[1] |
ZHOU Q, CHEN Y, YANG M. Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper-iron bimetallic particles support[J]. Bioresour Technology, 2013, 136(5): 413-417.
|
[2] |
朱晓丽, 寇志健, 王军强. 生物炭固定化硫酸盐还原菌对Cd2+吸附及作用机制分析[J]. 环境科学学报, 2021, 41(7): 2682-2690.
|
[3] |
KUMAR R, CHAWLA J, KAUR I. Removal of cadmium ion from wastewater by carbon-based nanosorbents: a review[J]. Journal of Water and Health, 2015, 13(1): 18-33. doi: 10.2166/wh.2014.024
|
[4] |
苗雅慧, 祁诗月, 陈吉. 硫酸盐还原菌在酸性矿山废水处理中的应用[J]. 应用化工, 2021, 50(11): 3074-3078. doi: 10.3969/j.issn.1671-3206.2021.11.034
|
[5] |
徐师, 张大超, 吴梦. 硫酸盐还原菌在处理酸性矿山废水中的应用[J]. 有色金属科学与工程, 2018, 9(1): 92-97.
|
[6] |
孟琛, 杨宏, 王少伦. 硫酸盐还原菌包埋固定化及微生物群落分析[J]. 环境工程学报, 2019, 13(8): 1995-2003.
|
[7] |
朱煜. 硫酸盐还原菌对重金属污染土壤的处理研究[J]. 环境污染与防治, 2021, 43(8): 952-955.
|
[8] |
董净, 代群威, 赵玉连. 硫酸盐还原菌的分纯及对Cd2+钝化研究[J]. 环境科学与技术, 2019, 42(5): 34-40.
|
[9] |
姚琪, 黄建洪, 杨磊. 硫酸盐生物还原过程中涉硫组分代谢特性[J]. 环境工程学报, 2018, 12(10): 2783-2790.
|
[10] |
RAMRAKHIANI L, GHOSH S, MAJUMDAR S. Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: A review[J]. Appllied Biochemistry& Biotechnology, 2016, 180(1): 41-78.
|
[11] |
WANG J, CHEN C. Biosorbents for heavy metals removal and their future[J]. Biotechnology Advances, 2009, 27(2): 195-226. doi: 10.1016/j.biotechadv.2008.11.002
|
[12] |
狄军贞, 王明昕, 赵微. 麦饭石固定化SRB污泥颗粒处理模拟煤矿酸性废水的适应性[J]. 环境工程学报, 2017, 11(7): 3985-3990.
|
[13] |
张颖, 李致格, 张磊. 纳米ZrO2-SRB颗粒对铬和氟污染地下水修复的动态实验[J]. 环境工程学报, 2020, 14(9): 2548-2559.
|
[14] |
童辉; 乔江涛; 周继梅. 硫酸盐还原菌介导针铁矿表面硫的转化及镉固定脱毒效应[J]. 生态环境学报, 2021, 30(5): 1069-1075.
|
[15] |
LI X, DAI L, ZHANG C, et al. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient[J]. Journal of Hazardous Materials, 2017, 324: 340-347. doi: 10.1016/j.jhazmat.2016.10.067
|
[16] |
张雅琳, 胡学伟, 夏丽娟. 甘蔗渣为缓释碳源负载SRB处理模拟矿山淋滤水[J]. 环境工程学报, 2016, 10(5): 2355-2360.
|
[17] |
ZHANG M, WANG H, HAN X. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment[J]. Chemosphere, 2016, 154: 215-223. doi: 10.1016/j.chemosphere.2016.03.103
|
[18] |
WU M, YAN X, LIU K, et al. Application of activated biomaterial in the rapid start-up and stable operation of biological processes for removal cadmium from effluent[J]. Water, Air, & Soil Pollution, 2017, 228(1).
|
[19] |
WANG N, XU X, LI H, et al. High performance and prospective application of xanthate-modified thiourea chitosan sponge-combined pseudomonas putida and talaromyces amestolkiae biomass for Pb(II) removal from wastewater[J]. Bioresource Technology, 2017, 233: 58-66. doi: 10.1016/j.biortech.2017.02.069
|
[20] |
LI Y, LI X, HAN D. New insights into the role of Ni loading on the surface structure and the reactivity of nZVI toward tetrabromo- and tetrachlorobisphenol[J]. Chemical Engineering Journal, 2017, 311: 173-182. doi: 10.1016/j.cej.2016.11.084
|
[21] |
HE S, RUAN B, ZHENG Y, et al. Immobilization of chlorine dioxide modified cells for uranium absorption[J]. Environmental Radioactivity, 2014, 137: 46-51. doi: 10.1016/j.jenvrad.2014.06.016
|
[22] |
BAI J, YANG X, DU R, et al. Biosorption mechanisms involved in immobilization of soil Pb by bacillus subtilis DBM in a multi-metal-contaminated soil[J]. Journal of Environmental Sciences, 2014, 26(10): 2056-2064. doi: 10.1016/j.jes.2014.07.015
|
[23] |
CARPIO I E, MACHADO-SANTELLI G, SAKAnov S K, et al. Copper removal using a heavy-metal resistant microbial consortium in a fixed-bed reactor[J]. Water Research, 2014, 62: 156-166. doi: 10.1016/j.watres.2014.05.043
|
[24] |
GOPI KIRAN M, PAKSHIRAJAN K, DAS G. Heavy metal removal from aqueous solution using sodium alginate immobilized sulfate reducing bacteria: Mechanism and process optimization[J]. Journal of Environmental Management, 2018, 218: 486-496.
|
[25] |
LIANG S, GUO F, DU S, et al. Synthesis of sargassum char-supported Ni-Fe nanoparticles and its application in tar cracking during biomass pyrolysis[J]. Fuel, 2020, 275(C): 117923.
|
[26] |
YAN G, VIRARAGHAVAN T. Heavy-metal removal from aqueous solution by fungus mucor rouxii[J]. Water Research, 2003, 37(18): 4486-4496. doi: 10.1016/S0043-1354(03)00409-3
|
[27] |
LI X, LAN S M, ZHU Z P, et al. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review[J]. Ecotoxicology & Environment Safety, 2018, 158: 162-170.
|
[28] |
GREENLEE L F, TORREY J D, AMARO R L, et al. Kinetics of zero valent iron nanoparticle oxidation in oxygenated water[J]. Environmental Science & Technology, 2012, 46(3): 12913-12920.
|
[29] |
文晓凤, 杜春艳, 袁瀚宇. 改性磁性纳米颗粒固定内生菌Bacillus nealsonii吸附废水中Cd2+的特性研究[J]. 环境科学学报, 2016, 36(12): 4376-4383.
|