相比,#1、#2、#3土柱中土壤有机质含量显著变化(P<0.05), 从7.55 g·kg−1分别升高到了9.96、9.24、9.39 g·kg−1。这是因为不溶性腐殖酸本身属于有机物质,材料的添加增加了土壤中有机碳的含量;另一方面Fh-IHA特殊的表面性质可以吸附有机分子胶结土壤粘粒形成团聚体,减少微生物与有机质的接触,起到减缓土壤有机质的降解作用[35]

    Fh-IHA复合材料处理 90 d后,土壤中铵态氮、速效磷、有效钾含量的变化由图3c所示。与空白对照相比,3种养分均呈现出显著降低(P<0.05),3个土柱土壤中铵态氮分别从 29.57 mg·kg−1 降低为22.82、22.21、22.22 mg·kg−1,有效磷含量从42.70 mg·kg−1 降低为9.84、11.60、20.31 mg·kg−1,速效钾含量则由129.42 mg·kg−1 分别降低到82.11、78.08、84.80 mg·kg−1。铵态氮、速效钾中NH4+、K+能与Fh-IHA形成的土壤胶体进行阳离子交换,而有效磷在土壤中多以H2PO4形式存在,H2PO4也可通过取代-OH的配体交换而与腐殖酸-铁络合物结合,从而导致3种速效养分变成移动性较小、不易流失的缓效养分[36-37]。因此添加Fh-IHA后土壤中铵态氮、有效磷、速效钾含量呈现出了显著降低。但同时有研究显示在分泌有机酸的植物根系作用以及微生物的活动下,部分缓效养分又可被活化释放[38],表明添加Fh-IHA复合材料有利于土壤中养分的高效利用,促进植物的生长发育。

    土壤中重金属所赋存的化学形态影响着其迁移能力和生物活性,酸可溶态具有较高活性,容易被植物吸收,而残渣态则已经进入土壤晶体物质的晶格中,即使环境改变一般也难以活化[39],可氧化态与可还原态重金属往往只有在土壤性质发生重大变化时才能在土壤中释放 [40]。本试验研究区域位于西北干旱地区,土壤呈碱性,生物活性较低,自然环境相对稳定,由此本研究将可还原态、可氧化态与残渣态统一归为稳定态,以酸可溶态为活性态。添加Fh-IHA复合材料处理90 d后土壤中活性态Cd百分比含量明显降低,稳定态Cd含量升高,稳定效果显著(P<0.05)。具体结果如图4a所示,与空白对照相比,3个土柱中土壤活性态Cd百分比含量分别为45.2%、45.1%、51.1%,显著降低了25.9%—31.9%,降幅达到33.6%—41%;稳定态Cd百分比含量显著增加了22.1%—34.0%,增幅达到96%—148%。具体而言,未经处理情况下土壤中Cd化学形态主要集中在酸可溶态,占总Cd含量的77.0%。经Fh-IHA复合材料处理90 d后,各土柱Cd赋存形态具体表现为酸可溶态与可氧化态转化为可还原态与残渣态,可氧化态Cd由5.1%降低到了0.9%—1.4%,可还原态与残渣态Cd分别由9.7%、8.3%增加到了18.7%—19.2%与34.4%—38.5%。温鑫[41]研究了腐殖酸、有机肥、沸石、海泡石、硅藻土等多种材料单一以及组合添加处理Cd污染土壤,最佳效果为活性态Cd降低2.01%—3.35%,其中腐殖酸单一添加甚至对土壤Cd产生了活化作用。相比之下,Fh-IHA复合材料对土壤中Cd展现出更好的稳定效果,这可能是因为复合材料同时具有多重稳定机制,并且可以弥补单一或组配添加下材料本身存在的缺陷。而腐殖酸既能促进也能抑制土壤Cd的活性[14],这是因为腐殖酸含有多种活性官能团,可与重金属结合,但同时自然环境下腐殖酸不够稳定,容易被矿化分解为有机酸,即使在高pH下也能促进土壤中Cd的释放[42],这也正是腐殖酸需要进行改性的原因之一。

    图 4  稳定90 d后Fh-IHA对Cd(a)、Pb(b)含量的影响
    Figure 4.  The effects of content of Cd(a) and Pb(b) by Fh-IHA after 90 days of stabilization

    Fh-IHA复合材料处理90 d后土壤中活性态Pb百分比含量明显降低,稳定态Pb含量明显升高,稳定效果显著(P<0.05)。结果如图4b所示,与空白对照相比,3个土柱中活性态Pb百分比含量分别降低为7.4%、12.2%、6.4%,显著降低了9.2%—15%,降幅达到43.0%—70.1%;稳定态Pb百分比含量显著增加了15.6%—21.4%,增幅达到19.8—27.2%。具体而言,土壤中Pb各形态百分比含量与Cd展现出了不同的情形,在未经处理情况下,Pb主要集中在可还原态,占总含量的72.2%,而酸可溶态Pb仅占总含量的21.4%。经Fh-IHA复合材料处理90 d后,3个土柱具体表现为由酸可溶态与可还原态Pb转化为可氧化态与残渣态Pb,可还原态Pb由72.2%降低至46.8%—50.4%,可氧化态Pb呈现不规律的变化,残渣态Pb由1.8% 增加到了36.5%—39.4%。在土壤Pb稳定化方面,袁兴超等[43]分别在大田与盆栽环境下研究了钙镁磷肥、生物炭、石灰、腐殖酸、海泡石对Pb形态的影响,结果表明对残渣态Pb稳定效果较好的石灰与生物炭分别增加23.7%、20.8%。而本研究在Fh-IHA处理下残渣态Pb由1.8%显著增加到了36.5%—39.4%,表明Fh-IHA对Pb也同样具有较好的稳定效果,可同时应用于治理Cd、Pb复合污染土壤。Fh-IHA复合材料处理10 d后土壤Cd、Pb的各化学形态变化就基本稳定(图5),之后在长达90 d的监测中土壤Cd浓度保持不变,土壤Pb呈现出由活性态Pb向稳定态Pb轻微转化的趋势。 Cd、Pb均未见活化迹象,三个土柱表现基本一致。现阶段大量的重金属稳定研究监测时间在60 d以内[44-46],庞瑜[8]、赵立芳[47]分别在30和60 d的监测下验证了Fh-HA对土壤Cd、Pb的钝化效果,但部分处理出现了活化现象。这证明优化后的Fh-IHA复合材料具有较高的稳定性,充分表明了Fh-IHA可作为一种固定土壤中Cd、Pb重金属的理想稳定剂。

