-
在我国“海洋强国”战略的指引下,沿海地区成为我国经济快速发展的先行区,开发规模不断扩大、城镇化进程迅速加快[1-2]。在经济快速发展的同时,生态破坏、环境污染等问题逐渐显现出来[3- 4]。沿海地区快速发展经济、过度开采地下水直接造成了海水入侵的问题[5],因其会使沿海地带地下水变咸[6- 7]、水田面积减少[8],造成土壤盐渍化[9]等危害,受到广泛关注。很多研究指出,海水入侵显著影响地下水矿化度、含盐量和土壤理化性质等,进而形成土壤盐渍化,导致土壤功能退化[10-12]。徐兴永等提出,海水入侵和土壤盐渍化属于典型的链式结构灾害,在时间上有先后、空间上彼此相依、成因上相互关联[13]。而且目前的研究发现,大部分北方沿海发展城市的土壤盐渍化问题与海水入侵有关[14]。
大连市是我国北方重要的港口城市,三面靠海,属于典型的沿海经济开发区,自20世纪70年代以来,大连市就因开采地下水造成了海水入侵的问题,地下水环境受到污染,有些地区甚至出现了土壤盐渍化的现象,严重阻碍了大连市的经济发展[15-16]。目前,相关学者对大连市海水入侵的成因[17-19]、分布范围[20]、对城市化的影响及防治措施进行了探究[21],但少有开展海水入侵对土壤盐渍化空间关联影响的研究,导致防治措施的提出缺乏空间位置的针对性。因此探究大连市海水入侵与土壤盐渍化的程度及空间关联性具有重要意义。
庄河市是大连地区的沿海城市,近年被确定为海绵城市试点。通过对庄河市沿海地区海水入侵区的地下水、土壤进行采样分析,分析研究区地下水盐分与土壤盐碱化程度空间分布特征,结合SPSS聚类分析及GIS空间分析技术,解析沿海地带海水入侵和土壤盐渍化的空间关联性,并提出防治措施,以期为后续沿海地区海水入侵、区域盐碱化防治的研究提供指导。
-
庄河市地理位置:122°29′—123°31′ E,39°25′—40°12′ N(图1)。庄河市地处辽东半岛东侧,大连市东北部,是辽宁沿海经济带的重要节点城市。多年来,庄河市沿海地区城镇化进程加快,地下水开采过量,造成了海水入侵和土壤盐渍化的风险。根据2005年监测的氯离子浓度数据,2005年庄河市的海水入侵呈面状分布,西起明阳镇,东到栗子房乡以及石城岛和王家岛共7个海水入侵地段,合计海水入侵面积达124.5 km2。最严重区域位于黑岛—青堆子地段,入侵范围大,距离长,氯离子浓度最高[22];同时,由大连市农业科学研究院在沿海10大乡镇的研究,发现沿海地区各类盐渍土都有不同程度的分布[23]。研究区域的自然环境概况见表1。
-
综合考虑庄河市气候、水文地质、地下水资料、海水入侵及土壤盐渍化历史状况,在《海水入侵与土壤盐碱化检测方法(试行)》技术规程指导下,确定地下水和土壤的采样点位置,于2018年4—5月(研究区土壤盐分含量最高的时期)完成采样。利用便携式GPS记录采样点的经纬度。
-
在海水入侵区、过渡带、未入侵区选取农业灌溉井和居民饮水井为地下水采样点,采样断面垂直于海岸线,每个断面3—5个样品,共采集50个地下水样品,在采集样品前,用皮尺加泡沫浮子物测绳测量水位,并将观测井上沿作为基准点,根据水准测量确定测点高程;随后先用取样水桶采集活水样清洗水样瓶(3次),通过0.45 μm后的滤膜后,在预先经过酸洗的聚乙烯采样瓶封装,贴上标签。运回实验室进行测定,测试指标包括地下水氯离子浓度和潜水矿化度。氯离子浓度采用硝酸银滴定法测定,按照《GB 11896—89 水质 氯化物的测定方法》进行测定;潜水矿化度采用重量法测定,参照《SL79—1994 矿化度的测定方法》进行测定。
-
土壤样品共采集92个,50个分布在地下水采样点附近,另外42个均匀分布在未采集地下水样品的地区。每个采样点呈S形随机采集3份样品,用土钻分5层(0—5 cm,5—10 cm,10—20 cm,20—40 cm,40—60 cm)采集土样,同层3个点所采的土壤等量均匀混合后作为一个混合代表样本,同时原状土和容重样分为3层(1—20 cm,20—40 cm,40—60 cm)采集土样;采集后的土壤样品在剔除植物根系及大块砂石后,装在聚乙烯样品袋中送回实验室进行测量。测量前将土壤在通风的室内风干,在土样达半干状态时,将大块土壤捏碎,并通过2 mm孔径的筛子过筛。随后配置1∶5的土水悬浮液,充分震荡后测量土壤pH、氯离子浓度(
Cl−soil )、硫酸根离子(SO2−4 )、全盐含量。其中pH值采用电位法测定,按照《土壤检测土壤pH的测定》(NY/T 1121.2—2006)方法测定;Cl−soil 采用硝酸银滴定法测定,按照《土壤检测 土壤氯离子含量的测定》(NY/T 1121.17—2006)方法测定;SO2−4 采用EDTA间接滴定法测量,按照《土壤检测 土壤硫酸根离子含量的测定》(NY/T 1121.18—2006)方法测定;全盐含量使用重量法进行测量,按照《土壤检测 土壤水溶性盐总量的测定》(NY/T 1121.16—2006)方法测定;此外,土壤干容重采用称重法进行测量。 -
应用SPSS、Excel软件,对采样数据进行描述性统计分析,包括平均值、标准差、变异系数等。通过相关指标剔除异常值,分析数据的集中或离散程度。
算术平均法是统计学中最基本、最常用的一种方法,能够直观、简明地评价采样数据的平均水平[24]。
式中,
X1,X2,Xn 为每一个采样点数据,n为采样点个数。标准差是离均差平方的算术平均数的算术平方根,用
σ 表示,在概率统计中作为统计分布程度上的测量依据[25]。式中,
xi 代表第i个采样点处的测量值;ˉx 代表样品数据的平均值;n为采样点个数。为消除测量尺度和量纲的影响,应用变异系数来反映数据离散程度,它是概率分布离散程度的一个归一化量度,其定义为标准差与平均值之比[26]。
式中,
SD 代表样品数据的标准偏差,MN 代表样品数据的算数平均值。利用基于地统计原理的kriging插值法对地下水和土壤进行探索性空间全局预测分析,总体判断研究区海水入侵与土壤盐渍化状况[27]。
式中,
Z(Si) 代表第i个采样点处的测量值;Wi 为空间权重,取决于采样点据预测位置的距离以及预测点与其周围的测量值之间的空间关系拟合模型;S0 为预测点的位置;N为采样点个数。 -
在我国,一般用地下水矿化度(M)和氯离子浓度(
Cl−water )两项指标来衡量海水入侵的程度[28],根据饮用水卫生标准(GB 5749—2006),M的最大允许限值为1.0 g·L−1,因此将M= 1.0 g·L−1作为咸淡水分界线;但海水入侵陆地含水层造成地下水化学组分发生变化最为显著的是Cl−water ,且Cl−water 相对稳定,监测简单,因此,选择Cl−water 作为衡量海水入侵与否及入侵程度指标。参考《海水入侵监测技术规程(试行)》标准(表2),结合大连市规定的海水入侵标准,将Cl−water =250 mg·L−1作为海水入侵线,对区域海水入侵程度进行评价。研究区地下水氯离子浓度和矿化度的范围分别在23.40 — 432.60 mg·L−1和0.22 — 1.98 g·L−1之间(表3),平均值分别为217.67 mg·L−1和0.92 g·L−1,满足饮用水相关标准(GB 5749—2006)。由海水入侵分级标准知(表2),地下水水质属于淡水水质[29]。但从采样数据散点分布上看(图2),36%的样点的
Cl−water 超过大连市规定的海水入侵标准250 mg·L−1,最大超标倍数为73.04%,存在轻微海水入侵。同样的,样品中有40%的样点的M超过1 g·L−1,最大超标倍数达到98%,属于微咸水水质。从地下水氯离子浓度和矿化度的变异系数来看,Cl−water 和M变异程度类似,都属于中等变异性,表明两者的离散程度都相对较大,研究区不同地区不同位置的浓度差异显著。样点
Cl−water 和离海距离呈现指数型递减规律,两者的相关系数(R2)达到0.86,具有较高的一致性。随着离海距离的增大,样点Cl−water 逐渐减小的速率越来越小,在离海距离为0—6 km时,Cl−water 最高降幅达240 mg·L−1,最低下降到约250 mg·L−1,而离海距离大于30 km后,Cl−water 基本保持稳定。采样点中,约1/3的采样点超标,属于海水入侵区(Cl−water =250 mg·L−1),入侵距离大约均在4 km以内。但有些特殊超标样点位于离海距离6 km的位置,入侵距离较远(图3a),这可能是部分沿海地带存在基岩裂隙,导致的海水呈线状入侵引起的。样点M随离海岸线距离的减小呈现逐渐增大的趋势,相关系数(R2)仅为0.25,一致性关系不显著(图3b)。但值得注意的是,在微咸水区,部分样点的离海距离达到10 km以上,最远的甚至达到20 km左右,这些样点的矿化度超标并不是因为海水入侵导致,可能是由于天然本地的矿化度较高导致,且这些点的数量较少,属于微咸水水质的样点几乎均分布在5 km以内,且离海距离为5 km时,样点矿化度位于咸淡水分界线上。海水入侵区和微咸水水质样点均分布在离海5 km以内,可以认为研究区矿化度超标也与海水入侵有关。将地下水氯离子浓度与矿化度进行线性相关性分析(图4)得到相关系数(R2)为0.87,可知地下水咸化与氯离子浓度密切相关,即与海水入侵密切相关。综上,沿海地带地下水氯离子浓度和矿化度升高是由海水入侵引起的,超过饮用标准和灌溉标准。研究区地下水水位与潜水埋深范围分别为0.80 — 210.90 m和0.90 — 23.10 m,变化范围较大,潜水埋深的变异系数为88%,属于中等变异,离散程度比氯离子浓度和矿化度高,但小于地下水水位的离散水平(表4),表明地下水水位的空间分异性大,随地理位置和地形的不同,水位差异明显。
