-
近年来,有机污染土壤对生态环境和人体健康的潜在危害已成为全球关注问题[1]。二次污染相对可控的原位修复技术是有机污染地块修复的较佳选择,修复效率高、周期短、见效快和修复成本低的原位化学氧化技术 [2]和地质环境适应性强、加热均匀的原位电阻加热技术(electrical resistance heating,ERH)[3-4]均得到广泛应用。ERH是现阶段发展较快的一种能耗低、效率高、施工相对简单的原位热脱附技术[5],该技术利用焦耳定律将土壤均匀加热至水沸点,达到热脱附条件 [6]。相较于燃气、电加热棒等土壤加热技术,ERH不仅对土壤施加低温热场,且有电场(<9.8 V·cm−1)存在 [7- 8],可活化氧化剂、提高污染物的蒸气压及溶解度促进其挥发和溶解 [9],从而提升氧化效率并增强与污染物的接触能力,缩短修复周期,降低修复成本。
多技术协同发挥各自优势,提高效率、降低成本实现可持续修复已成为业界共识。关于ERH协同化学氧化修复有机污染土壤,文献报道并不多见。本文将结合实践,探讨、分析ERH修复原理及ERH耦合化学氧化技术修复有机污染物的研究现状,以期为有机污染土壤原位高效低碳修复提供借鉴。
电阻加热协同化学氧化修复有机污染土壤
Remediation of organic contaminated soil by electrical resistance heating coupled chemical oxidation
-
摘要: 近年来,由于我国涉污染企业搬迁,造成了严重的有机污染土壤环境污染问题,多技术协同治理是修复有机污染地块的必然选择。电阻加热(electrical resistance heating,ERH)和化学氧化均是主流的污染土壤修复技术,且互补性强,二者耦合技术具有较好的工程化应用前景。本研究分析了ERH的修复原理及其适用性,讨论了ERH协同化学氧化的研究现状,创新性地提出了ERH协同电动输送氧化剂的设想,并对后期发展进行了总结和展望,以期为我国有机污染土壤高效、快速、绿色的原位修复技术的应用提供借鉴。Abstract: In recent years, due to the relocation of pollution-related enterprises in China has caused serious soil environmental pollution problems, and multi-technology synergistic treatment is an inevitable choice for remediation of organic contaminated soil. Both electrical resistance heating (ERH) and chemical oxidation are mainstream remediation technologies for contaminated soils and complementary, and the coupling technology of both has good prospects for engineering applications. The remediation principle of ERH and its applicability was analyzed, the current research progress of ERH synergistic chemical oxidation was discussed, the innovative idea of ERH synergiatic electric delivery of oxidant was proposed, and the later development was summarized and prospected. It is expected that the results will provide reference for the application of efficient, rapid and green in-situ remediation technologies in organics-contaminated soil.
-
表 1 ERH与过硫酸钠协同修复中的重要参数
Table 1. Key factors of ERH and sodium persulfate coupled remediation
目标污染物
Target pollutant处置浓度/(mg·kg−1)
Disposal concentration加热温度/℃
Heating temperature加热时间/d
Heating time电场强度/(V·cm-1)
Electric field strength去除率/%
Removal rate文献来源
References前
Front后
Back四氯乙烯 — 74—100 19—30 — 52 93 [6] 菲 101.61 70—90
70—900.33
0.338
835.90 23.50 [34]
[34]苯并芘 2.17 79.42 85.47 四氯乙烯 — <50 >60 — — * [35] 注:“—”为无准确信息;“*”表示低于检测限。 -
[1] ZHAO C, DONG Y, FENG Y P, et al. Thermal desorption for remediation of contaminated soil: A review [J]. Chemosphere, 2019, 221: 841-855. doi: 10.1016/j.chemosphere.2019.01.079 [2] 苗竹, 魏丽, 吕正勇, 等. 原位化学氧化技术在有机污染场地的应用[C]// 中国环境科学学会. 2015 年中国环境科学学会学术年会论文集, 2015: 470-478. ZHU M, LI W, ZHENGYONG L, et al. Application of in situ chemical oxidation technology to organic contaminated sites[C]//Chinese Society of Environmental Sciences . Proceedings of the 2015 Annual Academic Conference of the Chinese Society of Environmental Sciences, 2015: 470-478.