    图 5  各土柱Cd、Pb形态百分比随时间的变化趋势
    Figure 5.  The variation trend of Cd and Pb form percentage in each soil column over time

    傅里叶红外光谱(FTIR)可用来显示物质中涉及的主要键的特征吸收带,Fh-IHA复合材料的分析结果如图6所示。通过对比红外特征谱图库中化学键的特征波数,Fh-IHA在916.1 cm−1与692.3 cm−1处出现特征峰,这归因于Fe—OH和Fe—O键的伸缩振动,对应水铁矿表面羟基及氧配位根[48],而 539.9 cm−1 和 470.6cm−1处特征峰,则表明存在芳族C—H的平面外弯曲振动,1103.1 cm−1为羟基的C—O振动,1376.9 cm−1处为醇O—H的弯曲振动、1587.2 cm−1处为C=C伸缩振动,1701.1 cm−1处为羧基中的C=O伸缩振动,3403.8 cm−1、3695.4 cm−1处主要为O—H与N—H的伸缩振动。Fh-IHA复合材料相比水铁矿的红外光谱图[49]具有更多的特征峰,增加的特征峰主要由不溶性腐殖酸结构中羧基、醇羟基、酚羟基以及氨基等官能团结构上的特殊化学键产生,而活性官能团可通过吸附、络合等作用与环境中的重金属离子形成配位化合物[16]。不同的官能团与金属离子之间的结合能力不同,腐殖酸与重金属离子之间的作用基团,最主要的是酚羟基和羧基[50]。此外,铁(氢)化物表面大量的两性基团通过去质子化作用形成的可变电荷也可与重金属离子发生表面配合,产生吸附[16]。Fh-IHA复合材料由不溶性腐殖酸与水铁矿复合而成,因此能够实现两种交互作用方式,水铁矿、不溶性腐殖酸通过表面络合、静电吸附作用结合Cd2+、Pb2+,从而达到有效降低土壤中活性态Cd、Pb的目的。其可能的稳定作用过程由图7所示。

    图 6  Fh-IHA的FTIR光谱图
    Figure 6.  FTIR spectra of Fh-IHA
    图 7  Fh-IHA 稳定Cd、Pb的作用过程
    Figure 7.  Fh-IHA stabilizes the action process of Cd and Pb

    (1)Fh-IHA复合材料表面性质优越,是良好的重金属稳定材料。优化后的Fh-IHA仍保持2-线水铁矿的晶体特征,结构稳定。与Fh-HA相比,Fh-IHA具有更粗糙的表面和更大的比表面积,可以提供更多的吸附空间和活性位点,有利于稳定Cd、Pb重金属。

    (2)Fh-IHA复合材料添加到碱性重金属污染土壤中,有利于改善土壤理化性质。经田间试验显示,添加Fh-IHA后土壤pH轻微降低,土壤有机质含量显著提高,并促进土壤中铵态氮、有效磷、速效钾的固存,减少了土壤中速效养分的流失。

    (3)Fh-IHA复合材料能有效降低土壤中Cd、Pb重金属的活性,且见效快、稳定性高。Fh-IHA通过丰富的活性官能团与土壤中Cd2+、Pb2+发生表面络合、静电吸附作用,使得土壤中稳定态Cd、Pb百分比含量显著升高了22.1%—34.0%、15.6%—21.4%,可作为一种环境友好的土壤重金属污染修复材料。

  • 图 1  中试实验基地示意图

    Figure 1.  Schematic diagram of experimental base

    图 2  AQUATOX模型基本原理

    Figure 2.  Basic principle of AQUATOX model

    图 3  尾水净化塘水质率定及验证结果

    Figure 3.  Water quality calibration and validation results of wastewater-ponds

    图 4  预测阶段模拟结果

    Figure 4.  Simulation results of prediction stage

    图 5  水质理化指标和水生生物的变化幅度模拟结果

    Figure 5.  Simulation results of variation of physicochemical indexes and aquatic organisms

    图 6  水生生物的生物量变化幅度模拟结果

    Figure 6.  Simulation results of biomass variation of aquatic organisms

    图 7  实际生产基地添加沉水植物和滤食性鱼类的尾水净化塘水质理化指标

    Figure 7.  Physical and chemical indexes of wastewater-purification-ponds with adding submerged plants and filter-feeding fish in actual production base

    表 1  三级池塘主要物理特征参数

    Table 1.  Physical characteristics of the three ponds

    尾水净化塘水体体积/m3水面长/m水面宽/m池底长/m池底宽/m最大水深/m平均水深/m水力停留时间/d
    1#池塘170.259.0014.005.0010.002.001.350.142
    2#池塘170.259.0014.005.0010.002.001.350.142
    3#池塘727.8923.0014.0016.007.003.502.260.607
    尾水净化塘水体体积/m3水面长/m水面宽/m池底长/m池底宽/m最大水深/m平均水深/m水力停留时间/d
    1#池塘170.259.0014.005.0010.002.001.350.142
    2#池塘170.259.0014.005.0010.002.001.350.142
    3#池塘727.8923.0014.0016.007.003.502.260.607
    下载: 导出CSV

    表 2  摄食者的捕食偏好百分比

    Table 2.  Preference percentage of predator for prey

    食物种类轮虫/%桡足类/%摇蚊/%正颤蚓/%
    沉积物稳定碎屑50.0
    沉积物不稳定碎屑83.350.0
    颗粒状稳定碎屑
    颗粒状不稳定碎屑100.022.2
    硅藻33.316.7
    绿藻22.2
    蓝藻22.2
    食物种类轮虫/%桡足类/%摇蚊/%正颤蚓/%
    沉积物稳定碎屑50.0
    沉积物不稳定碎屑83.350.0
    颗粒状稳定碎屑
    颗粒状不稳定碎屑100.022.2
    硅藻33.316.7
    绿藻22.2
    蓝藻22.2
    下载: 导出CSV