随着地下水水位的降低,氯离子浓度和矿化度逐渐增大,且地下水水位与
Cl−water 的相关性较高(R2=0.70),而与M的相关性一般(R2=0.53)。样点海水入侵区地下水位大多数分布在13 m之内(图5),说明海水入侵集中在地下水水位较低处发生,特别是接近海平面地下水开采量大的地区,这些地区地下水水位相对较低,易导致海水入侵陆地含水层。地下水水位高低与埋深并无直接关系,两者之间是由地表高程决定的。通过分析得到地表高程越低,潜水埋深就越浅,且两者呈现密切的正相关关系(R2=0.75)。从图6得出,埋深较浅的地方主要在沿海地带。综上,沿海地带地表高程普遍较低,且地下水埋深较浅,较易发生海水入侵,且部分地区满足土壤盐渍化的发生的条件。
-
研究区土壤颗粒整体呈砂粒(41%)>粉粒(33%)>黏粒(26%),从变异系数的角度看,在10% — 100%之间,具有中等强度的变异性。根据土壤质地的USDA标准,研究区土壤质地多为黏壤土(clay loam)及壤土(loam),其次为砂质粘壤土(sandy clay loam),部分地区存在砂质壤土(sand loam)和粉质壤土(silt loam)。研究区土壤容重的均值为1.40 g·cm−3(表5),紧实度相对较大,整体上看,土壤容重变异程度较低,属于弱变异水平。除东南沿海以及少部分滨海地区,其余大部分地区土壤的砂粒含量较高,最高可达70%左右,分布在东部行政边界处。粉粒、黏粒含量与砂粒含量的分布几乎相反,在砂粒含量较低的地方,粉粒和粘粒含量都相对较高。
研究区土壤pH值在6.20 — 8.30之间,酸性、中性、碱性土均有分布,土壤pH均值为6.95,属于中性水平;但其标准差与变异系数都较小,分别为0.61和9%(表6),说明土壤的酸碱性较为集中。研究区以中性土为主,占到总样本数的51%,碱性土次之,占比为29%,而酸性土最少,仅占20%(图7),因此,可以说明研究区土壤多非碱化土,少数为碱性和酸性土。
目前学者多以易测的饱和土壤浸出液电导率(EC)为指标[30-33],还有学者利用钠吸附比(SAR)、交换钠离子百分比(ESP)等指标[34]来计算土壤溶液的离子之间的占比,进而分析盐渍化的水平。研究区土壤全盐含量最小值仅为0.1%,而最大值可达到0.8%,土壤结构极差;盐分含量的平均水平为0.4%,超过了部分植物正常生长的限值(表7)。从
Cl− /SO2−4 化学计量比上看,其范围在0.30 — 3.65之间,硫酸盐土、氯化物-硫酸盐土以及硫酸盐-氯化物型土壤均有分布。从变异强度上看,两项指标均属于中等变异性,而Cl− /SO2−4 变异性相对更高。但从采样数据散点分布上看,研究区非盐渍化(38%)>中度盐渍化(23%)>轻度盐渍化(21%)>重度盐渍化较少(18%)(图8),土壤盐渍化类型为硫酸盐型(46%)>硫酸盐-氯化物型(34%)>硫酸盐型(21%)。对比土壤样品盐渍化类型与程度,发现盐渍化土壤主要分布在氯化物-硫酸盐土以及硫酸盐-氯化物型土壤上,且在硫酸盐-氯化物型土壤上,盐渍化程度更为严重,多为重度盐渍土和中度盐渍土。土壤全盐含量与离海距离呈现对数型递减规律,两者的相关系数(R2)达到0.58。随着离海距离的增大,土壤全盐含量趋向于稳定。离海距离在10 km之内,土壤全盐含量下降趋势显著,随后则趋于稳定(图8)。综上,土壤中Cl−water 相对较高的土壤,其发生盐渍化的可能性较大,而土壤中氯离子浓度可能来由含盐地下水的毛细上升作用[35],沿海地带地下水氯离子浓度较高主要由海水入侵导致。因此研究区的滨海盐渍土也极可能由于海水入侵导致。 -
从庄河区土壤盐渍化空间分布看,盐渍化土壤多分布在沿海地带(图9),面积达1150 km2,约占陆地总面积的28%,内陆地区几乎全为非盐渍化土壤,特别是东北部的山区,这可能与该处地势高,雨量充分,蒸发强度小,没有造成盐渍化的外界条件有关。海水入侵集中在3块独立的区域,并没有连成片(图9),最大入侵距离达到5.21 km,入侵最大面积达到17.2 km2,总面积达29.81 km2,占陆地总面积的0.73%,3处区域均出现了不同程度的土壤盐渍化问题。
从空间分布来看,研究区沿海地带的地下水埋深很浅,几乎都在3 m以下(图10a),地下水浓度、矿化度含量普遍较高,存在不同程度的微咸水水质。参考《海水入侵监测技术规程(试行)》的标准并依据大连市规定的判断海水入侵的标准,以
Cl−water =250 mg·L−1作为海水入侵的临界线,可以看出沿海地带均有不同程度的海水入侵,东南沿海地带入侵程度相对于其他地方更为严重。海水入侵线与咸淡水分界线几乎是重叠的,离海距离均在5 km左右,再次证实了沿海地区矿化度超标与海水入侵的密切相关性。对照土壤全盐含量空间分布(图10b),沿海土壤盐分远远高于内陆,内陆地区主是非盐渍化土,以中性氯化物—硫酸盐型土壤为主,特别是研究区东北部的山区,这可能与该处地势高,雨量充分,蒸发强度小等外界条件相关。而东南沿海地带的全盐含量高于其他沿海地带,以硫酸盐-氯化物型土壤为主,进一步表明了沿海地带土壤中氯离子浓度相对较高。从浓度变化来看,研究区的地下水盐离子浓度呈沿海向内陆逐渐递减的规律,土壤盐分也由沿海向内陆呈层状递减,沿海地区地下水盐分浓度明显高于内陆地区,且全盐含量高的区域地下水盐分浓度均在500 mg·L−1以上。可见,研究区地下水浓度和土壤全盐含量在空间分布上呈现一致性的规律,而地下水浓度过高可能是土壤盐渍化的风险源之一,这与其他沿海地带研究呈现的规律是一致的[36]。土壤盐渍化问题是由自然、地理环境和人类活动综合作用的结果,受气候、地形、土体结构和地下水埋深、地下水开采等多种因素的影响。通过对庄河市土壤盐渍化影响因子相关性进行分析,可知土壤全盐含量与海拔高程、地貌类型、土壤质地、潜水埋深都呈负相关性,仅与潜水矿化度呈现正相关性。其中,土壤全盐量与潜水矿化度具有较大的正相关关系,相关系数为0.568,反映了盐分的积累和地下水的含盐量及地下水盐上行关系密切(表8)。由前面分析可知,海水入侵导致了庄河市沿海地带地下水氯离子浓度和矿化度超标,进一步表明了庄河市沿海地带的土壤盐渍化的形成主要根源在于海水入侵,且海水入侵贡献率可能达到50%以上。
在此基础上,利用SPSS对影响因子进行聚类分析(图11),将影响因子分为3类:全盐含量、潜水矿化度、潜水埋深为一类,反映土壤盐分主要受到潜水矿化度和潜水埋深的影响,体现影响水盐运移的主要过程;地貌类型和高程为一类,反映土壤的水文地质过程;土壤质地为一类,反映土壤本身性质对盐分运移的影响。聚类分析结果同相关性分析结果一致,全盐含量与潜水矿化度具有显著的相关性,表明海水入侵对土壤盐分有着直接且明显的影响,是土壤盐分积聚的主要驱动因素。同时沿海部分地区潜水埋深相对较浅也是导致盐渍化的主要驱因。
地下水矿化度、埋深与土壤全盐含量较高的相关性,进一步间接证实了庄河市海水入侵与土壤盐渍化的密切关联性。首先,沿海地带受到一定程度的海水入侵,导致了地下水的咸化,同时沿海地带地势较平,海水的倒灌导致了陆域的排水不畅,又进一步导致了地下水埋深浅化,加之地下水资源的开采,加剧了海水入侵的发生。因此,呈现出地下水埋深越浅,盐份含量越高的现象。同时,庄河市的气候属于典型的蒸发量大于降雨量型,旱季气温相对较高时,含盐地下水会通过毛管作用上升至土壤表层,水分蒸发后盐分便积聚起来,随着时间的推移,盐分积累就造成了土壤盐渍化,可见气候因素亦成为盐渍化问题形成的助力。因此,庄河市沿海地带海水入侵,带来了地下水盐分的变化,在气候因素的助推下,导致水生态和土壤生态环境失衡,从而导致了土壤盐渍化。
-
(1) 庄河市沿海地带地下水氯离子与矿化度的超标由海水入侵引起,区域内氯离子浓度和矿化度分别在23.40 — 432.60 mg·L−1和0.22 — 1.98 g·L−1之间,空间分异性大;且离海距离越近,地下水水位越低,海水入侵越严重;沿海地带地下水埋深较内陆浅,海水入侵的风险增加,导致部分地带达到了土壤盐渍化的发生条件。
(3)从空间插值分析结果看,庄河市沿海地带的地下水浓度与土壤盐渍化程度在空间分布上呈现较好一致性。氯离子浓度与离海距离呈现出指数型递减规律,相关系数为0.86,且递减的速率随着离海距离的增大不断减小,最后趋于稳定。以250 mg·L−1为海水入侵临界值,最大入侵距离为6 km,土壤全盐含量与离海距离呈现对数型层状递减规律,相关系数为0.58,递减速率在离海距离约10 km时趋于平缓,离海距离约20 km后土壤全盐含量趋于稳定。由于地质原因存在空间差异,微咸水水质、重度盐渍化土均分布在沿海地带,以东南沿海地带最为明显。
