-
近年来,表面处理行业中磷/膦酸盐为主络合剂的镀刷工艺迅速推广,在镀件清洗、镀液更替等过程中产生大量重金属-磷络合废水[1]。由于重金属与磷配体的共存性、交互性和高浓度特质,传统沉淀法和离子交换法均受到的极大冲击,处理效率显著下降,很难实现当前严格的重金属排放标准[2]。此外,重金属的存在也会进一步影响后续对磷的生化处理。目前络合型重金属废水的强化处理技术主要包括置换、光/电/化学氧化破络、电去离子和膜分离等方法,普遍存在成本高、二次污染重、重金属资源回收难等不足[3-5]。如何绿色高效地实现此类废水中重金属的深度处理与资源回收,至今仍是环境领域的热点话题之一。
螯合吸附法因其吸附剂功能基可与重金属离子发生配位等强亲和力,且可脱附再生,因此在复杂废水中重金属资源化去除方面极具潜力[6-7]。此类功能基主要可分为胺基乙酸、胺基磷酸、胺肟、二硫代氨基甲酸及多胺型等。本课题组前期的初探发现多胺型树脂对有机酸、焦磷酸等强络合体系中重金属离子的吸附选择性显著优于其他类型的吸附树脂[8-9]。和目前开展的螯合树脂相比,壳聚糖基微球制备简单、环境友好,不仅自身富含丰富的胺基,而且易于嫁接衍生,成为重金属吸附剂优选基体材料。
本文以焦磷酸镀镍清洗废水中镍的高效去除为目标,制备系列聚胺型壳聚糖微球(ACSx),系统探究其对焦磷酸(pyrophosphate缩写为PP)共存络合体系中镍的吸附特性与机制,并进行动态处理模拟实验,评估应用可行性,以期为研发适于络合型重金属废水深度净化的绿色材料提供理论指导。
聚胺壳聚糖微球对焦磷酸络合废水中镍的高效选择性去除特性与机制
Efficient removal of Ni(Ⅱ) from pyrophosphate-plating wastewater using the polyamine-grafted chitosan beads
-
摘要: 针对含磷络合型电镀废水高效处理难题,本文探究了系列聚胺型壳聚糖微球(ACSx)对焦磷酸络合体系中镍离子的选择性去除特性。研究表明,焦磷酸的存在显著促进了ACSx对镍的吸附。相同条件下,ACS1.0—ACS1.75对镍的吸附量超越前期报道的PAMD树脂3.2%—43.3%。过量的焦磷酸或其他常见共存物对ACS1.5吸附镍的抑制率小于6%,其抗干扰能力远优于商品化树脂D001和D467。借助Visual MINTEQ形态计算和吸附等温线、动力学模型拟合以及XPS表征分析发现,络合体系中,NiP2O72-为主要的存在形态和吸附形态,其表观吸附动力学曲线高度符合拟二级动力学方程,初始吸附速率常数高于其他形态。推测NiP2O72−与ACS1.5表面聚胺基团(含质子化胺基和中性胺基)发生了静电-配位耦合作用(-N0-NiP2O72−·N+-),抗干扰性强。随着NiP2O72−的富集,焦磷酸配体空间位阻增大,导致部分焦磷酸根脱落,固相镍-焦磷酸吸附量比大于1。固定床动态吸附实验表明镍0.5 mmol·L−1-焦磷酸1 mmol·L−1初始浓度下,流速4 BV·h−1,前18 BV出水镍浓度低于0.1 mg·L−1,镍饱和吸附容量为1.74 mmol·g−1。采用稀盐酸再生,镍脱附率为93.8%,浓缩倍率约为7.67倍。本研究表明ACS1.5在实际处理焦磷酸镀镍清洗废水中具有较优的潜力。Abstract: To improve the advanced treatment of P-containing complexed plating wastewaters, the selective adsorption properties of Ni(Ⅱ) by series of polyamine-grafted chitosan beads (ACSx) were investigated in various pyrophosphate (PP) complexed systems. The results showed that the presence of PP markedly promoted Ni(Ⅱ) adsorption by ACSx. Under the same condition, Ni(Ⅱ) adsorption by ACS1.0-ACS1.75 was 3.2%—43.3% higher than those by the PAMD resin. The inhibition rate of excessive PP or other common coexistent on the adsorption of Ni(Ⅱ) by ACS1.5 was less than 6%, and its anti-interference ability was much better than that of commercial resins D001 and D467. According to the Visual MINTEQ speciation calculation, adsorption isotherm/kinetic models fitting and XPS characterization, NiP2O72- was the main species and adsorbate in the Ni-PP complexed systems. Its apparent adsorption kinetic curve was well fitted by pseudo-second-order kinetic equation. The fitted initial adsorption rate constant of NiP2O72− was higher than those of other species. It was speculated that NiP2O72− has a coupling effect of coordination and electrostatic interaction (-N0-NiP2O72-·N+-) with the polyamine groups containing both neutral amines and protonated amines, leading to the strong anti-interference ability. Along with the accumulation of NiP2O72− onto ACS1.5, part of PP decomplexed and released into the aqueous phase probably due to the steric hindrance, and the ratio of adsorption amount of Ni(Ⅱ) and PP was higher than 1. Furthermore, fixed-column adsorption tests showed that at C0,Ni=0.5 mmol·L−1, C0,PP=1.0 mmol·L−1 and 4 BV·h−1 of the flow rate, Ni(Ⅱ) concentration was lower than 0.1 mg·L−1 in the first 18 BV effluent and the saturated adsorption amount of Ni(Ⅱ) was 1.74 mmol·g−1. In addition, 93.8% Ni(Ⅱ) could be recovered by diluted HCl, and the concentration ratio of Ni(Ⅱ) was about 7.67. The above trends suggest that the application of ACS1.5 in treating pyrophosphate-involved nickel-plating rinse wastewater is highly promising.