    表 3  浮游植物重要参数率定结果

    Table 3.  Calibration results of the important parameters of phytoplankton

    浮游植物种类饱和光强/(kWh·(m2·d)−1)磷的半饱和参数/(mg·L−1)氮的半饱和参数/(mg·L−1)最适温度/℃最大光合速率/d−1沉降速率/(m·d−1)
    硅藻0.2620.060.12201.870.01
    绿藻0.5810.10.8221.50.01
    蓝藻1.7440.030.4152.20.01
    浮游植物种类饱和光强/(kWh·(m2·d)−1)磷的半饱和参数/(mg·L−1)氮的半饱和参数/(mg·L−1)最适温度/℃最大光合速率/d−1沉降速率/(m·d−1)
    硅藻0.2620.060.12201.870.01
    绿藻0.5810.10.8221.50.01
    蓝藻1.7440.030.4152.20.01
    下载: 导出CSV

    表 4  浮游动物和底栖动物重要参数率定结果

    Table 4.  Calibration results of the important parameters of zooplankton and benthic animals

    水生动物种类半饱和喂养参数/(mg·L−1)最大消耗率/(g·(g·d)−1)最小生物量最适温度/℃呼吸速率/d−1承载能力死亡系数/d−1干湿比
    浮游动物/(mg·L−1)底栖动物/(g·m−2)浮游动物/(mg·L−1)底栖动物/(g·m−2)
    轮虫0.550.1250.3440.085
    桡足类11.20.05260.2805
    摇蚊13011.50.042505
    正颤蚓10.5015051.3800.08
    水生动物种类半饱和喂养参数/(mg·L−1)最大消耗率/(g·(g·d)−1)最小生物量最适温度/℃呼吸速率/d−1承载能力死亡系数/d−1干湿比
    浮游动物/(mg·L−1)底栖动物/(g·m−2)浮游动物/(mg·L−1)底栖动物/(g·m−2)
    轮虫0.550.1250.3440.085
    桡足类11.20.05260.2805
    摇蚊13011.50.042505
    正颤蚓10.5015051.3800.08
    下载: 导出CSV

    表 5  矿化作用的重要参数率定结果

    Table 5.  Calibration results of the important parameters of mineralization

    数值及参考范围不稳定碎屑最大分解速率/(g·(g·d) −1)稳定碎屑最大分解速率/(g·(g·d) −1)最适温度/℃碎屑沉降速率/(m·d−1)碎屑降解的最小pH碎屑降解的最大pH
    数值0.080.04250.6958.5
    范围0.08~0.260.01~0.0425~308.5~9.5
    数值及参考范围不稳定碎屑最大分解速率/(g·(g·d) −1)稳定碎屑最大分解速率/(g·(g·d) −1)最适温度/℃碎屑沉降速率/(m·d−1)碎屑降解的最小pH碎屑降解的最大pH
    数值0.080.04250.6958.5
    范围0.08~0.260.01~0.0425~308.5~9.5
    下载: 导出CSV