[3] WOLF J W, BARTON T, GOMES T, et al. Electrical resistance heating: Rapid treatment for soil and groundwater remediation[EB/OL]. Águas Subterrâneas, 2009.https://aguassubterraneas.abas.org/asubterraneas/article/view/21953. [4] BEYKE G, FLEMING D. In situ thermal remediation of DNAPL and LNAPL using electrical resistance heating [J]. Remediation Journal, 2005, 15(3): 5-22. doi: 10.1002/rem.20047 [5] HAN Z Y, JIAO W T, TIAN Y, et al. Lab-scale removal of PAHs in contaminated soil using electrical resistance heating: Removal efficiency and alteration of soil properties [J]. Chemosphere, 2020, 239: 124496. doi: 10.1016/j.chemosphere.2019.124496 [6] COSTANZA J, MARCET T, CÁPIRO N L, et al. Tetrachloroethene release and degradation during combined ERH and sodium persulfate oxidation [J]. Groundwater Monitoring & Remediation, 2017, 37(4): 43-50. [7] 焦文涛, 韩自玉, 吕正勇, 等. 土壤电阻加热技术原位修复有机污染土壤的关键问题与展望[J]. 环境工程学报, 2019, 13(9): 2027-2036. JIAO W T, HAN Z Y, LYU Z Y, et al. Key issue and expectation of soil electrical resistance heating remediation technology[J]. Chinese Journal of Environmental Engineering, 2019, 13(9): 2027-2036(in Chinese).
[8] TRUEX M J, MACBETH T W, VERMEUL V R, et al. Demonstration of combined zero-valent iron and electrical resistance heating for in situ trichloroethene remediation [J]. Environmental Science & Technology, 2011, 45(12): 5346-5351. [9] GREISH S, RINNAN Å, MARCUSSEN H, et al. Interaction mechanisms between polycyclic aromatic hydrocarbons (PAHs) and organic soil washing agents [J]. Environmental Science and Pollution Research International, 2018, 25(1): 299-311. doi: 10.1007/s11356-017-0374-7 [10] TRIPLETT KINGSTON J L, DAHLEN P R, JOHNSON P C. State-of-the-practice review of in situ thermal technologies [J]. Groundwater Monitoring & Remediation, 2010, 30(4): 64-72. [11] OBERLE D, CROWNOVER E, KLUGER M. In situ remediation of 1, 4-dioxane using electrical resistance heating [J]. Remediation Journal, 2015, 25(2): 35-42. doi: 10.1002/rem.21422 [12] 康绍果, 李书鹏, 范云. 污染地块原位加热处理技术研究现状与发展趋势 [J]. 化工进展, 2017, 36(7): 2621-2631. KANG S G, LI S P, FAN Y. Research status and development trend of in situ thermal treatment technologies for contaminated site [J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2621-2631(in Chinese).
