-
地下水是维持人类生存和发展的一种最重要资源和生态环境因子[1]。近年来,我国经历了快速城市化和工业化,然而,污水的处理能力未能保持同步增长(尤其在农村地区)、农业化肥和农药过量使用、地下水超采严重等问题,已经引起地下水水化学特征发生改变[2-4]。众所周知,地下水水化学改变不仅能够干扰多种生态过程,同时也降低了地下水的使用价值[5]。因此,掌握地下水水化学的演化规律对于可持续利用地下水尤为重要[6-8]。
地下水水化学演化主要受控于自然因素和人类活动的综合影响。地下水水化学特征与自然因素(水文地质条件、包气带岩性、水岩交互作用和海水入侵)密切相关[9-10]。安乐生等研究发现,黄河三角洲浅层地下水化学特点形成的关键驱动因素是黄河入海流路变迁和海水入侵[11]。人类活动(如污水排放、农业施肥、地下水超采等)也严重影响了地下水水化学演化规律。Zhang等研究发现,地下水水化学特征受到了生活污水、工业污水和水岩交互作用的混合影响, 因此,为防止该地区地下水水质恶化,首先要控制污水的排放 [12]。郭高轩等研究表明,潮白河冲洪积扇不同深度地下水水化学具有分层分带特征,且在人类活动强烈区域,浅层地下水水质略差[13]。
中牟县位于郑州市东部新城区,地下水资源是该地区工农业生产的主要供水水源。近年来,随着人口的迅速增长和工业的高速发展、农业灌溉面积极速扩大,地下水的开采量日益增加。基于 2019 年对该地区地下水位统调工作发现,中牟县城一带已经形成一个较大的浅层地下水降落漏斗,并且研究区内人类活动强烈,存在农业面源污染、固体废弃物堆放场和工业污染等3类潜在污染来源,可能对地下水水化学特点构成一定影响。目前,针对该地区地下水水化学演化规律尚未开展深入研究工作,对该地区居民的健康饮水和社会经济可持续发展构成潜在威胁。
本研究针对郑州市中牟县地下水水化学演化机理开展研究,联合应用piper三线图、Gibbs图、离子比例系数法和多元统计技术等手段,识别研究区水化学特征,揭示该地区地下水水化学形成演化机制,探讨控制地下水水化学特征的主控因素,以期为快速城市化地区地下水的可持续开发利用提供科学依据。
郑州市中牟县地下水水化学特征及控制因素
Research of groundwater chemical characteristics and controlling factors in Zhongmu County, Zhengzhou City
-
摘要: 地下水是维持人类生存和发展的重要资源。近年来,由于人类活动的强烈干扰,导致地下水的水化学特征发生改变,严重影响了其使用价值和生态功能。本研究以郑州市中牟县作为研究地区,联合应用Piper三线图、Gibbs图、离子比例系数法和多元统计技术,探究该地区地下水化学演变特征及形成机制,结果表明,中牟县地下水主要的阳离子是Ca2+ 和Na+,主要的阴离子是
${{\rm{HCO}}_3^{-}} $ 和 Cl−。地下水主要的水化学类型为HCO3-Ca(Mg)型,占总水样的46.2%。农业用地受到施肥的影响,水化学类型出现了Cl型水(20.8%)和SO4型水(6.25%),住宅用地由于受到生活污水的影响,出现了高比例的Na型水(55.0%)。而在湿地,地下水受到黄河水和污水处理厂回水混合影响,导致其主要的水化学类型转变为HCO3-Ca(Mg)·Na型。中牟县地下水水化学组分主要控制因素是岩石风化作用,并且主要受控于硅酸盐岩风化,而人类活动对水化学组分也存在一定的影响。相关性分析表明,在不同土地利用类型下,除${{\rm{NH}}_4^{+}} $ 、${{\rm{NO}}_3^{-} }$ 和${{\rm{NO}}_2^{-} }$ 外,其余水化学组分之间表现出显著的正相关关系,表征它们主要来自地层岩石风化。${{\rm{NH}}_4^{+}} $ 和${{\rm{NO}}_3^{-}} $ 表现出显著的负相关关系,说明二者主要来自于化肥和生活污水。在农业用地和住宅用地中地下水可能发生强烈的硝化作用,但是,湿地地下水可能发生了反硝化作用。研究结果可为中牟县地下水可持续开发利用提供理论依据和数据支撑。Abstract: Groundwater is an important resource for human survival and development. In recent years, due to the strong interference of human activities, the hydrochemical characteristics of groundwater have changed, which has seriously affected its use value and ecological function. In this study, the evolution characteristics and formation mechanism of groundwater chemistry in Zhongmu County, Zhengzhou City, were analyzed by using Piper trilinear diagram, Gibbs diagram, ion proportion coefficient and multivariate statistical techniques. The results showed that the main cations of groundwater in the study area were Ca2+ and Na+, and the anions were dominated by${\rm{HCO}}_3^{-} $ and Cl−. The main hydrochemical type of groundwater was HCO3-Ca(Mg), which accounts for 46.2% of the total water samples. Affected by agricultural activities, Cl type water (20.8%) and SO4 type water (6.25%) were found in agricultural land. Residential land was affected by domestic sewage, Na type water (55.0%) accounted for a high proportion. However, in wetlands, groundwater was affected by the mixed action of Yellow River and sewage treatment water, resulting in the major hydrochemical type changed to