    表 6  尾水净化塘拟合优度指数

    Table 6.  Values of the goodness-of-fit criteria of wastewater-ponds

    水质参数1#池塘拟合优度2#池塘拟合优度3#池塘拟合优度
    RMSEMREEFRMSEMREEFRMSEMREEF
    溶解氧0.750.068 70.761.210.105 10.571.480.126 40.41
    氨氮0.260.061 90.980.400.109 50.940.620.155 20.87
    硝酸盐氮0.620.049 80.990.640.053 60.991.030.070 30.98
    正磷酸盐0.740.154 20.890.810.146 60.850.760.153 40.87
    总氮2.270.108 40.671.850.128 20.802.380.102 80.58
    总磷1.390.233 70.821.390.220 60.821.320.222 20.82
    水质参数1#池塘拟合优度2#池塘拟合优度3#池塘拟合优度
    RMSEMREEFRMSEMREEFRMSEMREEF
    溶解氧0.750.068 70.761.210.105 10.571.480.126 40.41
    氨氮0.260.061 90.980.400.109 50.940.620.155 20.87
    硝酸盐氮0.620.049 80.990.640.053 60.991.030.070 30.98
    正磷酸盐0.740.154 20.890.810.146 60.850.760.153 40.87
    总氮2.270.108 40.671.850.128 20.802.380.102 80.58
    总磷1.390.233 70.821.390.220 60.821.320.222 20.82
    下载: 导出CSV
  • [1] 朱泽闻, 舒锐, 谢骏. 集装箱式水产养殖模式发展现状分析及对策建议[J]. 中国水产, 2019, 62(4): 28-30.
    [2] SUBASINGHE R, SOTO D, JIA J S. Global aquaculture and its role in sustainable development[J]. Reviews in Aquaculture, 2009, 1(1): 2-9. doi: 10.1111/j.1753-5131.2008.01002.x
    [3] 黄世明, 陈献稿, 石建高, 等. 水产养殖尾水处理技术现状及其开发与应用[J]. 渔业信息与战略, 2016, 31(4): 278-285.
    [4] 袁新程, 施永海, 徐嘉波, 等. 光合细菌与水生植物联合作用对暗纹东方鲀养殖尾水的净化效果[J]. 环境工程学报, 2021, 15(4): 1311-1320. doi: 10.12030/j.cjee.202009150
    [5] 刘梅, 原居林, 倪蒙, 等. “三池两坝”多级组合工艺对内陆池塘养殖尾水的处理[J]. 环境工程技术学报, 2021, 11(1): 97-106. doi: 10.12153/j.issn.1674-991X.20200153
    [6] LI Z F, YU E M, ZHANG K, et al. Water treatment effect, microbial community structure, and metabolic characteristics in a field-scale aquaculture wastewater treatment system[J]. Frontiers in Microbiology, 2020, 11: 1-13. doi: 10.3389/fmicb.2020.00001
    [7] 曾宪磊, 魏宝成, 刘兴国, 等. 基于Ecopath模型的复合养殖池塘构建[J]. 水产学报, 2018, 42(5): 711-719.
    [8] COSTA C M D B, MARQUES L D, ALMEIDA A K, et al. Applicability of water quality models around the world: A review[J]. Environmental Science and Pollution Research International, 2019, 26(36): 36141-36162. doi: 10.1007/s11356-019-06637-2
    [9] 冯斌, 李大鹏, 周琦, 等. 基于WASP模型计算尾水回用河道污染负荷[J]. 环境工程学报, 2014, 8(10): 4196-4202.
    [10] AKKOYUNLU A, KARAASLAN Y. Assessment of improvement scenario for water quality in Mogan Lake by using the AQUATOX model[J]. Environmental Science and Pollution Research International, 2015, 22(18): 14349-14357. doi: 10.1007/s11356-015-5027-0
    [11] COSTA C M D S, LEITE I R, ALMEIDA A K, et al. Choosing an appropriate water quality model: A review[J]. Environmental Monitoring and Assessment, 2021, 193(1): 1-15. doi: 10.1007/s10661-020-08746-9
    [12] PARK R A, CLOUGH J S, WELLMAN M C. AQUATOX: Modeling environmental fate and ecological effects in aquatic ecosystems[J]. Ecological Modelling, 2008, 213(1): 1-15. doi: 10.1016/j.ecolmodel.2008.01.015
    [13] 李建茹, 李兴, 李卫平, 等. 基于AQUATOX模型的乌梁素海富营养化模拟及控制研究[J]. 生态环境学报, 2020, 29(6): 1215-1224.
    [14] 李志斐, 谢骏, 王广军, 等. 珠江三角洲养殖池塘底栖动物群落结构及水质生物学评价[J]. 湖泊科学, 2017, 29(4): 896-906.
    [15] 李志斐, 谢骏, 张晓可, 等. 珠三角高产养殖池塘浮游动物群落结构及水质评价[J]. 水生生物学报, 2017, 41(5): 1071-1079. doi: 10.7541/2017.134
    [16] SIMSEK A, KUCUK K, BAKAN G. Applying AQUATOX for the ecological risk assessment coastal of black sea at small industries around Samsun, Turkey[J]. International Journal of Environmental Science and Technology, 2019, 16(9SI): 5229-5236.
    [17] 杨漪帆, 朱永青, 林卫青. 淀山湖蓝藻水华及其控制因子的模型研究[J]. 环境污染与防治, 2009, 31(6): 58-63. doi: 10.3969/j.issn.1001-3865.2009.06.017
    [18] SOURISSEAU S, BASSERES A, PERIE F, et al. Calibration, validation and sensitivity analysis of an ecosystem model applied to artificial streams[J]. Water Research, 2008, 42(4/5): 1167-1181.
    [19] 徐志嫱, 刘维, 赵洁, 等. 沉水植物对再生水景观水体水质变化的影响和净化效果[J]. 水土保持学报, 2012, 26(2): 214-219.
    [20] 唐汇娟, 谢平. 围隔中不同密度鲢对浮游植物的影响[J]. 华中农业大学学报, 2006, 51(3): 277-280. doi: 10.3321/j.issn:1000-2421.2006.03.015
    [21] WANG Q, XIA L, XU X, et al. Changes of phytoplankton and water quality under the regulation of filter-feeding fishes and submerged aquatic plants in a large-scale experiment[J]. Clean-Soil Air Water, 2015, 43(12SI): 1598-1608.
    [22] 李玲鹤, 吴锦忠, 秦路平. 水藓植物的综合利用[J]. 中国野生植物资源, 2007, 26(6): 16-19. doi: 10.3969/j.issn.1006-9690.2007.06.005
    [23] 王银平, 谷孝鸿, 曾庆飞, 等. 控(微囊)藻鲢、鳙排泄物光能与生长活性[J]. 生态学报, 2014, 34(7): 1707-1715.
    [24] ARAUZO M. Harmful effects of un-ionised ammonia on the zooplankton community in a deep waste treatment pond[J]. Water Research, 2003, 37(5): 1048-1054. doi: 10.1016/S0043-1354(02)00454-2
    [25] 林青, 由文辉, 徐凤洁, 等. 滴水湖浮游动物群落结构及其与环境因子的关系[J]. 生态学报, 2014, 34(23): 6918-6929.
    [26] 乔菁菁. 基于AQUATOX模拟的公园水体生态构建研究[D]. 北京: 北京林业大学, 2017.
    [27] ANATOLY P, SAMUEL T, SYLVIA B, et al. Restoration potential of biomanipulation for eutrophic peri-urban ponds: The role of zooplankton size and submerged macrophyte cover[J]. Hydrobiologia, 2009, 634(1): 125-135. doi: 10.1007/s10750-009-9888-4
    [28] 陈彦熹, 牛志广, 张宏伟, 等. 基于AQUATOX的景观水体水生态模拟及生态修复[J]. 天津大学学报, 2012, 45(1): 29-35.
    [29] 黎慧娟, 倪乐意. 浮游绿藻对沉水植物苦草生长的抑制作用[J]. 湖泊科学, 2007, 19(2): 111-117. doi: 10.3321/j.issn:1003-5427.2007.02.001
    [30] 刘其根, 张真. 富营养化湖泊中的鲢、鳙控藻问题: 争议与共识[J]. 湖泊科学, 2016, 28(3): 463-475. doi: 10.18307/2016.0301
    [31] 卫臻, 卫晓露, 朱明, 等. 生物操控技术在城市静态受污染水体生态修复中的应用[J]. 水资源保护, 2009, 25(6): 45-47. doi: 10.3969/j.issn.1004-6933.2009.06.012
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 8.6 %DOWNLOAD: 8.6 %HTML全文: 79.8 %HTML全文: 79.8 %摘要: 11.6 %摘要: 11.6 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 95.1 %其他: 95.1 %XX: 3.2 %XX: 3.2 %北京: 0.6 %北京: 0.6 %厦门: 0.1 %厦门: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.1 %天津: 0.1 %广州: 0.1 %广州: 0.1 %武汉: 0.1 %武汉: 0.1 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.1 %济南: 0.1 %淮北: 0.1 %淮北: 0.1 %烟台: 0.1 %烟台: 0.1 %荆州: 0.1 %荆州: 0.1 %西宁: 0.1 %西宁: 0.1 %重庆: 0.2 %重庆: 0.2 %其他XX北京厦门嘉兴大连天津广州武汉沈阳济南淮北烟台荆州西宁重庆Highcharts.com
图( 7) 表( 6)
计量
  • 文章访问数:  4197
  • HTML全文浏览数:  4197
  • PDF下载数:  125
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-01-13
  • 录用日期:  2022-04-05
  • 刊出日期:  2022-05-10
冯丽娟, 肖耿锋, 程香菊, 谢骏, 舒锐. 基于AQUATOX模型的集装箱养殖尾水净化塘生态系统模拟及调控预测[J]. 环境工程学报, 2022, 16(5): 1525-1536. doi: 10.12030/j.cjee.202201082
引用本文: 冯丽娟, 肖耿锋, 程香菊, 谢骏, 舒锐. 基于AQUATOX模型的集装箱养殖尾水净化塘生态系统模拟及调控预测[J]. 环境工程学报, 2022, 16(5): 1525-1536. doi: 10.12030/j.cjee.202201082
FENG Lijuan, XIAO Gengfeng, CHENG Xiangju, XIE Jun, SHU Rui. Simulation and regulation prediction of container aquaculture wastewater-ponds ecosystem based on AQUATOX model[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1525-1536. doi: 10.12030/j.cjee.202201082
Citation: FENG Lijuan, XIAO Gengfeng, CHENG Xiangju, XIE Jun, SHU Rui. Simulation and regulation prediction of container aquaculture wastewater-ponds ecosystem based on AQUATOX model[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1525-1536. doi: 10.12030/j.cjee.202201082

