-
20世纪90年代中期,研究人员[1]在地球的多种基质中均检测到了人类或兽用抗生素的残留,这些残留的抗生素会给海洋和陆地上的各种生物带来潜在的危害。因此,研究抗生素废水的处理技术对于控制环境中抗生素的来源具有重要意义。各种抗生素废水的处理技术已见报道,如臭氧净化技术[2]、Fenton氧化-活性炭吸附协同处理等高级氧化技术[3]、微藻生物处理技术等[4]。其中,高级氧化技术已在抗生素废水处理领域中显现出巨大的发展潜力[5],但是,高级氧化技术处理抗生素废水成本高,且在去除机理、动力学等方面的研究尚未成熟,以致不能实际应用于废水处理工程[6],因此,须亟待开发新的抗生素废水处理技术。
空化效应是在液体中产生的一种物理现象,是由于液体中的压力低于液体的饱和蒸汽压而导致的气泡的形成、发展和溃灭的过程[7-8]。空泡在溃灭的过程中会使局部压力和局部温度瞬时急剧上升,产生强烈的冲击波和高微射流[9-10],出现的这种高温、高压、高微射流等极端条件能在局部产生足以打断有机物分子链的能量,从而达到降解污水中有机物的效果。利用空化效应降解废(污)水中的有机物是近年来研究的热点[11-13]。水力空化技术主要包括涡流空化技术和射流空化技术。射流空化技术与涡流空化技术相比,由于流体在进入射流装置前必须获得很高的初速度,射流空化要求设备更为复杂,耗能也更多,而涡流能够在较低的进口压力的情况下形成空化,因此,涡流空化效应在有毒、难降解有机废水的处理方面显示出巨大的应用潜力。
国内外学者设计了不同类型的涡流空化器[14-16],但将其用于降解染料等有机物的效果不大理想[10, 17]。本课题组前期设计了一种由涡流腔与螺旋线流道相组合的新型旋流式涡流空化器[18],本研究在此基础上进行流场仿真分析,论证了涡流空化效应的产生过程,并探讨了不同条件下降解抗生素的性能,以期为抗生素废水的处理提供新的途径。
新型旋流式涡流空化器的流场仿真及该空化器对废水中土霉素的去除效果
Flow field simulation in a novel swirling vortex cavitator and its performance on oxytetracycline removal from wastewater
-
摘要: 为有效去除废水中的残留抗生素,设计了一种由涡流腔与螺旋线流道相组合的新型旋流式涡流空化器。运用ANSYS流场计算软件仿真该涡流空化器核心部件流场的绝对压力;研究了不同溶液初始pH值、土霉素初始质量浓度、降解时间及温度控制范围等条件下该旋流式涡流空化器对水中土霉素的去除效果;用亚甲基蓝法检测该旋流式涡流空化器产生的羟基自由基质量浓度,初步推断其降解土霉素的机理。结果表明:本研究中设计的新型旋流式涡流空化器在局部区域可形成远低于饱和蒸汽压的低压区域,具有较明显的涡流空化效应;酸性和中性条件有利于涡流空化器中土霉素的降解,但总体上,溶液初始pH值对降解率影响不大;随土霉素初始浓度的增大,土霉素的降解率相应下降;在最初10 min内土霉素的降解速率较快,随后变慢,至50 min时初始质量浓度2 mg·L−1的土霉素溶液的降解率为76.45%;控制溶液温度在25~50 ℃时,对土霉素的降解更有利;该旋流式涡流空化器产生的羟基自由基质量浓度为4.58 μmol·L−1,由此可推断,土霉素的降解可能主要在羟基自由基的强氧化作用下完成。涡流空化法降解抗生素技术可为废水中抗生素的去除提供一种新的途径。Abstract: To effectively remove antibiotics residues in wastewater, a novel swirling vortex cavitator composed of vortex cavity and spiral channel was designed. ANSYS software was used to simulate the absolute pressures of flow fields in the vortex cavitator core components. Under the different conditions including initial solution pH values, initial concentrations of oxytetracycline, degradation times and temperature control ranges, the removal efficiencies of oxytetracycline in wastewater were examined. The concentrations of hydroxyl radical were determined by methylene blue method, and the mechanism of oxytetracycline degradation was deduced. The results showed that the local area in the vortex cavitator can form a low-pressure area with far lower pressure than the saturated vapor pressure, and has an obvious vortex cavitation effect. The acidic and neutral pHs were conducive to oxytetracycline degradation in the vortex cavitator. However, the initial pH value of the solution had slight effect on the degradation efficiency. The degradation efficiencies decreased with the increase of oxytetracycline concentration. The degradation rate was fast within 10 minutes, and then slowed down. The degradation efficiency of 2 mg·L−1 oxytetracycline solution reached 76.45% at 50 minutes. 25~50 ℃ for the solution temperature was conducive to oxytetracycline degradation. The concentration of hydroxyl radical produced by the swirling vortex cavitation device was 4.58 μmol·L−1. It was concluded that the possible oxytetracycline degradation pathway was mainly the oxidation of hydroxyl radicals. This provides a new way for antibiotics treatment by the swirling vortex cavitation degradation technology.
