-
重金属铬及其化合物作为化工原料被广泛应用于电镀、制革、印染、冶金工业等领域。铬渣的无序堆放和含铬废水的不当排放是造成地下水铬污染的主要原因,因而对生态环境和人群健康造成了严重的威胁[1-2]。截至2018年,我国历史遗留的铬渣堆场和已关停的铬盐的生产场地约有60个(其中20个已完成修复),场区内地下水受到严重的铬污染[3]。铬在地下水中主要以三价铬(Cr(Ⅲ))和六价铬(Cr(Ⅵ))的价态存在,其中,Cr(Ⅵ)在低浓度下也具有剧毒性,毒性为Cr(Ⅲ)的100~1 000倍,常以重铬酸根离子(Cr2O72−,酸性条件)和铬酸根离子(CrO42−,中性或碱性条件)的形式存在,具有强致癌致畸性、较高的溶解度、高迁移性和环境持久性[4-7]。我国《地下水质量标准》(GB/T 14848-2017)[8]将Cr(Ⅵ)作为毒理学指标,当其质量浓度>0.10 mg·L−1时,该类水质就判定为Ⅴ类水,不适宜作为生活饮用水水源。因此,亟需研发绿色、高效的新型修复材料去除地下水中的Cr(Ⅵ)。
近年来,纳米零价铁(nanoscale zero-valent iron,nZVI)由于具有较强的还原性和反应活性、材料易回收利用等优点,被广泛应用于水体中Cr(Ⅵ)及其他重金属的去除[9]。但在实际应用中,nZVI存在易团聚和易氧化等问题,导致其迁移能力变差,从而降低了反应活性[10]。因此,通过制备纳米零价铁复合材料来优化纳米零价铁的修复性能,以提高其反应活性,从而高效地处理重金属、有机物等多种污染物[11-12]。目前,许多研究主要集中在吸附材料上,如将nZVI负载在诸如生物质炭[13]、活性炭[14]、膨润土[15]、凹凸棒石[16]等比表面积大的多孔材料上以克服其团聚的缺陷,提高在环境中的迁移性。在这些材料中,生物质炭因廉价易得、多孔结构、比表面积大、绿色环保等优点被广泛用作各类污染物的吸附剂以及nZVI的载体材料[17-19]。有研究表明,原始生物质炭材料经酸改性后可以去除灰分和硅,增大比表面积,降低表面负电荷[20-21];经碱处理可以去除生物质炭表面灰分,清除残留在孔隙中的杂质且增加生物质炭的表面积、孔体积和含氧官能团的数量,从而增加其吸附性能[21-23]。DONG等[20]发现,盐酸改性的生物质炭负载nZVI对Cr(Ⅵ)的去除率可达到35.3%,而原始生物质炭负载nZVI对Cr(Ⅵ)的去除率约为22.0%。WU等[24]研究了改性生物质炭负载铁/银双金属颗粒对四氯化碳的去除效果,结果表明,氢氧化钠改性生物质炭负载铁/银双金属颗粒对四氯化碳的去除率高于未改性生物质炭负载铁/银材料。因此,可以看出,经过酸碱改性后的生物质炭表面性能得到进一步提高,可促进nZVI的有效分散,成为nZVI理想的负载材料。迄今为止,采用HF、NaOH改性生物质炭负载nZVI复合材料去除Cr(Ⅵ)的研究尚未见报道,其去除性能及机理亦尚不清晰。
本研究选择HF和NaOH作为酸碱改性剂,对水稻秸秆生物质炭进行改性,获得氢氟酸改性生物质炭(BC-HF)和氢氧化钠改性生物质炭(BC-NaOH),并进一步负载纳米零价铁制得生物质炭负载纳米零价铁(nZVI@BC)、氢氟酸改性生物质炭负载纳米零价铁(nZVI@BC-HF)和氢氧化钠改性生物质炭负载纳米零价铁(nZVI@BC-NaOH)。利用比表面积分析、元素分析、红外光谱分析、X射线衍射分析等手段表征反应前后材料的组成与结构;通过动力学,测试复合材料对Cr(Ⅵ)的去除性能,并通过动力学过程、反应前后溶液pH分析和材料晶体结构分析等探讨其去除机制,同时探讨在空气中老化对nZVI@BC-HF和nZVI@BC-NaOH活性的影响。
酸碱改性生物质炭-纳米零价铁增强六价铬去除的机理
Mechanism of enhanced removal of Cr(VI) by acid and alkali modified biochar-nanoscale zero-valent iron
-