基于AQUATOX模型的集装箱养殖尾水净化塘生态系统模拟及调控预测

    通讯作者: 程香菊(1974—),女,博士,教授, chengxiangju@scut.edu.cn
    作者简介: 冯丽娟(1997—),女,硕士研究生,13719469258@163.com
  • 1. 华南理工大学土木与交通学院,广州 510641
  • 2. 华南理工大学亚热带建筑科学国家重点实验室,广州 510640
  • 3. 中国水产科学研究院珠江水产研究所,广州 510380
  • 4. 广州观星农业科技有限公司,广州 511453
基金项目:
国家重点研发计划“蓝色粮仓科技创新”专项(2019YFD0900302);清华大学水沙科学与水利水电工程国家重点实验室开放研究基金资助课题(sklhse-2021-B-02);广州市科技计划项目(202102020254)

摘要: 为解决传统养殖中养殖尾水的环境污染问题,促进池塘养殖可持续发展,基于新建的集装箱式循环水养殖系统,构建了三级养殖尾水净化塘水生态系统模型,对池塘水质、浮游植物及水生动物生物量以及池塘生态系统的演变进行了为期6个月的模拟预测,并设置添加沉水植物和添加低密度滤食性鱼类2种情景模拟。结果表明:水质模拟值的变化趋势与实测值基本一致,模拟值与实测值的平均相对误差为4.98% ~ 23.37%;模拟预测的设定条件下和模拟时段中,池塘生态系统的结构趋于稳定,形成以绿藻为主的藻类群落、以摇蚊和桡足类为主的水生动物群落;在尾水净化塘中,添加沉水植物对氮磷去除效果不明显,但对增加水体中溶解氧质量浓度作用明显,3个池塘溶解氧变化率最大值分别为23.11%、45.39%和77.90%;添加低密度滤食性鱼类有助于浮游植物的生长,3个池塘硅藻生物量的最大增幅为89.80%、47.22%和22.06%,绿藻生物量的最大增幅为76.95%、54.05%和23.29%,蓝藻生物量的最大增幅为45.99%、33.37%和20.30%。综上所述,基于AQUATOX构建串联的尾水净化塘水生态系统模型并模拟培植沉水植物和添加低密度滤食性鱼类的生物处理方法,不仅能够为管理者调整喂养结构提供借鉴与帮助,也可用于调控水生态系统组分,有利于水生态系统功能的恢复和平衡。本研究结果可为管理集装箱式循环水养殖模式的喂养结构、构建尾水净化塘生态系统、改进其他利用生物处理技术处理养殖尾水的养殖模式提供参考。

English Abstract

  • 近年来,随着环保督察力度的加大,许多传统养殖区域被划入生态红线范围。有调查[1]发现,90%以上的尾水净化塘没有尾水处理设施,难以实现达标排放,处理并削减水产养殖尾水中过量的氮、磷、有机物等污染物对环境及养殖本身造成的影响日益受到关注[2]。水产养殖尾水的处理方法主要包括物理法(曝气法、过滤法、泡沫分离技术等)、化学法(絮凝沉降、臭氧法等)和生物法(微生物处理、微藻处理、水生动植物调控等)[3-4]。目前,已有一些研究者开展了组合处理方法对养殖尾水处理效果的实验研究。刘梅等[5]采用“三池两坝”多级组合处理工艺处理3种养殖品种对应的养殖尾水,结果表明水质净化效果明显,达到排放要求;LI等[6]构建的三级净化塘对尾水中化学需氧量、总氮和总磷的去除率高达74.4%~91.2%、66.9%~86.8%和76.2%~95.9%。然而却鲜有针对组合尾水处理工艺构建水生态系统模型的研究。虽然集装箱水产养殖系统已经在近3年连续被评为了“农业农村部十项重大引领性农业技术”,但在养殖过程中仍暴露出以下2个方面的问题:一是氮磷荷载过大,尾水净化塘建成初期,脱氮除磷率低,不利于养殖对象正常生长,也不能满足养殖尾水排放要求;二是大型浮游动物对藻类的捕食作用抑制了有益藻类的生长。针对以上2个问题,本研究构建串联的三级尾水净化塘AQUATOX模型,通过情景分析模拟池塘生态演变过程,探究生物处理技术在尾水净化塘中的应用。

    水生态模型的构建综合考虑了自然界中多因素的相互作用和时空变化,耦合了水质、水生生物、点面源污染及其他因素,能较好地模拟生态系统各组分之间的关系。目前,常用的淡水生态模型主要包括Ecopath with Ecosim(EWE)模型[7]、CE-QUAL-W2模型[8]、WASP模型[9]、AQUATOX模型[10]等,这些模型在湖泊、河流、池塘等多种水生态系统中得到广泛应用,但对串联式的养殖尾水净化塘的模拟研究较少。

    AQUATOX模型能够模拟化学物质在水生态系统中的归宿及其对生物的影响,可利用连接模块构建模型[11],适用于构建串联的三级尾水净化塘水生态系统模型。本研究基于新建的集装箱养殖系统,运用AQUATOX模型构建串联的水生态系统,利用中试实验基地实测数据对模型参数进行了率定和验证;将模型进行6个月的模拟预测,探究尾水净化塘水质及水生生物的演变过程;通过2种情景模拟,分析生物处理技术对尾水净化塘中污染物去除率及水生态系统组成的影响,探究生物处理技术在尾水净化塘的利用途径。本研究结果可为管理者调整集装箱式循环水养殖模式的喂养结构提供借鉴,为提高尾水净化塘生态净化能力和推广生物处理技术净化水产养殖尾水的养殖模式提供参考。