-
Key words:
- swirling vortex cavitator /
- flow field simulation /
- oxytetracycline /
- degradation
-
-
[1] 张玮玮, 弓爱君, 邱丽娜, 等. 废水中抗生素降解和去除方法的研究进展[J]. 中国抗生素, 2013, 38(6): 401-410. [2] 李玉冰, 张凡建, 蔡泽川, 等. 臭氧净化技术治理猪场废水中兽用抗生素残留的研究[J]. 黑龙江畜牧兽医, 2017(4): 184-187. [3] 祁佩时, 王娜, 刘云芝, 等. Fenton氧化-活性炭吸附协同深度处理抗生素制药废水研究[J]. 净水技术, 2008, 27(6): 38-41. doi: 10.3969/j.issn.1009-0177.2008.06.010 [4] LENG L, WEI L, XIONG Q, et al. Use of microalgae based technology for the removal of antibiotics from wastewater: A review[J]. Chemosphere, 2020, 238: 1-14. [5] ANJALI R, SHANTHAKUMAR S. Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes[J]. Journal of Environmental Management, 2019, 246: 51-62. [6] 黄昱, 李小明, 杨麒, 等. 高级氧化技术在抗生素废水处理中的应用[J]. 工业水处理, 2006, 26(8): 13-19. doi: 10.3969/j.issn.1005-829X.2006.08.004 [7] 武君, 张晓冬, 刘学武, 等. 水力空化及应用[J]. 化学工业与工程, 2003, 20(6): 387-391. doi: 10.3969/j.issn.1004-9533.2003.06.015 [8] 倪汉根. 气核空化空蚀[M]. 成都: 成都科技大学出版社, 1993. [9] 钱光毅. 基于空化原理的孔板污水处理设备性能模拟[J]. 四川建筑科学研究, 2010, 36(2): 262-265. doi: 10.3969/j.issn.1008-1933.2010.02.067 [10] 张婵, 郑爽英. 超声空化效应及其应用[J]. 水资源与水工程学报, 2009, 20(1): 136-138. [11] CHAHINE G L, KALUMUCK K M. Swirling fluid jet cavitation method and system for efficient decontamination of liquids: US6221260B1 [P]. 2001-01-04. [12] WU Z, ONDRUSCHKA B, BRAEUTIGAM P. Degradation of chlorocarbons driven by hydrodynamic cavitation[J]. Chemical Engineering & Technology, 2007, 30(5): 642-648. [13] WANG X, ZHANG Y. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation[J]. Journal of Hazardous Materials, 2009, 161(1): 202-207. doi: 10.1016/j.jhazmat.2008.03.073 [14] 张斌, 陈银银, 李育敏, 等. 新型涡流空化器的实验研究[J]. 轻工机械, 2017, 35(2): 58-62. doi: 10.3969/j.issn.1005-2895.2017.02.012 [15] 李祥, 任旭东, 袁寿其, 等. 一种用于有机水污染降解系统中的涡流空化装置: CN106587256A [P]. 2017-04-26. [16] CURT H T, MORTEN O M. Vortex generator with vortex chamber: US. F15D1/00. 20120097280A1 [P]. 2012-04-26. [17] BRAEUTIGAM P, WU Z, STARK A, et al. Degradation of BTEX in aqueous solution by hydrodynamic cavitation[J]. Chemical Engineering & Technology, 2009, 32(5): 745-753. [18] 王宝娥, 张日红, 练晓明. 一种旋流式涡流空化器: ZL201821724174.2 [P]. 2019-09-27. [19] 张晓冬, 杨会中, 李志义. 水力空化强度与空化自由基产量的关系[J]. 化工学报, 2007, 58(1): 32-37. [20] 钱盛. 钛基PbO2电极电催化降解废水中的四环素类抗生素[D]. 重庆: 西南大学, 2018. [21] 陶跃群. 水力空化降解废水中有机污染物的理论与实验研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2018. [22] 杨会中. 水力空化强化效应实验研究[D]. 大连: 大连理工大学, 2006.