[13] HERON G, CARROLL S, NIELSEN S G. Full-scale removal of DNAPL constituents using steam-enhanced extraction and electrical resistance heating [J]. Groundwater Monitoring & Remediation, 2005, 25(4): 92-107. [14] SAEEDI M, LI L, GRACE J. Effect of co-existing heavy metals and natural organic matter on sorption/desorption of polycyclic aromatic hydrocarbons in soil: A review [J]. Pollution, 2020, 6(1): 1-24. [15] KINGSTON J L T, JOHNSON P C, KUEPER B H, et al. In situ thermal treatment of chlorinated solvent source Zones[M]. Chlorinated Solvent Source Zone Remediation, 2014: 509-557. [16] MARTIN E J, MUMFORD K G, KUEPER B H. Electrical resistance heating of clay layers in water-saturated sand [J]. Groundwater Monitoring & Remediation, 2016, 36(1): 54-61. [17] LI J J, WANG L, PENG L B, et al. A combo system consisting of simultaneous persulfate recirculation and alternating current electrical resistance heating for the implementation of heat activated persulfate ISCO [J]. Chemical Engineering Journal, 2020, 385: 123803. doi: 10.1016/j.cej.2019.123803 [18] SONG T S, ZHANG J G, HOU S, et al. In situ electrokinetic remediation of toxic metal-contaminated soil driven by solid phase microbial fuel cells with a wheat straw addition [J]. Journal of Chemical Technology & Biotechnology, 2018, 93(10): 2860-2867. [19] BOUZID I, MAIRE J, FATIN-ROUGE N. Comparative assessment of a foam-based method for ISCO of coal tar contaminated unsaturated soils [J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103346. doi: 10.1016/j.jece.2019.103346 [20] ZHOU Z, LIU X T, SUN K, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review [J]. Chemical Engineering Journal, 2019, 372: 836-851. doi: 10.1016/j.cej.2019.04.213 [21] DENG R R, XIE Z M, LIU Z H, et al. Enhancement of vanadium extraction at low temperature sodium roasting by electric field and sodium persulfate [J]. Hydrometallurgy, 2019, 189: 105110. doi: 10.1016/j.hydromet.2019.105110 [22] WATTS R J, AHMAD M, HOHNER A K, et al. Persulfate activation by glucose for in situ chemical oxidation [J]. Water Research, 2018, 133: 247-254. doi: 10.1016/j.watres.2018.01.050 [23] 曾晓岚, 汤红亮, 张玉, 等. 热活化过硫酸钠氧化甲基紫的研究 [J]. 环境工程, 2018, 36(5): 54-57. ZENG X L, TANG H L, ZHANG Y, et al. Study on oxidizing methyl violet by heat activated sodium persulfate [J]. Environmental Engineering, 2018, 36(5): 54-57(in Chinese).
[24] 李轶涵, 姜恬, 周旭, 等. 热活化过硫酸盐氧化降解水溶液中的抗生素卡巴多司和奥喹多司 [J]. 环境科学学报, 2019, 39(11): 3821-3831. LI Y H, JIANG T, ZHOU X, et al. Thermally activated persulfate oxidation of antibiotics carbadox and olaquindox in aqueous solution [J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3821-3831(in Chinese).
[25] ZOU X, LI X M, CHEN C, et al. Degradation performance of carbamazepine by ferrous-activated sodium hypochlorite: Mechanism and impacts on the soil system [J]. Chemical Engineering Journal, 2020, 389: 123451. doi: 10.1016/j.cej.2019.123451 [26] XU H T, SONG Y, CANG L, et al. Ion exchange membranes enhance the electrokinetic in situ chemical oxidation of PAH-contaminated soil [J]. Journal of Hazardous Materials, 2020, 382: 121042. doi: 10.1016/j.jhazmat.2019.121042 [27] SHI Y, LUO Z H, WANG Y X, et al. New advances in in situ thermal desorption technology for contaminated soil [J]. Science China Technological Sciences, 2019, 62(11): 2075-2076. doi: 10.1007/s11431-019-9619-3 [28] 贾存珍, 柳修楚, 柴超, 等. 化学氧化修复对农田土壤和菠菜中多环芳烃含量和组成的影响 [J]. 环境化学, 2019, 38(7): 1518-1527. doi: 10.7524/j.issn.0254-6108.2018092803 JIA C Z, LIU X C, CHAI C, et al. Effects of chemical oxidation remediation on concentration and composition of PAHs in agricultural soils and spinach [J]. Environmental Chemistry, 2019, 38(7): 1518-1527(in Chinese). doi: 10.7524/j.issn.0254-6108.2018092803
[29] ABD MANAN T S B, BEDDU S, KHAN T, et al. Step by step procedures: Degradation of polycyclic aromatic hydrocarbons in potable water using photo-Fenton oxidation process [J]. MethodsX, 2019, 6: 1701-1705. doi: 10.1016/j.mex.2019.07.011 [30] LIU H, MA S T, ZHANG X L, et al. Application of thermal desorption methods for airborne polycyclic aromatic hydrocarbon measurement: A critical review [J]. Environmental Pollution, 2019, 254: 113018. doi: 10.1016/j.envpol.2019.113018 [31] ZHAO T, YU Z, ZHANG J F, et al. Low-thermal remediation of mercury-contaminated soil and cultivation of treated soil [J]. Environmental Science and Pollution Research International, 2018, 25(24): 24135-24142. doi: 10.1007/s11356-018-2387-2 [32] 师帅, 李芸邑, 刘阳生. 化学氧化耦合电动力技术修复有机污染土壤 [J]. 环境工程, 2016, 34(9): 160-165. SHI S, LI Y Y, LIU Y S. Remediation of organic polluted soil by electrokinetic combined with chemical oxidation [J]. Environmental Engineering, 2016, 34(9): 160-165(in Chinese).