    • 1)养殖概况。中试实验场地位于广东省广州市农业技术推广中心(113.28°E,23.13°N)。集装箱循环水养殖系统于2019-09-08开始施工,2019-11-04和2019-11-05放苗。第1茬大口黑鲈(Micropterus salmoides)鱼苗的养殖周期为2019-11-05—2020-04-16。集装箱中放苗总计约11 939尾,每条鱼起始质量约为100 g,到2020-04-16,每条质量约为489.57g,日均增加2.39 g。到2020-01-13,累计死亡1 066尾,成活率为89.29%。投料34包,总质量为668.45 kg。每日投饵率约为0.49%,每天投喂1次。

      2)养殖系统组成。集装箱式水产养殖系统由集装箱养殖区、微滤机、沉淀池、明渠、三级尾水净化塘和水泵组成。养殖尾水从集装箱进入微滤机后,可以分离约90%的固体废弃物,废弃物进入沉淀池。而过滤后的养殖尾水通过明渠流入三级尾水生态池塘,尾水经生态池塘净化后,返回集装箱,实现养殖水体循环利用。

      3)指标测定。实验日期为2019-12-03—2020-01-13,每次实验周期为7 d。实验期间,日均光照强度为1.92~6.47 kWh·(m2·d)−1,风速为0.38~2.84 m·s−1,气温为15~20 ℃。净化塘水体交换流量为50 m3·h−1。现场测定水质理化指标。水质物理指标包括溶解氧(DO)、水温(T)、pH和电导率(EC);水质化学指标包括氨氮(NH4+)、亚硝酸盐(NO2)、硝酸盐(NO3)、正磷酸盐(PO43−)、总有机碳(TOC)、总氮(TN)、总磷(TP)。水质物理指标使用便携式水质物理指标监测仪器现场测定,水质化学指标参照《水和废水监测分析方法(第4版)》中的方法进行测定。水质指标的监测及采样位置见图1。监测及采样位置包括点位A、B、C及点位1-1~3-3,共12个点位。实验场地物理特征参数如表1所示。

    • AQUATOX模型是美国环境保护局(EPA)开发的一种水生态系统模型,可通过同时计算模型模拟时段中每天或每小时所进行的重要的物理、化学和生物过程来模拟化学物质(营养盐、有机化学物质等)、生物量在水生态系统中的变化过程,构建水质-水生生物响应的关系[12-13]。其基本原理如图2所示。

      本研究采用AQUATOX模型对三级尾水净化塘分别建模,再利用模型自带的模块连接功能(linked segments)连接成串联的三级尾水净化塘水生态模型。尾水净化塘的场地物理特征参数如表1所示。模型模拟日期为2019-12-03至2020-01-13,模拟时间步长为1 d。模型选用的状态变量(溶解氧、营养物质、生物组分等)及驱动变量(温度、光照、风速、pH、进出流量等)共计21个[12]。光照、气温、风速均采用实测的长时间序列数据。

      浮游植物生物量根据流式细胞仪计数结果及镜检结果,采用经验公式[10]计算获得;浮游动物及底栖动物生物量参考广州地区养殖池塘生物量的研究统计[14-15]获得。模型模拟生物的初始生物量为硅藻0.92 mg·L−1、绿藻3.08 mg·L−1、蓝藻0.1 mg·L−1、轮虫7.00 mg·L−1、桡足类0.82 mg·L−1、摇蚊2.06 mg·m−2和正颤蚓0.36 mg·m−2,营养相互作用关系参考AQUATOX模型内置数据库中的数据(表2)。

    • 图表的绘制使用Origin 2021,数据分析采用SPSS 26。正态分布检验结果表明,模拟结果不服从正态分布,采用Spearman非参数相关分析计算指标秩相关系数。

    • 模型参数的设定参考已有研究中的方法[16-17]。在该模型中,1#池塘的数据用于矿化参数、浮游藻类参数、浮游动物和底栖动物参数的率定,使用2#池塘和3#池塘的数据进行验证。一些重要参数率定结果见表3~表5,模型率定结果如图3(a)所示,模型的验证结果如图3(b)和图3(c)所示。

      使用均方根误差(RMSE)、平均相对误差(MRE)和建模效率(EF)[18]评估模型的拟合优度(表6)。对比结果表明,除TP质量浓度模拟值比实测值整体偏小外,其他指标都与实测值较为符合,模拟值与实测值的MRE为4.98% ~ 23.37%。

    • 基于以上构建的AQUATOX尾水净化塘水生态系统模型,将2020-01-14—06-03作为模型的预测阶段,预测模型的总计算时间为6个月,为2019-12-03—2020-06-03。模拟阶段物理特征及入流边界条件不变,气象数据采用模型默认的年平均气象数据,营养输入负荷数据的输入日期为2019-12-03—2020-01-13,数据值与率定验证数据相同。

      模拟预测阶段尾水净化塘中总氮和总磷的变化趋势如图4(a)所示。3个尾水净化塘中总氮质量浓度在2020-01-07—09达到最大值,分别为19.70、19.68和19.69 mg·L−1;在2020-06-03分别降至12.98、12.99和13.16 mg·L−1,降幅约为34%。总磷质量浓度的最大值出现在2020-01-15—16,分别为8.99、8.98和8.92 mg·L−1,此后下降至5.91 mg·L−1,降幅约为35%,但是整体依旧处于较高水平。

      模拟预测阶段尾水净化塘中浮游植物生物量的变化情况如图4(b)所示。硅藻的生物量在初期迅速下降至0.01 mg·L−1以下,并在整个预测阶段一直保持在接近0的水平;绿藻和蓝藻的生物量在预测阶段较为稳定,但在3#池塘中两者的生物量都远高于1#池塘和2#池塘。绿藻的生物量在3个池塘分别保持在0.22、0.45和2.85 mg·L−1,蓝藻的生物量在3个池塘分别保持在0.08、0.15和0.40 mg·L−1