-
Key words:
- polyamine group /
- complexed heavy metal ions /
- anti-interference /
- adsorption mechanism
-
图 5 焦磷酸与镍复合体系中ACS1.5对Ni(Ⅱ)、PP(a)和分解后各主导污染物形态(b)的表观动力学曲线注:图中实线和虚线分别为准一级和准二级动力学方程拟合曲线
Figure 5. The apparent adsorption kinetic curves of the total Ni(Ⅱ)/PP (a) and each kind of main species (b) Note: Solid lines and dash lines were the fitted curves based on pseudo-second-order and pseudo-first-order kinetic equations, respectively.
表 1 焦磷酸络合体系中镍和焦磷酸在ACS1.5上的吸附等温线拟合参数
Table 1. Fitting parameters for the adsorption isotherm of Ni(Ⅱ) and PP onto ACS1.5 from the binary system
目标污染物
TargetsLangmuir constants Freundlich constants Qm b R2 Kf n R2 Ni(Ⅱ) 1.466 5.122 0.963 1.292 2.207 0.996 PP 0.834 3.362 0.988 0.599 3.349 0.995 注:C0和Ce分别为初始浓度和平衡浓度(mmol·L−1),Qmax为拟合最大饱和吸附量(mmol·g−1),b和Kf分别是对应模型的拟合系数,代表亲和力的大小,n是吸附优惠性指征.
Note: C0 and Ce are the initial and equilibrium concentrations of pollutants (mmol·L−1), respectively. Qmax is the fitted maximum saturation adsorption amount (mmol·g−1). b and Kf are the parameters related to the adsorption affinity in the corresponding isotherm models. n is the index for adsorption preference.表 2 ACS1.5对焦磷酸-镍复合体系中镍和PP及其主要形态的吸附动力学模型拟合参数
Table 2. Kinetic parameters for the adsorption of total Ni(Ⅱ)/PP and various main species by ACS1.5.
吸附体系
Adsorption systems污染物
Species准一级动力学方程
Pseudo-first-order kinetic equation准二级动力学方程
Pseudo-second-order kinetic equationQe, fit k1 R2 Qe, fit k2 h R2 体系1
System 1Ni(Ⅱ) 0.548 1.89×10−3 0.973 0.652 0.003 1.40×10−3 0.984 PP 0.434 1.42×10−3 0.993 0.549 0.002 7.51×10−4 0.997 体系2
System 2Ni(Ⅱ) 0.551 2.01×10−3 0.969 0.651 0.004 1.51×10−3 0.985 PP 0.825 2.65×10−3 0.965 0.948 0.003 3.04×10−3 0.953 体系1
System 1Ni2+ 0.023 5.59×10−3 0.878 0.025 0.339 2.04×10−4 0.921 NiHP2O7− 0.022 7.15×10−3 0.840 0.024 0.487 2.76×10−4 0.907 NiP2O72- 0.494 1.65×10−3 0.986 0.604 0.003 1.05×10−3 0.993 HP2O73- 0.129 4.98×10−3 0.845 0.142 0.047 9.55×10−4 0.823 注:Qe, fit为模型拟合的平衡吸附量(mmol/g),k1和k2分别是相应的吸附速率常数。h=k2Qe,fit2定义为起始速率常数.
Note: Qe, fit is the fitted equilibrium adsorption amount (mmol/g). k1 and k2 are the fitted adsorption rate constants corresponding to the two kinetic models. h=k2Qe,fit2 is defined as the initial adsorption rate constant. -
[1] 石泰山. 电镀废水中的配位剂及其处理 [J]. 电镀与涂饰, 2015, 34(8): 462-465. doi: 10.3969/j.issn.1004-227X.2015.08.011 SHI T S. Complexing agents in electroplating wastewater and their treatments [J]. Electroplating & Finishing, 2015, 34(8): 462-465(in Chinese). doi: 10.3969/j.issn.1004-227X.2015.08.011
[2] SHAN C, YANG B W, XIN B, et al. Molecular identification guided process design for advanced treatment of electroless nickel plating effluent [J]. Water Research, 2020, 168: 115211. doi: 10.1016/j.watres.2019.115211 [3] YUAN Y, ZHAO W, LIU Z C, et al. Low-Fe(Ⅲ) driven UV/Air process for enhanced recovery of heavy metals from EDTA complexed system [J]. Water Research, 2020, 171: 115375. doi: 10.1016/j.watres.2019.115375 [4] LI Q M, SONG H O, HAN R M, et al. Efficient removal of Cu(Ⅱ) and citrate complexes by combined permanent magnetic resin and its mechanistic insights [J]. Chemical Engineering Journal, 2019, 366: 1-10. doi: 10.1016/j.cej.2019.02.070 [5] 廖文. 络合剂对阳离子在EDI中迁移的影响与多级回用的研究[D]. 杭州: 浙江大学, 2013. LIAO W. Influence of migration of the metal ions under the exiting of chelating agent in EDI [D]. Hangzhou: Zhejiang University, 2013(in Chinese).