[33] da SILVA MENDONÇA de PAIVA S, da SILVA I B, de MOURA SANTOS E C M, et al. Coupled electrochemical processes for removing dye from soil and water [J]. Journal of the Electrochemical Society, 2018, 165(9): 318-324. doi: 10.1149/2.0391809jes [34] HAN Z Y, LI S H, YUE Y, et al. Enhancing remediation of PAH-contaminated soil through coupling electrical resistance heating using Na2S2O8 [J]. Environmental Research, 2021, 198: 110457. doi: 10.1016/j.envres.2020.110457 [35] CHOWDHURY A I A, GERHARD J I, REYNOLDS D, et al. Low permeability zone remediation via oxidant delivered by electrokinetics and activated by electrical resistance heating: Proof of concept [J]. Environmental Science & Technology, 2017, 51(22): 13295-13303. [36] PAC T J, BALDOCK J, BRODIE B, et al. In situ chemical oxidation: Lessons learned at multiple sites [J]. Remediation Journal, 2019, 29(2): 75-91. doi: 10.1002/rem.21591 [37] SONG Y, CANG L, ZUO Y L, et al. EDTA-enhanced electrokinetic remediation of aged electroplating contaminated soil assisted by combining dual cation-exchange membranes and circulation methods [J]. Chemosphere, 2020, 243: 125439. doi: 10.1016/j.chemosphere.2019.125439 [38] RAMADAN B S, SARI G L, ROSMALINA R T, et al. An overview of electrokinetic soil Flushing and its effect on bioremediation of hydrocarbon contaminated soil [J]. Journal of Environmental Management, 2018, 218: 309-321. [39] 孟凡生, 王业耀. 含水量对电动修复铬污染高岭土的影响 [J]. 环境科学与技术, 2009, 32(B06): 23-26. FANSHENG M, YEYAO W. Effect of Water Content on the Electrokinetic Remediation of Cr(VI) from Kaolin [J]. Environmental Science and Technology, 2009, 32(B06): 23-26(in Chinese).
[40] ZANG J C,. Field test on electro-osmosis in a heavy metal contaminated soil: Electrokinetic remediation and reinforcement of the soil [J]. International Journal of Electrochemical Science, 2020: 1230-1241. doi: 10.20964/2020.02.07 [41] 刘广容, 叶春松, 钱勤, 等. 电动生物修复湖泊底泥中直链烷基苯磺酸钠 [J]. 环境科学与技术, 2011, 34(9): 59-62. doi: 10.3969/j.issn.1003-6504.2011.09.015 LIU G R, YE C S, QIAN Q, et al. Bioremediation of lake sediment contaminated by linear alkylbenzene sulphonates using electrokinetic technology [J]. Environmental Science & Technology, 2011, 34(9): 59-62(in Chinese). doi: 10.3969/j.issn.1003-6504.2011.09.015
[42] SHI S, LI Y Y, LI Y S. Remediation of organic polluted soil by electrokinetic combined with chemical oxidation [J]. Environmental Engineering, 2016, 34(9): 160-165. [43] HODGES D, FOURIE A, THOMAS D, et al. Overcoming permanganate stalling during electromigration [J]. Journal of Environmental Engineering, 2013, 139(5): 677-684. doi: 10.1061/(ASCE)EE.1943-7870.0000660