摘要: 通过氢氟酸和氢氧化钠改性水稻秸秆生物质炭(BC),得到改性材料BC-HF和BC-NaOH,在此基础上负载纳米零价铁(Nanoscale zero-valent iron,nZVI)制得生物质炭负载纳米零价铁(nZVI@BC)、氢氟酸改性生物质炭负载纳米零价铁(nZVI@BC-HF)和氢氧化钠改性生物质炭负载纳米零价铁(nZVI@BC-NaOH)。通过比表面积分析、元素分析、红外光谱分析、X射线衍射分析以及动力学等方法,研究了不同材料对Cr(Ⅵ)的去除性能与机理。结果表明:酸碱改性后的生物质炭比表面积、孔体积显著增加,促进了Cr(Ⅵ)的去除,BC-HF和BC-NaOH对Cr(Ⅵ)的去除量分别为30.87、19.59 mg·g−1,为BC的2.68、1.70倍;负载nZVI后,进一步增强了Cr(Ⅵ)的去除效果,其中,nZVI@BC-HF和nZVI@BC-NaOH对Cr(Ⅵ)的去除效果显著,去除量分别为76.36、65.62 mg·g−1。酸碱改性生物质炭使nZVI得到了有效分散,其表面的Si-O-Si官能团与nZVI耦合成Si-O-Fe键,增强了nZVI对Cr(Ⅵ)的还原;同时,酸碱改性生物质炭负载nZVI促进了铁铬化合物的结晶,有利于反应的持续进行。本研究表明,酸碱改性生物质炭-纳米零价铁复合材料对于地下水中Cr(Ⅵ)的去除具有较大的应用潜力。Abstract: Following rice straw biochar (BC) was modified by hydrofluoric acid and sodium hydroxide to obtain BC-HF and BC-NaOH, respectively. And biochar loaded with nZVI (nZVI@BC), hydrofluoric acid modified biochar loaded with nZVI (nZVI@BC-HF) and sodium hydroxide modified biochar loaded with nZVI (nZVI@BC-NaOH) were prepared. The removal performance and mechanism of Cr(Ⅵ) by different materials were evaluated by the analyses of specific surface areas, elements, infrared spectroscopy, X-ray diffraction and kinetic. The results showed that specific surface area and pore volume of the biochar modified by acid and alkali were significantly increased, which promoted the removal of Cr(Ⅵ). The removal capacities of Cr(Ⅵ) by BC-HF and BC-NaOH were 30.87 and 19.59 mg·g−1, respectively, which were 2.68 and 1.70 times higher than the BC. After nZVI was loaded, the Cr(Ⅵ) removal was further enhanced, in which nZVI@BC-HF and nZVI@BC-NaOH possess significant Cr(Ⅵ) removal capacities of 76.36 and 65.62 mg·g−1, respectively. The acid and alkali modified biochar enables nZVI to be effectively dispersed and the Si-O-Si functional group on its surface with nZVI to form a Si-O-Fe bond, which enhance the Cr(Ⅵ) reduction by nZVI. At the same time, the acid and alkali modified biochar loaded with nZVI promoted the crystallization of iron chromium compounds, sustaining the reaction. The research showed that the acid and alkali modified biochar-nanoscale zero-valent iron composites had a good application potential for the removal of Cr(Ⅵ) in groundwater.