      模拟预测阶段尾水净化塘中浮游动物和底栖动物生物量的变化情况如图4(c)和图4(d)所示。轮虫生物量呈现先下降再上升再下降的趋势,桡足类生物量总体呈上升趋势,轮虫和桡足类在1#池塘中的生物量略高于2#池塘和3#池塘。轮虫的生物量在2020-06-03分别为5.57、4.77和3.20 mg·L−1,相比于初始生物量降低了20.41%~50.23%;桡足类的生物量分别为6.90、4.67和5.11 mg·L−1,相比于初始生物量增长了469.41%~742.02%。摇蚊和正颤蚓生物量快速增长,摇蚊的生物量从初期2.06 mg·m−2增至27.17~28.22 mg·m−2,在2020-01-20以后一直保持该生物量水平;2#池塘中正颤蚓的生物量增长速度高于其他池塘,3个池塘中正颤蚓的生物量从初期0.36 mg·m−2分别增至1.78、4.25和2.38 mg·m−2

    • 针对集装箱运行过程中暴露出的2大问题,本研究采用添加沉水植物和低密度滤食性鱼类2种生物处理技术对尾水净化塘进行情景分析,以寻求提高尾水净化塘处理效率和改善生态系统的措施。当前,添加沉水植物和添加滤食性鱼类被普遍应用于富营养化和污水处理中[19-21]。本研究选取水藓和鳙作为模拟对象,探究生物处理技术在养殖尾水净化塘中的应用。

      1) 添加水藓的尾水生态净化结果。水藓具有较强的有机和无机化学物质的元素积聚能力[22]。向模型中添加5 g·m−2水藓(干质量)。水藓的饱和光强为0.47 kWh·(m2·d)−1,光呼吸速率为0.027 g·(g·d) −1,20 ℃呼吸速率为0.002 g·(g·d) −1,最适温度为15 ℃,最大光合速率为0.19 d−1,死亡系数为0.000 1 g·(g·d) −1。比较加入水藓前后溶解氧、总氮和总磷质量浓度变化、藻类生物量和浮游动物生物量的变化,结果如图5所示。

      添加水藓对养殖水质最主要的影响是提高了水体中溶解氧质量浓度,溶解氧的增幅在2020-01-20前随时间逐渐增大,3个池塘变化最大值分别为23.11%、45.39%和77.90%。添加水藓可以降低生态池塘中总氮的质量浓度,但最大降幅仅为1.81%,出现在3#池塘;未能降低水体中总磷的质量浓度,这可能与水藓生物量较少和浮游植物生物量减少有关。

      添加水藓不利于藻类生物量的增加。添加水藓后,3个池塘中藻类的生物量都呈现明显下降。硅藻的下降幅度最大值分别为−14.68%、−74.43%和−99.99%,绿藻的下降幅度最大值分别为−99.74%、−99.99%和−99.99%,蓝藻的下降幅度最大值分别为−99.50%、−99.99%和−99.99%。添加水藓后3#池塘中桡足类生物量相比于未添加水藓的情况显著下降,而1#池塘和2#池塘中桡足类生物量在2020-01-29以前略微下降,之后显著上升。1#池塘、2#池塘和3#池塘中桡足类生物量变化幅度最大值分别为34.69%、44.84%和−45.99%。

      2) 添加鳙的养殖尾水生态净化结果。因为浮游动物摄食藻类,导致集装箱循环水养殖系统中藻类生物量较低,因此加鳙控制浮游动物数量,以维持需要的较高的藻类生物量从而对水体复氧增氧有利[20, 23]。模拟时分别往3个生态池塘中添加20 g·m−2鳙(干质量),鳙的半饱和喂养参数为0.5 mg·L−1,最大消费率为0.037 g·(g·d) −1,最小生物量为0.25 g·m−2,最适温度为27 ℃,呼吸速率为0.05 d −1,配子死亡率为0.9 d −1,死亡系数为0.000 05 d −1,平均生命周期为1 460 d −1,平均湿质量为50 g。3个生态池塘加入鳙前后的总氮和总磷质量浓度、藻类生物量和水生动物生物量差异如图6所示。

      添加鳙不会降低尾水净化塘水体的总氮和总磷质量浓度,反而可能因为引入鳙,水体中的鱼类排泄物增加,导致水体氮磷质量浓度上升[21]。添加鳙有利于浮游植物生物量增长,3个生态池塘中硅藻生物量的最大增幅为89.80%、47.22%和22.06%,绿藻生物量的最大增幅为76.95%、54.05%和23.29%,蓝藻生物量的最大增幅为45.99%、33.37%和20.30%。添加鳙对池塘水生动物生物量变化影响如图6(b)表示。添加鳙有利于抑制正颤蚓生物量,3个池塘中正颤蚓生物量的最大降幅分别为−35.29%、−60.97%和−61.03%,轮虫生物量最大降幅分别为−5.29%、−5.99%和−16.11%,桡足类生物量的最大降幅分别为−22.71%、−23.09%和−20.64%,摇蚊生物量的最大降幅分别为−10.53%、−11.08%和−9.26%。

      为了佐证以上情景模拟所得结论,将添加沉水植物和滤食性鱼类推广至实际生产基地。实际生产基地位于广东省肇庆市,在2021-05-10前,尾水净化塘无滤食性鱼类,有沉水植物。在实际生产基地,对有沉水植物时溶解氧质量浓度进行现场监测。同时,在加入滤食性鱼类后,对叶绿素a、总氮和总磷质的量浓度进行现场监测。监测结果表明:有沉水植物时,池塘溶解氧质量浓度维持在(7.24±3.40) mg·L−1(平均值±标准差);随着沉水植物生物量的逐渐减少(从2021-05-10开始),溶解氧质量浓度呈下降趋势(图7(a));有滤食性鱼类后,叶绿素a质量浓度维持在较高水平,为(41.28 ± 24.78) μg·L−1(平均值±标准差)(图7(b));实际生产基地净化后的养殖尾水的总氮和总磷质量浓度比中试实验基地小(图7(c)和图7(d))。