(4)庄河市海水入侵是造成沿海地带土壤盐渍化的主要控制因素,贡献率达到50%以上;沿海地带较浅的地下水埋深和地下水位为海水入侵的发生提供有利条件,海水入侵通过影响地下水氯离子浓度和矿化度,使地下水咸化,在旱季气温相对较高时,含盐地下水可以通过毛管作用上升至土壤表层,水分蒸发后盐分积聚,造成了土壤盐渍化。
(5)土壤盐渍化阻碍了庄河市的水资源开发利用,使其沿海地带的土壤生态失衡,从而对经济发展产生影响。因而引起庄河市土壤盐渍化的直接诱因是海水入侵。因此,治理土壤盐渍化,要结合庄河市的实际情况同步采取防治海水入侵的措施。应控制地下水开采时间和间隔、开采井布局及密度,调控地下水水位和地下水埋深,加强水资源的管理配置,全面建设节水型社会,发展节水农业,提高节水技术,建设降低万元产值耗水量的相关工程。同时,可结合海绵城市建设,充分利用城市雨水系统选择恰当的“渗、蓄、排”措施改善沿海地带的灌—排形式,避免沿海地带挖沙、盐场建设等活动高强度发展,降低海水入侵的几率,防止咸水下渗,重视沿海湿地建设,为海水入侵竖起屏障。
沿海发展区海水入侵与土壤盐渍化空间关联解析
Spatial correlation analysis of seawater intrusion and soil salinization in coastal developed area
-
摘要: 沿海地区经济的快速发展、资源的大量开发,使海水入侵、土壤盐渍化等海岸带环境问题加剧。为了研究沿海发展区海水入侵与土壤盐渍化程度与驱动因素,探究海水入侵与土壤盐渍化的空间关联性,选择沿海的海绵城市试点—庄河市为研究对象,通过地下水与土壤的野外采样检测,运用kriging插值法分析研究区地下水与土壤盐渍化空间分布特征,利用SPSS聚类分析、ArcGIS10.2实现海水入侵与土壤盐渍化的空间关联解析。结果表明:庄河市沿海地带地下水位低、埋深浅处易发生海水入侵,40%的地下水氯离子浓度(23.40 — 432.60 mg·L−1)和矿化度(0.22 — 1.98 g·L−1)超标,超标点位由海水入侵引起;土壤pH值和全盐含量分别在6.20 — 8.30和0.10% — 0.80%之间,盐渍化土壤亦主要分布在沿海地带,以氯化物—硫酸盐土以及硫酸盐—氯化物型为主;地下水浓度与土壤盐渍化程度呈现由沿海向内陆逐渐降低的空间一致性;地下水埋深、矿化度与土壤全盐含量呈现较高的相关性,表明海水入侵对土壤盐分有直接影响,贡献率达到50%以上,是庄河市沿海地带土壤盐渍化问题的主要控制因素,最后,提出庄河市防止海水入侵是治理土壤盐渍化的根本措施,为后续沿海地区盐碱化防治研究提供方向。Abstract: With the rapid development of the economy and the exploitation of resources in coastal areas, the environmental problems such as seawater intrusion and soil salinization have been aggravated. Zhuanghe, a coastal sponge City was selected as the research area to study the driving factors and the degree of seawater intrusion and soil salinization in coastal development areas. We also explored the spatial correlation of seawater intrusion and soil salinization. The Kriging interpolation method was used to analyze the spatial distribution of groundwater and soil salinization in the study area through field sampling and detection of groundwater and soil. SPSS cluster analysis and arcgis 10.2 were used for the spatial correlation analysis of seawater intrusion and soil salinization. The results showed that: in the coastal zone of Zhuanghe City, seawater intrusion was easy to occur at the low groundwater level and shallow depth, 40% of groundwater
Cl−water (23.40 — 432.60 mg·L−1) and M (0.22 — 1.98 g·L−1) exceed the standard, which was caused by seawater intrusion. The soil’s pH value and total salt content ranged from 6.20 to 8.30 and 0.10% — 0.80%, respectively. The salinized soil was also mainly distributed in the coastal zone, mainly composed of chloride sulfate soil and sulfate chloride type. The results showed that the depth of groundwater, and the degree of mineralization have a high correlation with the soil’s total salt content. This indicated that seawater intrusion directly impacted soil salinity, and the contribution rate was more than 50%, which was the main control factor of soil salinization in the coastal zone of Zhuanghe City. Finally, it was proposed that the prevention of seawater intrusion was the fundamental measure to control soil salinization in Zhuanghe City, which provided the direction for the follow-up study of saline-alkali control in coastal areas.-
Key words:
- seawater intrusion /
- soil salinization /
- Zhuanghe City /
- spatial correlation /
- analysis
-
毒品属于精神活性物质,是一类使人体在吸收后产生生理和心理依赖的物质[1],主要包括阿片类的海洛因及吗啡(MOR)制品,可卡因、苯丙胺类的甲基苯丙胺(METH)、苯丙胺和摇头丸等[2-3],截至2020年底,联合国毒品和犯罪办公室及欧洲药物与成瘾监测中心(EMCDDA)共鉴定出1000余种精神活性物质[4-6]。根据《2021年世界毒品问题报告》的数据显示,去年全球约有2.75亿人接触过毒品,相比2010年增加了22%,在2019年,吸毒直接导致近50万人死亡,超过 5400 万人患精神障碍疾病或丧失生命[6],引发了极其严峻的全球公共卫生问题[7-9]。《2020年中国毒品形势报告》指出,由于疫情扩散蔓延,毒品泛滥态势仍然复杂但整体向好 ,截至2020年底,中国现有吸毒人员180.1万名,海洛因、冰毒等滥用品种仍维持较大规模[10],严重影响了社会治安并造成了极大的社会危害[11-15]。
毒品滥用是对公共卫生和社会安全的巨大威胁[16],并严重威胁着人体健康[17],毒品滥用趋势的实时预测和社会危害的准确评价是当前亟待解决的问题[18],基于污水流行病学发展而来的污水验毒技术恰好能够解决这一难题。冰毒和海洛因等传统毒品,经过人体吸食和代谢后,随着尿液排入各级污水处理系统并最终汇入环境。通过对环境样品的采集、处理和分析,可以直观获取环境中毒品母体及其代谢物的种类、浓度及变化趋势,结合数学模型计算,可反推目标区域的毒品滥用种类和滥用量[19]。该方法所得数据客观、时效性高,可用于不同区域横向比较,在估算传统毒品滥用量等方面发挥了巨大作用[20-24]。但在污水及河流等的传输过程中,由于本底因素复杂,目标物可能存在生物化学降解、吸附或其他转化过程[25]。不同水环境性质的差异对传统毒品及其代谢产物的稳定存在具有不同程度的影响[26]。Baker等[26]认为,中性水样中,METH具有较好的稳定性倾向[27]。但海洛因代谢产物6-单乙酰吗啡(6-MAM)非常不稳定,可进一步转化为MOR[28],在污水流行病学范畴内,海洛因的估算通常是以其代谢产物6-MAM作为标准进行的[29],但污水中,6-MAM的损失比例高达42%[26],从而该方法失效。张小寒[30]则认为pH值可通过影响水底质中悬浮物的表面电荷,使得水样中传统毒品含量测量值偏低。张春水等[31]认为,海洛因在碱性条件下会加速降解。此外,吕昱帆等[32]在其研究中发现盐析剂NaCl的使用对6-MAM及MOR的回收率具有不同程度的影响。