-
表 1 供试材料的比表面积与孔隙结构分析
Table 1. Analysis of specific surface area and pore structure of selected materials
供试材料 比表面积/(m2·g−1) 孔体积/(mm3·g−1) 平均孔径/nm BC 173.55 50.96 2.43 BC-HF 386.71 202.72 3.08 BC-NaOH 306.00 165.93 2.98 nZVI 13.82 57.55 5.99 nZVI@BC 43.22 79.26 4.20 nZVI@BC-HF 42.57 64.57 3.75 nZVI@BC-NaOH 53.01 80.82 3.91 表 2 供试材料的元素分析及比例
Table 2. Elemental analysis and proportion of selected materials
供试材料 N/% C/% H/% S% O/% H/C (O+N)/C BC 0.70 45.16 1.49 0.13 13.58 0.40 0.24 BC-HF 1.12 69.05 2.11 0.15 15.24 0.37 0.18 BC-NaOH 0.92 58.73 2.11 0.15 15.92 0.43 0.22 表 3 供试材料去除Cr(VI)的伪二阶动力学模型拟合参数
Table 3. Pseudo second-order kinetic model fitting parameters of selected materials for removing Cr(VI)
拟合参数 BC BC-HF BC-NaOH nZVI nZVI@BC nZVI@BC-HF nZVI@BC-NaOH k2/ (g·mg−1·h−1) 0.04 0.03 0.03 0.02 0.09 0.10 0.11 qe/(mg·g−1) 11.52 30.87 19.59 54.06 54.83 76.36 65.62 R2 0.97 0.99 0.99 0.96 0.99 0.99 0.99 -
[1] 周艺艺, 刘存, 王玉军. 不同主导晶面赤铁矿对Cr(Ⅵ)吸附与迁移行为的影响[J]. 农业环境科学学报, 2021, 40(8): 1667-74. doi: 10.11654/jaes.2021-0386 [2] SHANG J G, ZONG M Z, YU Y, et al. Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar[J]. Journal of Environmental Management, 2017, 197: 331-337. doi: 10.1016/j.jenvman.2017.03.085 [3] 李克, 王芳, 陈瑛. 中国铬渣污染地块现状与政策建议[J]. 中国环境科学学会科学技术年会论文集(第一卷), 2018: 合肥. [4] ZHANG Y T, JIAO X Q, LIU N, et al. Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar[J]. Chemosphere, 2020, 245: 125542. doi: 10.1016/j.chemosphere.2019.125542 [5] 李东, 贺丽洁, 盛培培. Tessier连续提取法用于土壤铬分析的Cr(Ⅵ)-Cr(Ⅲ)转化及适用性[J]. 环境工程学报, 2021, 15(7): 2368-2378. doi: 10.12030/j.cjee.202012141 [6] LV X S, XU J, JIANG G M, et al. Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes[J]. Chemosphere, 2011, 85(7): 1204-1209. doi: 10.1016/j.chemosphere.2011.09.005 [7] COSTA M. Potential hazards of hexavalent chromate in our drinking water[J]. Toxicology Applied Pharmacology, 2003, 188: 1-5. doi: 10.1016/S0041-008X(03)00011-5 [8] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848-2017[S]. 北京: 中国环境科学出版社, 2018. [9] ZOU Y T, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review[J]. Environmental Science & Technology, 2016, 50(14): 7290-7304. [10] 宋珍霞, 殷齐贺, 穆晓斐. 膨润土负载纳米零价铁去除废水中Cr(Ⅵ)的动力学特性研究[J]. 化工新型材料, 2018, 46(5): 199-203. [11] HAN Y L, YAN W L. Reductive Dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment[J]. Environmental Science & Technology, 2016, 50(23): 12992-13001. [12] PONDER S M, DARAB J G, MALLOUK T E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron[J]. Environmental Science & Technology, 2000, 34(12): 2564-2569. [13] QIAN L B, LIU S N, ZHANG W Y, et al. Enhanced reduction and adsorption of hexavalent chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron[J]. Journal of Colloid and Interface Science, 2019, 533: 428-436. doi: 10.1016/j.jcis.2018.08.075 [14] 吴丽梅, 吕国诚, 廖立兵. 活性炭负载纳米零价铁去除污水中六价铬的研究[J]. 矿物学报, 2012, 32(S1): 181-182. [15] 黄超, 余兵, 李任超, 等. 有机膨润土负载纳米零价铁还原-类芬顿氧化降解2, 4-二氯苯酚[J]. 环境工程学报, 2015, 9(8): 3643-3649. doi: 10.12030/j.cjee.20150810 [16] ZHANG W Y, QIAN L B, OUYANG D, et al. Effective removal of Cr(VI) by attapulgite-supported nanoscale zero-valent iron from aqueous solution: Enhanced adsorption and crystallization[J]. Chemosphere, 2019, 221: 683-692. doi: 10.1016/j.chemosphere.2019.01.070 [17] QIAN L B and Chen B L. Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles[J]. Environmental Science & Technology, 2013, 47(15): 8759-8768. [18] 李云桂, 杨慧敏, 武彩霞, 等. 粒径和温度对玉米秸秆生物碳吸附锶的耦合影响[J]. 安全与环境学报. 2017, 17(4): 1459-1464. [19] QIAN L B, ZHANG W Y, YAN J C, et al. Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal[J]. Environmental Pollution, 2017, 223: 153-160. doi: 10.1016/j.envpol.2016.12.077 [20] DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86. doi: 10.1016/j.jhazmat.2017.03.002 [21] SHANG X, YANG L, OUYANG D, et al. Enhanced removal of 1, 2, 4-trichlorobenzene by modified biochar supported nanoscale zero-valent iron and palladium[J]. Chemosphere, 2020, 249: 126518. doi: 10.1016/j.chemosphere.2020.126518 [22] ZHANG X J, ZHANG L, LI A M. Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal[J]. Journal of Environmental Management, 2018, 206: 989-998. doi: 10.1016/j.jenvman.2017.11.079 [23] SIZMUR T, FRESNO T, AKGUL G, et al. Biochar modification to enhance sorption of inorganics from water[J]. Bioresource Technology, 2017, 246: 34-47. doi: 10.1016/j.biortech.2017.07.082 [24] WU H W, FENG Q Y. Fabrication of bimetallic Ag/Fe immobilized on modified biochar for removal of carbon tetrachloride[J]. Journal of Environmental Sciences, 2017, 54: 346-357. doi: 10.1016/j.jes.2016.11.017 [25] QIAN L B, SHANG X, ZHANG B, et al. Enhanced removal of Cr(VI) by silicon rich biochar-supported nanoscale zero-valent iron[J]. Chemosphere, 2019, 215: 739-745. doi: 10.1016/j.chemosphere.2018.10.030 [26] YIN H B, KONG M, GU X H, et al. Removal of arsenic from water by porous charred granulated attapulgite-supported hydrated iron oxide in bath and column modes[J]. Journal of Cleaner Production, 2017, 166: 88-97. doi: 10.1016/j.jclepro.2017.08.026 [27] LIU P, LIU W J, JIANG H, et al. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution[J]. Bioresource Technology, 2012, 121: 235-240. doi: 10.1016/j.biortech.2012.06.085 [28] AHMAD M, LEE S S, RAJAPAKSHA A U, et al. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperature[J]. Bioresource Technology, 2013, 143: 615-622. doi: 10.1016/j.biortech.2013.06.033 [29] 肖正辉, 李学良, 邢高瞻. 酸处理对秸秆基活性炭电化学性能的影响[J]. 硅酸盐学报, 2011, 39(4): 596-600. [30] KHATAEE A, KAYAN B, KALDERIS D, et al. Ultrasound-assisted removal of acid red 17 using nanosized Fe3O4-loaded coffee waste hydrochar[J]. Ultrasonics Sonochemistry, 2017, 5: 72-80. [31] ZHANG K K, SUN P, FAYE M, et al. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation[J]. Carbon, 2018, 130: 730-740. doi: 10.1016/j.carbon.2018.01.036 [32] SU H J, FANG Z Q, TSANG P E, et al. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles[J]. Journal of Hazardous Materials, 2016, 318: 533-540. doi: 10.1016/j.jhazmat.2016.07.039 [33] ZHANG W Y, QIAN L B, CHEN Y, et al. Nanoscale zero-valent iron supported by attapulgite produced at different acid modification: Synthesis mechanism and the role of silicon on Cr(VI) removal[J]. Chemosphere, 2020, 267: 129183. [34] WU H W, FENG Q Y, YANG H, et al. Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: characterization, kinetics and mechanisms[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2017, 517: 63-71. [35] YUAN Y, BOLAN N, PREVOTEAU A, et al. Applications of biochar in redox-mediated reactions[J]. Bioresource Technology, 2017, 246: 271-281. doi: 10.1016/j.biortech.2017.06.154 [36] YUAN Y F, ZHOU M, SHI J, et al. The significant role of electron donating capacity and carbon structure of biochar to electron transfer of zerovalent iron[J]. Chemosphere, 2021, 287: 132381. [37] SHI L N, LIN Y M, ZHANG X, et al. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution[J]. Chemical Engineering Journal, 2011, 171(2): 612-617. doi: 10.1016/j.cej.2011.04.038 [38] LI R N, WANG Z W, GUO J L, et al. Enhanced adsorption of ciprofloxacin by KOH modified biochar derived from potato stems and leaves[J]. Water Science and Technology, 2018, 77(4): 1127-1136. doi: 10.2166/wst.2017.636 [39] WANG S S, ZHAO M Y, ZHOU M, et al. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review[J]. Journal of Hazardous Materials, 2019, 373: 820-834. doi: 10.1016/j.jhazmat.2019.03.080