[6] REPO E, WARCHOŁ J K, BHATNAGAR A, et al. Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water [J]. Water Research, 2013, 47(14): 4812-4832. doi: 10.1016/j.watres.2013.06.020 [7] 郁佳程, 杨璐阳, 王励珽, 等. 基于聚多巴胺的环境功能材料吸附水体重金属的研究进展 [J]. 环境化学, 40(7): 2204-2216. YU J C, YANG L Y, WANG L T, et al. Research progress of polydopamine−based environmental functional materials for the adsorption of the heavy metals in water [J]. Environmental Chemistry, 2021, 40(7): 2204-2216 (in Chinese).
[8] LING C, REN Z X, WEI M M, et al. Highly selective removal of Ni(Ⅱ) from plating rinsing wastewaters containing [Ni-xNH3-yP2O7]n complexes using N-chelating resins [J]. Journal of Hazardous Materials, 2020, 398: 122960. doi: 10.1016/j.jhazmat.2020.122960 [9] 韦蒙蒙, 刘福强, 凌晨, 等. 常见有机酸对多胺树脂吸附镍离子的影响特性 [J]. 离子交换与吸附, 2015, 31(3): 212-220. WEI M M, LIU F Q, LING C, et al. Effect of some common organic chelating acids on adsorption of nickel ions by polyamine resin [J]. Ion Exchange and Adsorption, 2015, 31(3): 212-220(in Chinese).
[10] LING C, ZHAO Y X, REN Z X, et al. Synergistic co-removal of zinc(Ⅱ) and cefazolin by a Fe/amine-modified chitosan composite [J]. Chinese Chemical Letters, 2019, 30(12): 2196-2200. doi: 10.1016/j.cclet.2019.09.035 [11] 凌晨, 刘福强, 韦蒙蒙, 等. Cu(Ⅱ)、Ca(Ⅱ)共存对IRC748树脂吸附四环素的影响与机制 [J]. 环境化学, 2016, 35(5): 884-892. doi: 10.7524/j.issn.0254-6108.2016.05.2015112504 LING C, LIU F Q, WEI M M, et al. Effect of co-existing Cu(Ⅱ)/Ca(Ⅱ) on the adsorption of tetracycline onto IRC748 resin [J]. Environmental Chemistry, 2016, 35(5): 884-892(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.05.2015112504
[12] 方景礼. 电镀配合物--理论与应用(精) [M]. 北京: 化学工业出版社, 2008. FANG J L. Theory & application of coordination compounds in electroplating[M]. Beijing: Chemical Industry Press, 2008 (in Chinese).
[13] MAKETON W, ZENNER C Z, OGDEN K L. Removal efficiency and binding mechanisms of copper and copper−EDTA complexes using polyethyleneimine [J]. Environmental Science & Technology, 2008, 42(6): 2124-2129. [14] LING C, LIU F Q, PEI Z G, et al. Citric acid enhanced copper removal by a novel multi-amines decorated resin [J]. Scientific Reports, 2015, 5: 9944. doi: 10.1038/srep09944 [15] ZHANG Y H, ZHU C Q, LIU F Q, et al. Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review [J]. Science of the Total Environment, 2019, 646: 265-279. doi: 10.1016/j.scitotenv.2018.07.279 [16] FU L C, LIU F Q, MA Y, et al. High-efficient technique to simultaneous removal of Cu(Ⅱ), Ni(Ⅱ) and tannic acid with magnetic resins: Complex mechanism behind integrative application [J]. Chemical Engineering Journal, 2015, 263: 83-91. doi: 10.1016/j.cej.2014.11.041 [17] ZHAO W, LIU Z C, YUAN Y, et al. Insight into Cu(II) adsorption on polyamine resin in the presence of HEDP by tracking the evolution of amino groups and Cu(II)-HEDP complexes [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5256-5263. [18] PAN B, QIU M Y, WU M, et al. The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction [J]. Environmental Pollution, 2012, 161: 76-82. doi: 10.1016/j.envpol.2011.09.040 [19] WANG Q Y, TIAN Y, KONG L C, et al. A novel 3D superelastic polyethyleneimine functionalized chitosan aerogels for selective removal of Cr(VI) from aqueous solution: Performance and mechanisms [J]. Chemical Engineering Journal, 2021, 425: 131722. doi: 10.1016/j.cej.2021.131722 [20] LIU C K, BAI R B, SAN L Y Q. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms [J]. Water Research, 2008, 42(6/7): 1511-1522.