-
据报道,全球每年释放到环境中的金属镉有3.9×104 t [1,2]。镉作为毒性最强的重金属之一,具有生物累积性和不可生物降解性,可引起癌症、骨变性、肺功能障碍和高血压[3]。因此,找到一个高效、彻底除去废水中Cd2+的方法势在必行。
硫酸盐还原菌(sulfate reducing bacteria,SRB)作为一种绿色环保的去除Cd2+的有效方法,近年来已受到广泛关注[4]。SRB通过将硫酸盐还原为硫化物,硫化物可与重金属离子形成不溶性沉淀,最终达到去除废水中Cd2+的目的[5-7]。董净等[8,9]通过从土壤中分离纯化出耐镉性较好的SRB,对40 mg·L−1 Cd2+的去除率可达到75 %。SRB虽然对废水中Cd2+具有较好去除效果,但存在固液相分离困难、高浓度金属毒性等问题,使其受到限制[10]。
为了解决以上问题,近年来许多研究者通过将SRB固定在合适的载体上[11-14],增加其比表面积,提高物质表面的运输速率,同时保护微生物的酶活性,使得重金属对微生物的毒性减弱,最终提高SRB的生物稳定性且易于分离[12-16]。海藻酸钠是一种从藻类中提取的天然多糖,由于其对微生物的毒性低且价格低廉,所以经常用于SRB的固定化技术中。此外,为进一步提高SRB对Cd2+的去除率,近年来多采用零价铁纳米粒子(Fe0)修饰SRB,并用于原位控制受污染的地下水[15]。PEDRO等[16]使用零价铁纳米粒子(Fe0)与SRB复合后,其对Cd2+的去除率可达到99.8 %。ZHANG等[17]使用聚乙烯醇,海藻酸钠固定SRB和Fe0处理49 mg·L−1的Cd2+,去除率可达到99 %。通过以上研究可发现,SRB与固定化材料的结合在处理低浓度的Cd2+时均具有较好的去除能力。然而,近年来工业废水中Cd2+含量越来越高,很难实现完全去除废水中高浓度的Cd2+。此外,传统的Fe0对Cd2+具有较好的处理能力,但其表面易产生聚集行为且易氧化,从而降低其使用寿命。
基于以上研究成果,为寻求一种高效去除高浓度含Cd2+废水的方法,本研究选用惰性金属镍与Fe0偶联形成的双金属纳米粒子参与反应,因其具有良好的腐蚀稳定性,可增加Fe0催化反应活性并有效降低Fe0的氧化,镍铁双金属纳米粒子通常与其他金属偶联以增加催化反应活性并有效降低铁的氧化[18],所以,本研究构建了以海藻酸钠为载体固定镍-铁和SRB活性生物微球(SSNF),探讨了SSNF对Cd2+的吸附去除性能,考察了镍-铁添加量、pH、Cd2+初始浓度和吸附时间对SSFN吸附Cd2+能力的影响,以期为处理高浓度Cd2+污染废水提供参考。
海藻酸钠固定硫酸盐还原菌、镍-铁纳米粒子生物微球对污水中Cd2+的去除
Removal of Cd2+ in sewage by sodium alginate immobilized sulfate-reducing bacteria and nickel-iron nanoparticle biological microspheres
-
摘要: 为寻求一种高效去除高浓度含Cd2+废水的方法,本研究以海藻酸钠为载体固定硫酸盐还原菌(SRB)和镍铁双金属纳米粒子,制备了高效去除Cd2+的活性生物微球(SSNF),并通过对比不同的固定化材料来探讨其对废水中高浓度Cd2+的去除效果。通过改变镍-铁添加量,pH,反应时间,初始Cd2+浓度探讨了SSNF去除Cd2+的能力,并结合吸附动力学探究了SSNF对Cd2+的去除过程及相关机制。结果表明,当镍-铁添加量为0.3 g、pH为7、反应时间5 d、Cd2+初始浓度为400 mg·L−1时,SSNF去除率可达到100 %,吸附量为103.86 mg·g−1。镍-铁对 SRB去除Cd2+具有明显的协同促进作用,且符合准二级动力学模型,以化学吸附作用为主,物理吸附为辅。离子交换或共价电子作用可能是SSNF吸附Cd2+的主要机制。利用无菌生理盐水对活性生物微球进行洗涤,重复使用3次后,微球仍能保持较高的去除能力。该研究结果可为解决含有高浓度Cd2+污染的废水问题提供技术参考。Abstract: In order to find an efficient method to remove high-concentration Cd2+ contained in wastewater, sodium alginate was used as a carrier to immobilize sulfate-reducing bacteria (SRB) and nickel-iron bimetallic nanoparticles, and a type of active biological microspheres(SSNF) that can efficiently remove Cd2+ was prepared. Through the comparison of different immobilized materials, its effect on high-concentration Cd2+ removal from wastewater was explored. The Cd2+ removal ability by SSNF was discussed with the variations of the amount of ferronickel, pH, reaction time, and initial Cd2+ concentration, and the adsorption kinetics was combined to study the Cd2+ removal process and related mechanisms by SSNF. The results showed that when ferronickel addition was 0.3 g, pH=7, reaction time was 5 d, and Cd2+ initial concentration was 