为明确水环境对METH、6-MAM和MOR的基质效应,本研究选取了山东省潍坊市11条不同河流的实际水样,测定相关水质参数,采用内标法和主成分分析法探讨基本水质参数对3种精神活性物质METH、6-MAM和MOR定量分析准确度的影响;设计不同梯度pH及氯离子浓度的模拟水样,加入定量METH、6-MAM和MOR并储存不同时间,测试分析其中目标物含量,验证pH、氯离子浓度及存储时间对3种精神活性物质检出浓度的影响。
1. 实验部分(Experimental section)
1.1 实验试剂与仪器
精神活性物质METH、6-MAM及MOR由山东省公安厅提供;氘代内标储备液MOR-D3、6-MAM-D3、METH-D8(100 μg·mL−1, 美国Cerilliant公司);实际水样来源于山东省潍坊市白浪河及利民河等处。主要化学试剂浓氨水、氢氧化钠、氯化钠、硝酸银、重铬酸钾、硫酸汞、高锰酸钾(分析纯,国药集团化学试剂有限公司),甲醇、二氯甲烷、甲酸(色谱纯,J&K百灵威公司)。
固相萃取仪(美国SUPELCO公司),Oasis MCX固相萃取小柱(美国Waters公司),0.45 μm微孔滤膜(天津津腾实验设备有限公司),氮吹仪(美国Organomation公司),XW-80A漩涡混合器(中国金昌实验仪器厂),三重四极杆液质联用仪(Thermo Scientific TSQ Quantiva LC-MS),水质多参仪(美国HACH公司),Milli-Q纯水机。
1.2 实验方法
1.2.1 毒品标准储备液的配制
用分析天平分别称取0.0500 g METH、6-MAM及MOR,逐级稀释溶解于色谱纯的甲醇中,得到浓度均为50 ng·mL−1的毒品标准储备液,超声45 min使其溶解完全。
1.2.2 不同pH、氯离子浓度模拟水样配制
取浓盐酸和NaOH,加入Milli-Q水中,配制pH值分别为2、4、7、10的溶液备用。称取NaCl固体,配制质量浓度为0、1、2、3、4、5 g·L−1的溶液。在50 mL模拟水样中分别加入毒品标准储备液100 μL,使METH、6-MAM及MOR的质量浓度均为100 ng·L−1,常温(25℃)下存储12 、24、36、48、72、120 h。
1.2.3 实际水样的采集
实验样品于2019年12月在山东省潍坊市内白浪河及利民河等11条河流中采集。每个采样点取水样1000 mL, 分为两份,均置于提前用甲醇和Milli-Q水洗净并烘干的棕色玻璃瓶中。采样结束后立即运回实验室,于 4 ℃冷藏。1份样品在48 h内处理完毕,另1份加入定量毒品标准储备液,使METH、6-MAM及MOR的质量浓度均为100 ng·L−1,常温保存72 h。同步参照国家标准测试温度、pH、氯离子浓度,化学需氧量等6项相关水质参数。
1.2.4 样品前处理
①过滤:将水样经过玻璃纤维滤膜(Whatman GF/F)过滤,去除悬浮颗粒物,收集滤液至少100 mL。②MCX小柱活化:依次将甲醇、Milli-Q水和 pH=2的水溶液通过MCX小柱,控制流速为1—2 mL·min−1,充分活化并平衡柱子。③配制MOR-D3、6-MAM-D3、METH-D8的内标溶液,浓度均为200 μg·L−1。④于pH=2的条件下加载已过滤并添加内标的样品,控制流速为1—2 mL·min−1。⑤对淋洗后的SPE小柱持续抽气20 min,直至MCX小柱完全干燥。依次用甲醇和氨水/甲醇溶液(5/100,质量比)洗脱干燥的Oasis MCX柱,并控制流速为1—2 mL·min−1。⑥收集洗脱液,33 ℃水浴下置于柔和的氮气流下吹至近干,用注射器取0.5 mL 20%的甲醇水溶液复溶氮吹残留物,涡旋振荡1 min,用注射器吸取溶液,用0.45 μm针头过滤器(Whatman)过滤并转移至HPLC-MS/MS专用样品瓶中,重复此操作一次。⑦样品测试前用0.2 μm滤膜过滤,滤液上机测试。
1.2.5 分析方法优化
流动相:0.12%甲酸和30 mmol·L−1甲酸铵超纯水溶液(A相);甲醇(B相),流速为0.3 mL·min−1,柱温为30 ℃,进样量为5 μL。以该液相色谱条件为初始方法[24],进一步手动优化,以获得对目标化合物的最高灵敏度(表1)。
表 1 HPLC-MS流动相洗脱梯度Table 1. HPLC-MS mobile phase elution gradient时间/min Time A/% B/% 0.0 95 5 3.0 70 30 6.0 20 80 6.5 10 90 8.0 10 90 8.5 95 5 11.0 95 5 质谱:离子源为电喷雾离子源(ESI),喷雾电压3500 V,离子传输管温度350 ℃,离子化模式为ESI(+);碰撞池气压(CAD)1.5 mTorr,鞘气压力(Sheath gas)为80 Arb,辅气压力(Aux gas)15 Arb。每种目标化合物及其相应内标的母离子和定量、定性离子的质荷比(m/z)见表2,其中,选取每种目标物丰度最大的离子对作为定量离子。
表 2 目标物测试质谱参数Table 2. Mass spectral parameters of the target compound化合物Compound 母离子Parent ion 定量离子Quantitative ion 定性离子Qualitative ion 保留时间/minRetention time m/z m/z DP/V CE/V m/z DP/V CE/V MOR 286 152.1 82 55 165 82 32 2.73 MOR-D3 289.2 152.1 80 55 165 80 41 2.72 METH 150.1 91.1 30 16 119.1 30 16 4.62 METH-D8 158.2 93.2 40 19 124.2 40 10.3 4.59 6-MAM 328.1 165.3 90 36 211.3 90 36 4.35 6-MAM-D3 331.1 165.1 90 38.3 211.2 90 25 4.36 2. 结果与讨论(Results and discussion)
2.1 分析方法的评价
2.1.1 回收率
取3种毒品储备液适量,配制成低、中、高浓度(100 ng·L−1、300 ng·L−1、400 ng·L−1)的质控样品,分别按相同的前处理方法平行操作;每一浓度进行双样本分析,根据当日标准曲线,计算样品测定浓度,得出METH、6-MAM和MOR的方法回收率,结果见表3。数据结果表明METH、6-MAM和MOR的回收率良好。
表 3 实验方法回收率、检出限及定量限Table 3. Experimental methods Recovery rate, detection limit and quantitation limit化合物Compound 加标浓度/(ng·L−1)Added 检出浓度/ (ng·L−1)Found 方法回收率/%Method recovery 检出限/(ng·mL−1) 定量限/(ng·mL−1) ILOD MLOD ILOQ MLOQ METH 400 377.0 94.25 0.2 0.0008 0.8 0.0032 300 304.9 101.63 100 102.6 102.60 6-MAM 400 384.2 96.05 0.2 0.0008 0.8 0.0032 300 283.7 94.57 100 101.4 101.4 MOR 400 418.0 104.50 0.2 0.0008 0.8 0.0032 300 294.8 98.27 100 102.3 102.3 2.1.2 线性范围、检出限及定量限
将低浓度目标物混合标准溶液上机测定,仪器检出限(ILOD)和仪器定量限(ILOQ)分别以3倍信噪比(S/N=3)和10倍信噪比(S/N=10)确定。方法检出限(MLOD)和方法定量限(MLOQ)分别通过以下公式计算得到:
MLOD(或MLOQ)=ILOD(或ILOQ)×200μL50mL 式中,200 μL为上机浓缩液的体积,50 mL为前处理所取水样的体积。
取混合毒品标准溶液适量,用流动相稀释,得质量浓度分别为1.5、3、6、12、25、50、100、150、200、250 ng·mL−1系列标准溶液。依次取上述各浓度标准溶液50 mL,按照相同的前处理方法操作,记录色谱图;以标准溶液中目标物的峰面积与同位素内标的峰面积之比为纵坐标(Y),进样浓度(X)为横坐标,进行线性回归运算,得METH、6-MAM和MOR回归方程:
Y=−0.040+0.033XR2=0.9996 Y=−0.044+0.023XR2=0.9998 Y=−0.042+0.023XR2=0.9992 结果表明METH、6-MAM及MOR质量浓度在1.5—250 ng·mL−1范围内线性关系良好,仪器的检出限和定量限见表3。
2.2 河流水质参数与毒品目标物检出浓度的相关性评价
水样温度、pH值、氯离子浓度、化学需氧量、氨氮、高锰酸盐指数和溶解氧等水质参数见表4。
表 4 样品水质参数Table 4. Water quality parameters of the samples样品名称Sample name 温度/℃Temperature pH 氯离子浓度/(mg·L−1)Chloride ion 化学需氧量/(mg·L−1)COD 氨氮/(mg·L−1)NH4+-N 高锰酸盐指数/(mg·L−1)Permanganate Index 溶解氧/(mg·L−1)DO YX 3.6 8.02 1.10×104 94.0 6.67 9.30 10.1 WS 7.0 8.27 9.09×102 9.50 3.81 11.6 9.50 BQ 2.6 8.34 2.25×102 24.0 1.22 6.70 13.1 GS 4.1 8.49 5.60×102 34.0 0.87 9.40 10.8 DH 2.6 8.50 1.30×103 41.0 0.89 10.0 11.6 BX 4.4 8.56 1.26×103 40.0 1.20 7.90 15.5 CZ 3.6 8.60 1.77×103 53.0 1.30 11.4 11.8 LZ -0.3 8.62 1.29×104 141 1.09 5.10 10.1 LX 0.6 8.64 1.24×104 126 0.88 10.5 14.0 XC 3.7 8.66 1.02×103 47.0 2.22 12.7 13.7 DX 4.3 8.68 1.13×103 39.0 1.08 10.5 14.2 检测水样中METH、MOR及6-MAM浓度(记为c1),在样品中均加入定量毒品标准储备液,使METH、6-MAM及MOR的质量浓度均为100 ng·L−1,常温保存72 h后按照2.3所述方法进行样品前处理,并检测3种毒品目标物加标后的浓度(记为c2),见表5。
表 5 样品加标前后三种毒品目标物的检出浓度Table 5. Detected concentrations of three drug targets before and after labeling样品名称Sample name METH/(ng·L−1) MOR/(ng·L−1) 6-MAM/(ng·L−1) c1 c2 c1 c2 c1 c2 YX 3.19 90.61 n.d. 6.99 n.d. 1.67 WS 2.15 98.73 1.97 25.15 1.25 23.85 BQ 1.13 103.19 3.05 44.63 n.d. 47.25 GS 3.35 99.54 n.d. 42.98 3.29 42.25 DH n.d. 91.70 n.d. 21.36 n.d. 7.37 BX 2.73 94.57 n.d. 19.41 3.12 11.03 CZ n.d. 90.50 3.26 20.41 n.d. 3.34 LZ n.d. 90.27 2.91 7.13 n.d n.d LX 1.59 92.11 2.29 4.59 n.d. 1.91 XC 3.41 95.85 n.d. 24.33 n.d. 26.29 DX 1.28 94.95 3.01 23.97 n.d. 4.01 对河流水质参数及METH、6-MAM和MOR加标后的浓度分别进行主成分分析,探讨7个河流水质参数与污水样品中目标物检出浓度的相关性。主成分分析过程在 SPSS 20.0软件包中进行。对所有数据进行Bartlett球形度检验,相伴概率小于0.05,进行 PCA 以获得分数图和因子载荷,经变量最大旋转后,提取出特征值大于1的因子,主成分分析如图1所示。
METH与pH及溶解氧存在较强的负相关性,说明pH或溶解氧的升高可能会导致其检出浓度的下降。MOR与6-MAM均呈现出与化学需氧量及氯离子浓度的强负相关,说明较高浓度的氯离子浓度可能造成MOR及6-MAM检出浓度不准确。此外,METH与氨氮存在明显的正相关,而水体中氨氮的主要来源是生物体代谢所产生的尿素,与人口高度密切相关。METH是中国滥用人数最多且最为广泛的毒品,氨氮浓度较大的流域为人口聚集区域,METH浓度也呈现聚集趋势。MOR及6-MAM是海洛因的代谢产物,稳定性较低,在因子分析中表现为与温度及高锰酸盐指数相关。高锰酸盐指数是反映水体中有机和无机可氧化物质污染的常用指标,结果表明在较高温度及氧化性较强的水环境中,MOR及6-MAM易于分解。
2.3 验证水质参数对模拟样品中毒品目标物的检出影响
根据实验结果,pH、氯离子浓度等均会不同程度影响3种毒品目标物的准确检出,故选取pH、氯离子浓度作为变量,设计单因素模拟实验验证其对毒品目标物稳定性的影响,此外,在应用污水验毒技术评估地区毒情及进行环境风险评估时,需要对污水及地表水中各毒品目标物进行精确定量,毒品母体及其生物标志物在不同水环境中驻留时间各不相同,也应考虑常温下不同存储时间对毒品目标物的检出影响。
2.3.1 pH对模拟样品中毒品目标物的检出影响
取pH=2、pH=4、pH=7、pH=10的模拟水样各50 mL,分别向其加入METH、6-MAM及MOR标准溶液及内标,按照1.2.4进行前处理,3种目标物的检出浓度见表6。
表 6 不同条件下模拟样品中目标物的检出浓度(ng·L−1)Table 6. Detected concentration of target in simulated samples under different conditions (ng ·L−1)条件梯度Condition Gradient METH/(ng·L−1) 回收率/%Recovery MOR/(ng·L−1) 6-MAM/(ng·L−1) MOR与6-MAM回收率/%Recovery pH 2 84.05±10.21 81.92±9.95 42.44±2.52 150.35±3.86 94.88±3.13 4 85.45±16.65 83.28±16.23 50.71±16.99 136.71±6.03 92.19±11.27 7 85.88±3.03 83.7±2.95 63.87±1.22 117.78±5.75 89.3±3.44 10 68.32±9.19 66.59±8.96 54.42±3.62 150.78±11.71 100.95±7.54 氯化钠浓度/(g·L−1) 0 57.33±1.71 55.88±1.67 34.57±0.04 81.45±0.26 57.06±0.15 1 66.99±5.53 65.29±5.39 46.97±0.77 17.49±1.13 31.58±0.94 2 54.11±1.22 52.74±1.19 33.16±1.22 0 16.21±0.6 3 53.39±1.86 52.04±1.81 38.10±0.74 0 18.62±0.36 4 50.96±3.76 49.67±3.66 35.46±1.04 0 17.33±0.51 5 55.85±0.94 54.43±0.92 37.54±2.25 0 18.35±1.1 存储时间/h 12 102.60±4.29 100±4.18 73.26±6.35 202.54±2.87 135.68±4.52 24 79.59±6.29 77.57±6.13 61.15±4.24 137.83±5.43 97.85±4.75 36 67.29±4.10 65.58±4 47.47±3.05 128.44±9.03 86.53±5.94 48 62.64±2.80 61.05±2.73 49.65±2.60 115.97±7.38 81.45±4.91 72 61.85±2.92 60.28±2.85 27.12±1.24 97.78±6.17 61.47±3.65 120 57.89±3.23 56.42±3.15 29.93±3.72 92.24±4.47 60.11±4.02 当pH=2时,模拟样品中METH的回收率在71.97%—91.87%之间,pH值升高至4和7时,METH回收率为67.05%—99.51%,基本不变, pH升高至10时,METH的回收率明显降低,为57.63%—75.55%,即pH对METH的准确检出有影响,当水体呈现酸性及中性时,METH可以稳定存在并准确检出,在碱性水体中,METH稳定性发生改变,检出浓度下降,与实际水体因子分析的结论相符。原因可能为,在不同的pH体系中,METH的电离度及形态发生了变化。METH的结构中含有碱性的氨基官能团,溶液的pH会影响其质子化/去质子化的过程,此外,含胺类物质在水溶液中易发生光降解,且光解行为与氨基上N电子与三重激发物的转移有关,在低pH条件下,氢离子与N电子结合,阻碍了N电子向活性物的转化从而抑制其光降解,反之,N电子的可用性增强,加速了METH的降解[30]。模拟样品中,MOR在中性条件下检出浓度最高,酸性或碱性的条件下降低。6-MAM的变化趋势与其相反,中性条件下,其检出浓度最低,在酸性及碱性环境中,检出浓度较高,即pH也会干扰MOR和6-MAM在水体中的准确定量,张春水等[33]在研究中发现,海洛因的化学形式在不同pH环境下存在变化,当pH升高时,水解反应加剧,发生6-MAM向MOR的转化。实验结果对实际水体的主成分分析结果进行了补充,可知MOR在中性水体环境中较稳定,6-MAM在酸性条件下更稳定。