    • 在持续6个月的养殖运行过程中,新建的尾水净化塘内菌群逐渐形成和稳定下来,系统对养殖废水中氮、磷的净化处理能力增强,总氮和总磷质量浓度呈现先上升后缓慢下降的趋势。养殖水体及底泥中充足的营养碎屑是浮游动物和底栖动物生长的基础,前期硅藻、绿藻和蓝藻受到浮游动物捕食的影响,生物量较低,后期由于光照、气温等条件的改善,藻类光合作用增强,绿藻和蓝藻的生物量水平基本稳定,绿藻成为池塘的优势藻种。Spearman非参数相关分析表明,硅藻与总氮和总磷的秩相关系数小于-0.705,显著性Sig.<0.01,呈显著负相关;绿藻与总氮和总磷的秩相关系数小于-0.372,Sig.<0.01,呈显著负相关。这说明当绿藻和硅藻生物量增大时,氮、磷质量浓度降低,绿藻和硅藻能够去除水体中一定数量的氮、磷营养盐。

      浮游动物生物量的变化受pH和非离子氨质量浓度影响明显。非参数相关分析也表明,轮虫与pH的秩相关系数为-0.355,Sig.<0.01,二者呈显著负相关。净化塘中pH较高,导致水体非离子氨质量浓度较高,增大了对浮游动物的毒害作用,导致轮虫和桡足类死亡率较高[24-25]。鱼类的养殖场所转移到集装箱中,浮游动物食物来源减少,底栖动物捕食者减少,因此,轮虫和桡足类的生物量变化较小,摇蚊和正颤蚓的生物量得以快速增长,从而提高了底泥中营养碎屑的处理效率。根据模型预测结果,当外界条件不变化的情况下,池塘从建设初期生态系统不稳定的“生塘”向生态系统稳定、处理效率提高的“熟塘”的转变,能够为管理者调整喂养结构提供借鉴与帮助。

    • 生物处理技术对池塘复氧、抑制浮游动物生长或促进浮游植物生物量增长具有一定作用。水藓常在改善富营养化湖泊、河流等的生态系统中用于抑制浮游植物生长、为浮游动物提供庇护场所[26-27],但对尾水净化塘富营养化净化效果并不明显。在提升水质方面,添加水藓的作用主要表现为提升水体中的氧含量,水藓与溶解氧的秩相关系数为0.579,Sig.<0.01,二者呈显著正相关。但水藓脱氮除磷的效果不明显,其与总磷没有相关性,Sig.>0.05,与总氮的秩相关系数为-0.175,Sig.<0.01,呈显著负相关,但相关性较弱。可能的原因是水藓抑制了藻类的生长,导致磷的吸收转化量减少,但水藓本身对氮的吸收转化能力比对磷的强[28],因此,其脱氮效果比除磷效果好。

      水藓通过营养盐竞争与化感作用抑制了浮游植物生长。非参数相关分析表明,水藓与浮游藻类生物量的秩相关系数为-0.933,Sig.<0.01,二者呈显著负相关。种植水藓会降低水中的透光量,导致浮游植物光合作用速率下降,不利于浮游植物的生长[21, 29]。浮游植物生物量下降对3#池塘中的浮游动物生长形成抑制,但1#池塘和2#池塘中的桡足类由于食物结构相比于轮虫较为复杂,因此,在2020-01-31后,生物量可以增大。综上所述,有2种情形适合在生态系统中培植水藓:一是在浮游植物生物量过高、需要控制浮游植物生物量的区域可适量种植水藓;二是在有复氧需求的区域,可种植适量水藓,增强该处的复氧能力。

      鳙是我国的“四大家鱼”之一,具有较好的经济效益,常与鲢鱼搭配作为防控水体“水华”的生态治理措施。但也有研究[30]表明,低密度鳙鱼可以控制水体大型浮游动物。在尾水净化塘中添加鳙,对桡足类、摇蚊和正颤蚓生物量的控制效果较为明显。模拟初期,由于水体的pH变化较大,增大了鳙的死亡率,因此,在该阶段,轮虫和桡足类的生物量有较大的增幅,后期由于养殖水体水质条件较为稳定,添加鳙能较好地降低浮游动物生物量。鳙滤食水体中悬浮物质,使底栖动物食物来源减少,因而抑制了底栖动物生物量增长。鳙与底栖动物摇蚊的秩相关系数为-0.678,Sig.<0.01,呈显著负相关。生态池塘中藻类生物量较低,投放鳙在一定程度上减缓了浮游动物对藻类的消耗,抑制了浮游动物过快生长,有利于池塘生态系统之间的稳定平衡,从而提升水质观感[31]。但也有研究[20, 30]表明,鳙对浮游植物的控制效果与鳙的密度、水体营养程度、浮游植物组成等有关。因此,要使滤食性鱼类达到对水生态的调控效果,掌握鱼类调控密度的阈值、理解调控机理至关重要。

    • 1) 利用AQUATOX构建的串联的三级尾水净化塘水生态系统模型,水质模拟效果较好,且6项水质指标的误差均在合理范围内,较准确地反映了池塘水质变化的实际情况。将AQUATOX模型运用于构建串联池塘生态系统具有实际操作的可行性。

      2) 尾水净化塘系统经过6个月的发展与演化,从建设初期生态系统不稳定的“生塘”向生态系统稳定、污染物处理效率提高“熟塘”转化,生态系统结构逐步完善,管理者可根据尾水净化塘污染物处理效率调整喂养结构。经过6个月的运行,系统脱氮除磷率可高达34%,同时维持绿藻生物量在0.22~2.85 mg·L−1,蓝藻生物量在0.08~0.40 mg·L−1,硅藻生物量低于0.01 mg·L−1;水生动物中除轮虫生物量略微下降外,桡足类、摇蚊和正颤蚓的生物量均显著增加。

      3) 对尾水净化塘的水质调控措施表明:添加沉水植物水藓对废水中过高的氮、磷去除效果不明显,也将导致藻类生物量迅速下降,但可以有效提高水体中溶解氧质量浓度,3个池塘变化率最大值分别为23.11%、45.39%和77.90%。添加沉水植物适用于有复氧需求的水体。添加低密度的滤食性鱼类鳙对水体氮磷质量浓度没有明显影响,但是鳙通过对水生动物的捕食与食物竞争,可减少浮游植物的被捕食损失,促进浮游植物增长,3个生态池塘中硅藻生物量的最大增幅为89.80%、47.22%和22.06%,绿藻生物量的最大增幅为76.95%、54.05%和23.29%,蓝藻生物量的最大增幅为45.99%、33.37%和20.30%。生物处理技术适用于集装箱式循环水养殖模式的尾水生态处理,有利于水生态组分功能的恢复和平衡。

    参考文献 (31)

返回顶部

目录

/

返回文章
返回