400 mg·L−1, Cd2+ removal rate by SSNF reached 100 % with the adsorption capacity of 103.86 mg·g−1. Ferronickel has an obvious synergistic promotion effect on Cd2+ removal by SRB, and it conforms to the quasi-second-order kinetic model, and was dominated by chemical adsorption with physical adsorption as supplement. Ion exchange or covalent electron interaction may be the main mechanism for Cd2+ adsorption onto SSNF. The research results can provide a technical reference for solving the problem of high concentration-Cd2+ wastewater treatment.
-
表 1 SSNF对Cd2+的动力学模型参数
Table 1. Kinetic model parameters of SSNF to Cd2+
准一级动力学方程 准二级动力学方程 颗粒内扩散模型 qe
/(mg·g−1)K1/d−1 R2 qe/(mg·g−1) K2
/(g·(mg·d)−1)R2 C
/(mg·g−1)Kp
/(mg·(g·d1/2)−1)R2 43.1421 0.129 9 0.914 88.50 0.0113 0.998 47.106 13.626 0.949 -
[1] ZHOU Q, CHEN Y, YANG M. Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper-iron bimetallic particles support[J]. Bioresour Technology, 2013, 136(5): 413-417. [2] 朱晓丽, 寇志健, 王军强. 生物炭固定化硫酸盐还原菌对Cd2+吸附及作用机制分析[J]. 环境科学学报, 2021, 41(7): 2682-2690. [3] KUMAR R, CHAWLA J, KAUR I. Removal of cadmium ion from wastewater by carbon-based nanosorbents: a review[J]. Journal of Water and Health, 2015, 13(1): 18-33. doi: 10.2166/wh.2014.024 [4] 苗雅慧, 祁诗月, 陈吉. 硫酸盐还原菌在酸性矿山废水处理中的应用[J]. 应用化工, 2021, 50(11): 3074-3078. doi: 10.3969/j.issn.1671-3206.2021.11.034 [5] 徐师, 张大超, 吴梦. 硫酸盐还原菌在处理酸性矿山废水中的应用[J]. 有色金属科学与工程, 2018, 9(1): 92-97. [6] 孟琛, 杨宏, 王少伦. 硫酸盐还原菌包埋固定化及微生物群落分析[J]. 环境工程学报, 2019, 13(8): 1995-2003. [7] 朱煜. 硫酸盐还原菌对重金属污染土壤的处理研究[J]. 环境污染与防治, 2021, 43(8): 952-955. [8] 董净, 代群威, 赵玉连. 硫酸盐还原菌的分纯及对Cd2+钝化研究[J]. 环境科学与技术, 2019, 42(5): 34-40. [9] 姚琪, 黄建洪, 杨磊. 硫酸盐生物还原过程中涉硫组分代谢特性[J]. 环境工程学报, 2018, 12(10): 2783-2790. [10] RAMRAKHIANI L, GHOSH S, MAJUMDAR S. Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: A review[J]. Appllied Biochemistry& Biotechnology, 2016, 180(1): 41-78. [11] WANG J, CHEN C. Biosorbents for heavy metals removal and their future[J]. Biotechnology Advances, 2009, 27(2): 195-226. doi: 10.1016/j.biotechadv.2008.11.002 [12] 狄军贞, 王明昕, 赵微. 麦饭石固定化SRB污泥颗粒处理模拟煤矿酸性废水的适应性[J]. 环境工程学报, 2017, 11(7): 3985-3990. [13] 张颖, 李致格, 张磊. 纳米ZrO2-SRB颗粒对铬和氟污染地下水修复的动态实验[J]. 环境工程学报, 2020, 14(9): 2548-2559. [14] 童辉; 乔江涛; 周继梅. 硫酸盐还原菌介导针铁矿表面硫的转化及镉固定脱毒效应[J]. 生态环境学报, 2021, 30(5): 1069-1075. [15] LI X, DAI L, ZHANG C, et al. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient[J]. Journal of Hazardous Materials, 2017, 324: 340-347. doi: 10.1016/j.jhazmat.2016.10.067 [16] 张雅琳, 胡学伟, 夏丽娟. 甘蔗渣为缓释碳源负载SRB处理模拟矿山淋滤水[J]. 环境工程学报, 2016, 10(5): 2355-2360. [17] ZHANG M, WANG H, HAN X. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment[J]. Chemosphere, 2016, 154: 215-223. doi: 10.1016/j.chemosphere.2016.03.103 [18] WU M, YAN X, LIU K, et al. Application of activated biomaterial in the rapid start-up and stable operation of biological processes for removal cadmium from effluent[J]. Water, Air, & Soil Pollution, 2017, 228(1). [19] WANG N, XU X, LI H, et al. High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined pseudomonas putida and talaromyces amestolkiae biomass for Pb(II) removal from wastewater[J]. Bioresource Technology, 2017, 233: 58-66. doi: 10.1016/j.biortech.2017.02.069 [20] LI Y, LI X, HAN D. New insights into the role of Ni loading on the surface structure and the reactivity of nZVI toward tetrabromo- and tetrachlorobisphenol[J]. Chemical Engineering Journal, 2017, 311: 173-182. doi: 10.1016/j.cej.2016.11.084 [21] HE S, RUAN B, ZHENG Y, et al. Immobilization of chlorine dioxide modified cells for uranium absorption[J]. Environmental Radioactivity, 2014, 137: 46-51. doi: 10.1016/j.jenvrad.2014.06.016 [22] BAI J, YANG X, DU R, et al. Biosorption mechanisms involved in immobilization of soil Pb by bacillus subtilis DBM in a multi-metal-contaminated soil[J]. Journal of Environmental Sciences, 2014, 26(10): 2056-2064. doi: 10.1016/j.jes.2014.07.015 [23] CARPIO I E, MACHADO-SANTELLI G, SAKAnov S K, et al. Copper removal using a heavy-metal resistant microbial consortium in a fixed-bed reactor[J]. Water Research, 2014, 62: 156-166. doi: 10.1016/j.watres.2014.05.043 [24] GOPI KIRAN M, PAKSHIRAJAN K, DAS G. Heavy metal removal from aqueous solution using sodium alginate immobilized sulfate reducing bacteria: Mechanism and process optimization[J]. Journal of Environmental Management, 2018, 218: 486-496. [25] LIANG S, GUO F, DU S, et al. Synthesis of sargassum char-supported Ni-Fe nanoparticles and its application in tar cracking during biomass pyrolysis[J]. Fuel, 2020, 275(C): 117923. [26] YAN G, VIRARAGHAVAN T. Heavy-metal removal from aqueous solution by fungus mucor rouxii[J]. Water Research, 2003, 37(18): 4486-4496. doi: 10.1016/S0043-1354(03)00409-3 [27] LI X, LAN S M, ZHU Z P, et al. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review[J]. Ecotoxicology & Environment Safety, 2018, 158: 162-170. [28] GREENLEE L F, TORREY J D, AMARO R L, et al. Kinetics of zero valent iron nanoparticle oxidation in oxygenated water[J]. Environmental Science & Technology, 2012, 46(3): 12913-12920. [29] 文晓凤, 杜春艳, 袁瀚宇. 改性磁性纳米颗粒固定内生菌Bacillus nealsonii吸附废水中Cd2+的特性研究[J]. 环境科学学报, 2016, 36(12): 4376-4383.