由图2可见,不同pH条件下, 6-MAM与MOR的浓度变化规律各不相同,两者呈现相反的趋势,在碱性水体环境中易发生6-MAM向MOR的转化,与张春水等[31]提出的海洛因在碱性条件下加速降解成MOR的结论一致。
在实际污水验毒工作中,6-MAM与MOR均被用来估算海洛因滥用量,在pH值为2、4、7、10时,6-MAM与MOR的回收率之和分别为95%、92%、89%和100%,可知pH对于二者的定量分析及海洛因滥用量的准确估算影响较小。
2.3.2 氯离子浓度对模拟样品中毒品目标物的检出影响
取不同氯离子浓度梯度的模拟水样各50 mL,分别加入METH、6-MAM及MOR标准溶液和内标,按照1.2.4节进行前处理,结果见表6。氯化钠浓度为0 g·L−1时,3种目标物都能在模拟水环境中稳定存在。METH的检出浓度随氯离子浓度升高基本不变;MOR的检出浓度在氯化钠浓度为1 g·L−1时最高,为47.74 ng·L−1,其它浓度时在31.94—39.79 ng·L−1范围内小幅波动,因此氯离子浓度的增大对MOR的稳定性存在负影响,与2.2主成分分析所得结论吻合;6-MAM的浓度随氯离子浓度的升高变化较大,在超过2 g·L−1的氯离子浓度的水环境中不能检出。吕昱帆等[32]在对腐败血中6-MAM和MOR的检出研究中发现,在2.5 mL样品中,加入盐析剂NaCl的质量大于30 mg时,6-MAM及MOR的回收率显著降低,与2.3.2节实验结果吻合,故氯离子浓度的影响在实际应用污水验毒技术的过程中不可忽略。
2.3.3 存储时间对模拟样品中毒品目标物的检出影响
对常温(20℃)下存储不同时间的模拟水样进行前处理和定量分析,结果见表6。常温存储会使METH、6-MAM及MOR的浓度均下降,METH在120 h内降解35%左右,6-MAM在120 h内降解50%左右,MOR在120 h内降解达到了60%,即常温存储会造成METH、6-MAM及MOR在水中降解。
3. 结论(Conclusion)
(1)本文研究了山东省潍坊市的11条河流中,不同水质参数与传统精神活性物质METH、MOR、6-MAM检出浓度的相关性,运用主成分分析法进行相关性评价。结果表明,METH与pH及溶解氧存在较强的负相关,与氨氮存在明显的正相关;MOR与6-MAM均与化学需氧量及氯离子浓度负相关,与其它水质参数相关性较小。
(2)根据实际水样主成分分析结果,选取相关性较大的水质参数进行单因素模拟实验,结果表明,METH在中性及酸性环境下较稳定,MOR在中性条件下较稳定,6-MAM在酸性和碱性条件下均能稳定存在和准确检出;METH的检出几乎不受氯离子浓度的影响,但6-MAM及MOR受氯离子浓度的影响较大;常温(20℃)保存120 h后,METH、6-MAM和MOR的含量均有不同程度的下降。
-
表 1 研究区自然环境概况
Table 1. Overview of the natural environment in the study area
名称Name 参数Parameter 陆地 面积 4073 km2 海岸线 长度 285 km 海拔 平均海拔 >500 m 最高海拔 1130.7 m 最低海拔 <50 m 气候 平均气温 9.1℃ 最高气温 36.6℃ 最低气温 −29.3℃ 年均降水量 754.8 mm 年均蒸发量 1200 mm 表 2 海水入侵分级标准
Table 2. classification standard of seawater intrusion
指标 Index (mg·L−1)Cl−water/ M/(g·L−1) 入侵程度 Degree of invasion 地下水水质 Groundwater quality Ⅰ <250 <1.0 未入侵 淡水 Ⅱ 250 — 1000 1.0 — 3.0 轻度入侵 微咸水 Ⅲ >1000 >3.0 严重入侵 咸水 表 3 研究区地下水
和M描述性统计分析Cl−water Table 3. Descriptive statistical analysis of groundwater
and M in the study areaCl−water 指标Index 范围Range 均值Mean 标准Standard deviation 变异系数Coefficient of variation (CV) (mg·L−1)Cl−water/ 23.40 — 432.60 217.67 92.61 43% M/(g·L−1) 0.22 — 1.98 0.92 0.37 40% 表 4 研究区地下水
和M描述性统计分析Cl−water Table 4. Descriptive statistical analysis of groundwater
and M in the study areaCl−water 指标Index 范围/mRange 均值/mMean 标准/mStandard deviation 变异系数Coefficient of variation (CV) 地下水埋深 0.90 — 23.10 5.54 4.58 88% 地下水水位 0.80 — 210.90 21.42 39.24 183% 表 5 研究区土壤质地及容重描述性统计分析
Table 5. Descriptive statistical analysis of soil texture and bulk density in the study area
指标Index 范围Range 均值Mean 标准Standard deviation 变异系数Coefficient of variation (CV) 砂粒含量 0.20 — 0.72 0.41 10.39 25% 粉粒含量 0.18 — 0.54 0.33 8.12 25% 黏粒含量 0.10 — 0.40 0.26 4.94 19% 容重/(g•cm−3) 1.26 — 1.50 1.40 0.03 2% 表 6 研究区土壤pH值描述性统计分析
Table 6. Descriptive statistical analysis of soil pH in the study area
指标Index 范围Range 均值Mean 标准Standard deviation 变异系数Coefficient of variation (CV) pH值 6.20 — 8.30 7.02 0.61 9% 表 7 研究区土壤全盐含量及
/Cl− 描述性统计分析SO2−4 Table 7. Descriptive statistical analysis of total soil salt content and
/Cl− in the study areaSO2−4 指标Index 范围Range 均值Mean 标准Standard deviation 变异系数Coefficient of variation (CV) 全盐含量 0.10 — 0.80 0.40 0.19 48% /Cl− SO2−4 0.30 — 3.65 1.02 0.67 66% 表 8 土壤盐渍化影响因子相关性分析
Table 8. correlation analysis of influencing factors of soil salinization
类别Category 全盐含量Total salt content 高程Elevation 矿化度Salinity 潜水埋深Dive depth 土壤质地Soil texture 地貌类型 全盐含量 1 −0.397** 0.568** −0.564** −0.411** −0.398** 高程 −0.397** 1 −0.359* 0.645** 0.230 0.486** 矿化度 0.568** −0.359* 1 −0.435** 0.027 −0.326* 潜水埋深 −0.564** 0.645** −0.435** 1 0.212 0.242 土壤质地 −0.411** 0.230 0.027 0.212 1 0.345* 地貌类型 −0.398** 0.486** −0.326* 0.242 0.345* 1 **:在0.01级别(双尾),相关性显著。 **:At 0.01 level(two-tailed),the correlation is significant *:在0.05级别(双尾),相关性显著。 **:At 0.05 level (two-tailed), the correlation is significant -
[1] 许鹏, 李子牛, 聂鸿鹏. 基于文献计量的我国海水入侵研究现状分析 [J]. 科学技术创新, 2020, 20: 157-159. doi: 10.3969/j.issn.1673-1328.2020.28.069 XU P, LI Z N, NIE H P. Analysis of current research status of seawater intrusion in my country based on bibliometrics [J]. Science and Technology Innovation, 2020, 20: 157-159(in Chinese). doi: 10.3969/j.issn.1673-1328.2020.28.069
[2] 孙小祥, 顾之与, 于英鹏. 江苏沿海地区经济发展的现状、问题与对策 [J]. 浙江农业科学, 2019, 60(10): 1709-1711. SUN X X, GU Z Y, YU Y P. The current situation, problems and countermeasures of economic development in Jiangsu coastal areas [J]. Zhejiang Agricultural Sciences, 2019, 60(10): 1709-1711(in Chinese).
[3] 叶阿忠, 郑航. FDI、经济发展水平对环境污染的非线性效应研究—基于中国省际面板数据的门限空间计量分析 [J]. 工业技术经济, 2020, 39(8): 148-153. doi: 10.3969/j.issn.1004-910X.2020.08.019 YE A Z, ZHENG H. Research on the nonlinear effects of FDI and economic development level on environmental pollution: a threshold space econometric analysis based on China’s provincial panel data [J]. Industrial Technology & Economy, 2020, 39(8): 148-153(in Chinese). doi: 10.3969/j.issn.1004-910X.2020.08.019
[4] 孙军. 我国沿海经济崛起视阈下的海洋环境污染问题及其治理 [J]. 江苏大学学报(社会科学版), 2017, 19(1): 46-50. SUN J. Marine environmental pollution and its treatment from the perspective of my country’s coastal economic rise [J]. Journal of Jiangsu University (Social Science Edition), 2017, 19(1): 46-50(in Chinese).
[5] 熊贵耀, 付腾飞, 徐兴永, 等. 滨海含水层海水入侵影响因素研究综述 [J]. 海洋科学, 2019, 43(6): 102-112. X G Y, FU T F, XU X Y, et al. A review of research on factors affecting seawater intrusion in coastal aquifers [J]. Marine Science, 2019, 43(6): 102-112(in Chinese).
[6] 周洪杰. 关于海水入侵与土壤盐渍化的研究[D]. 大连: 辽宁师范大学, 2007: 25-33. ZHOU H J. Research on seawater intrusion and soil salinization[D]. Dalian: Liaoning Normal University, 2007: 25-33 (in Chinese).
[7] 廖小梅. 海水入侵对地下水造成的危害 [J]. 中国高新技术企业(中旬刊), 2014, 14(5): 48-50. LIAO X M. Harm to groundwater caused by seawater intrusion [J]. China High-Tech Enterprise (Mid-term), 2014, 14(5): 48-50(in Chinese).
[8] 韩刚. 烟台市海水入侵综合评价与生态修复技术研究[D]. 烟台: 烟台大学, 2013: 45-76 HAN G. Comprehensive assessment of seawater intrusion and ecological restoration technology in Yantai City[D]. Yantai:Yantai University, 2013: 45-76 (in Chinese).
[9] 王军星, 梁浩亮, 黄舜琴. 惠州市大亚湾淡澳河入海口的海水入侵和土壤盐渍化 [J]. 海洋开发与管理, 2018, 35(6): 46-48. doi: 10.3969/j.issn.1005-9857.2018.06.011 WANG J X, LIANG H L, HUANG S Q. Seawater intrusion and soil salinization at the estuary of Danao River in Daya Bay, Huizhou City [J]. Ocean Development and Management, 2018, 35(6): 46-48(in Chinese). doi: 10.3969/j.issn.1005-9857.2018.06.011
[10] COLOMBANI N, MASTROCICCO M. Scenario modelling of climate change's impact on salinization of coastal water resources in reclaimed lands [J]. Procedia Engineering, 2016, 162: 25-31. doi: 10.1016/j.proeng.2016.11.006 [11] Vu D T, YAMADA T, ISHIDAIRA H. Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam [J]. Water Sci Technol, 2018, 77(5-6): 1632-1639. [12] 王瑶, 熊守纯, 张晓光, 等. 葫芦岛沿海区域海水入侵的危害及存在问题 [J]. 黑龙江水利科技, 2013, 41(8): 209-210. doi: 10.3969/j.issn.1007-7596.2013.08.074 WANG Y, XIONG S C, ZHANG X G, et al. The harm and existing problems of seawater intrusion in the coastal area of Huludao [J]. Heilongjiang Water Conservancy Science and Technology, 2013, 41(8): 209-210(in Chinese). doi: 10.3969/j.issn.1007-7596.2013.08.074
[13] 徐兴永, 付腾飞, 熊贵耀, 等. 海水入侵—土壤盐渍化灾害链研究初探 [J]. 海洋科学进展, 2020, 38(1): 1-10. doi: 10.3969/j.issn.1671-6647.2020.01.001 XU X Y, FU T F, XIONG G Y, et al. A preliminary study on the disaster chain of seawater intrusion and soil salinization [J]. Advances in Marine Science, 2020, 38(1): 1-10(in Chinese). doi: 10.3969/j.issn.1671-6647.2020.01.001
[14] 曹建荣. 山东省莱州湾地区海水入侵成因分析 [J]. 中山大学研究生学刊:自然科学与医学版, 2002, 23(1): 104-111. CAO J R. Analysis of the causes of seawater intrusion in Laizhou Bay, Shandong Province [J]. Postgraduate Journal of Sun Yat-sen University:Natural Science and Medicine Edition, 2002, 23(1): 104-111(in Chinese).
[15] 林功惠, 刘金萍. 大连市海水入侵现状与治理初步探讨 [J]. 东北水利水电, 2014, 32(7): 32-34. doi: 10.3969/j.issn.1002-0624.2014.07.014 LIN G H, LIU J P. Preliminary discussion on current situation and control of seawater intrusion in Dalian [J]. Northeast Water Resources and Hydropower, 2014, 32(7): 32-34(in Chinese). doi: 10.3969/j.issn.1002-0624.2014.07.014
[16] 周洪杰. 海水入侵对大连市牧城驿地区农田土壤生态的影响 [J]. 国土与自然资源研究, 2006, 4: 34-35. doi: 10.3969/j.issn.1003-7853.2006.01.018 ZHOU H J. Influence of seawater intrusion on farmland soil ecology in Muchengyi area of Dalian City [J]. Research on Land and Natural Resources, 2006, 4: 34-35(in Chinese). doi: 10.3969/j.issn.1003-7853.2006.01.018
[17] 林功惠, 刘金萍, 王春蓓. 大连市海水入侵现状与治理初步探讨[C]. 沈阳: 辽宁省水利学会2012年学术年会论文集, 2012: 31-34. LIN G H, LIU J P, WANG C B. Preliminary discussion on the status and control of seawater intrusion in Dalian [C]. Shenyang:Proceedings of the 2012 Academic Annual Meeting of the Liaoning Hydraulics Society, 2012: 31-34 (in Chinese).
[18] 王涛, 周旭东, 李晶. 大连市海水入侵现状的成因分析及对策研究[C]. 沈阳: 2008年水生态监测与分析学术论坛论文集, 2008:227-231. WANG T, ZHOU X D, LI J. The cause analysis and countermeasures of the current situation of seawater intrusion in Dalian[C]. Shenyang:2008 Water Ecology Monitoring and Analysis Academic Forum Proceedings, 2008:227-231 (in Chinese).
[19] ZHAO J, LIN J, WU J F, et al. Numerical modeling of seawater intrusion in Zhoushuizi district of Dalian City in northern China [J]. Environ Earth Sci, 2016, 75(9): 1-18. [20] 宋青. 大连市甘井子地区地下水资源保护及海水入侵问题探讨 [J]. 地下水, 2014, 36(1): 98-100. doi: 10.3969/j.issn.1004-1184.2014.01.038 SONG Q. Discussion on groundwater resources protection and seawater intrusion in Ganjingzi area of Dalian [J]. Groundwater, 2014, 36(1): 98-100(in Chinese). doi: 10.3969/j.issn.1004-1184.2014.01.038
[21] 张德君, 李雪铭, 单灵芝, 等. 海水入侵对滨海城市化发展的影响研—以大连市为例 [J]. 辽宁师范大学学报(自然科学版), 2014, 3: 422-430. ZHANG D J, LI X M, SHAN L Z, et al. Research on the impact of seawater intrusion on the development of coastal urbanization—taking Dalian as an example [J]. Journal of Liaoning Normal University (Natural Science Edition), 2014, 3: 422-430(in Chinese).
[22] 刘辉, 王正英, 朱爽. 庄河市海水入侵特征初析 [J]. 科技信息, 2009, 8: 639-640. doi: 10.3969/j.issn.1001-9960.2009.30.530 LIU H, WANG Z Y, ZHU S. Preliminary analysis on the characteristics of seawater intrusion in Zhuanghe City [J]. Science and Technology Information, 2009, 8: 639-640(in Chinese). doi: 10.3969/j.issn.1001-9960.2009.30.530
[23] 孟春玲. 庄河市盐碱地土壤农化分析及开发利用报告 [J]. 新农业, 2013, 7(7): 32-33. MENG C L. Agrochemical analysis and development and utilization report of saline-alkali soil in Zhuanghe City [J]. New Agriculture, 2013, 7(7): 32-33(in Chinese).
[24] LIU K, SHPARLINSKI I E, ZHANG T. Average distribution of k‐free numbers in arithmetic progressions [J]. Math Nachr, 2020, 293(8): 1505-1514. doi: 10.1002/mana.201900006 [25] 周贤成. 浅析标准差在水工混凝土强度质量控制中的作用 [J]. 四川水利, 2020, 41(4): 115-117. ZHOU X C. Analysis on the role of standard deviation in the quality control of hydraulic concrete strength [J]. Sichuan Water Resources, 2020, 41(4): 115-117(in Chinese).
[26] GARG N, PACHORI M. Use of coefficient of variation in calibration estimation of population mean in stratified sampling [J]. Commun Stat-Theor M, 2019(1): 1-11. [27] CHOUKSEY N, MISHRA G C, CHOUKSEY R. GIS-based interpolation methods for estimating spatial distribution of nitrogen content in the soil [J]. Journal of Krishi Vigyan, 2018, 7(special): 78. doi: 10.5958/2349-4433.2018.00163.0 [28] 赵建. 海水入侵水化学指标及侵染程度评价研究 [J]. 地理科学, 1998, 1(1): 3-5. ZHAO J. Study on the evaluation of seawater intrusion water chemical index and infestation degree [J]. Geographical Sciences, 1998, 1(1): 3-5(in Chinese).
[29] 顾云碧, 郑晓琴, 徐丽丽, 等. 上海地区海水入侵风险调查研究 [J]. 海洋技术学报, 2015, 34(6): 108-111. GU Y B, ZHENG X Q, XU L L, et al. Investigation on the risk of sea water intrusion in Shanghai area [J]. Journal of Ocean Technology, 2015, 34(6): 108-111(in Chinese).
[30] GEBREMESKEL G, GEBREMICAEL T G, KIFLE M, et al. Salinization pattern and its spatial distribution in the irrigated agriculture of Northern Ethiopia: an integrated approach of quantitative and spatial analysis [J]. Agr Water Manage 2018.206: 147-157. [31] NIñEROLA V B, NAVARRO-PEDREñO J, LUCAS, IGNACIO GÓMEZ, et al. Geostatistical assessment of soil salinity and cropping systems used as soil phytoremediation strategy [J]. J Geochem Explor J Assoc Explor Geochem, 2017, 174: 53-58. doi: 10.1016/j.gexplo.2016.06.008 [32] CHO, KI HWAN, BEON, et al. Dynamics of soil salinity and vegetation in a reclaimed area in Saemangeum, Republic of Korea [J]. Geoderma:Int J Soil Sci, 2018, 321: 42-51. [33] SANKAR B G, KUMAR S P, RABINDRANATH C. Assessment of spatial variability of soil properties using geostatistical approach of lateritic soil (West Bengal, India) [J]. Ann Agrar Sci, 2018, 16(4): 436-443. doi: 10.1016/j.aasci.2018.06.003 [34] SHAHID S A, ABDELFATTAH M A, TAHA F K. Developments in soil salinity assessment and reclamation [M]. Berlin: Springer, Dordrecht, 2013. [35] 周慧芳, 谭红兵, 高将, 等. 南通地区地下水咸化机理分析及改良措施 [J]. 水资源保护, 2015, 31(4): 70-76. ZHOU H F, TAN H B, GAO J, et al. Analysis of groundwater salinization mechanism in Nantong area and improvement measures [J]. Water Resources Protection, 2015, 31(4): 70-76(in Chinese).
[36] 刘衍君. 莱州湾南岸海水入侵区土壤盐渍化驱动力分析与生态对策 [J]. 中国农学通报, 2012, 28(2): 209-213. doi: 10.3969/j.issn.1000-6850.2012.02.042 LIU Y J. The driving force analysis and ecological countermeasures of soil salinization in the seawater intrusion area on the south coast of Laizhou Bay [J]. Chinese Agricultural Science Bulletin, 2012, 28(2): 209-213(in Chinese). doi: 10.3969/j.issn.1000-6850.2012.02.042
-