HCO3-Ca (Mg)-Na. The main controlling factor for the chemical composition of groundwater in Zhongmu County was rock weathering (silicate rock weathering). Human activities also have an effect on the chemical composition of groundwater. Correlation analysis showed that the main groundwater hydrochemical components (except${\rm{NH}}_4^{+} $ ,${\rm{NO}}_3^{-} $ and${\rm{NO}}_2^{-} $ ) in different land use type have a significant positive correlation, which indicated that they came from rock weathering.${\rm{NH}}_4^{+} $ and${\rm{NO}}_3^{-} $ showed a significant negative correlation, indicating that they mainly came from fertilizer and domestic sewage. Strong nitrification may occur in groundwater in agricultural and residential lands, while in wetlands, denitrification may occur in aquifers. The results can provide theoretical basis and data support for sustainable development and utilization of groundwater in Zhongmu County.-
Key words:
- Hydrochemistry /
- evolution law /
- controlling factor /
- ion source
-
表 1 研究区地下水水化学参数统计表
Table 1. Descriptive statistics of groundwater hydrochemical parameters in the study area.
均值
Mean value最小值
Minimum value最大值
Maximum value标准差
Standard deviation超标率/%
Exceed standard rate国标Ⅲ类
Standard(Ⅲ)pH 7.62 6.71 8.51 0.26 1.1 6.5—8.5 TDS/(mg·L−1) 612 200 1408 231 3.2 1000 K+/(mg·L−1) 2.10 0.27 10.6 2.00 — — Na+/(mg·L−1) 69.5 6.72 208 48.5 1.1 200 Ca2+/(mg·L−1) 107 7.86 281 47.5 — — Mg2+/(mg·L−1) 36.1 2.90 87.0 16.6 — — HCO3−/(mg·L−1) 418 165 792 137 — — Cl−/(mg·L−1) 67.3 5.21 190 49.6 0 250 SO42-/(mg·L−1) 71.8 4.03 248 47.9 0 250 NO3−/(mg·L−1) 42.4 0.20 338 66.3 19.4 88.6 NH4+/(mg·L−1) 0.159 0.002 1.106 0.237 6.5 0.64 NO2−/(mg·L−1) 0.160 0.002 1.960 0.307 0 3.29 TH/(mg·L−1) 414 28.3 978 159 39.8 450 注:国标Ⅲ类指地下水质量标准Ⅲ类(GB/T14848-2017)[17].
Note: Standard is grade Ⅲ standard for groundwater quality in China (GB/T14848-2017)[17].表 2 研究区不同土地利用类型地下水水化学类型统计表
Table 2. Statistic table of groundwater hydrochemistry type of different land use in the study area
水化学类型Hydrochemical type 水化学类型出现比例/%Proportions of hydrochemical type 农业用地Agricultural land 住宅用地Residential Land 湿地Wetland 工矿用地Industrial land HCO3-Ca(Mg) 58.3 40.0 10.5 83.3 Cl型水 20.8 20.0 10.5 16.7 Na型水 20.8 55.0 89.5 0 SO4型水 6.25 0 0 0 表 3 中牟县地下水化学成分衬度系数方差表
Table 3. variance analysis of contrast coefficient of groundwater hydrochemical compositions in the Zhongmu County
水化学组分
Hydrochemical compositions农业用地
Agricultural land住宅用地
Residential land湿地
Wetland工矿用地
Industrial landSO42− 0.513 0.267 0.283 0.796 Cl− 0.644 0.517 0.189 1.798 NH4+ 2.855 4.751 0.353 1.359 NO2− 4.938 3.168 1.297 1.949 NO3− 1.520 1.980 0.428 3.789 HCO3− 0.151 0.045 0.065 0.049 Na+ 0.725 0.279 0.183 0.443 K+ 1.232 0.933 0.380 0.156 Ca2+ 0.161 0.418 0.067 0.167 Mg2+ 0.256 0.140 0.092 0.100 表 4 研究区农业用地地下水水化学组分的相关性分析
Table 4. Correlation analysis of groundwater hydrochemistry component of agricultural land in the study area
TH TDS SO42− Cl− NH4+ NO2− NO3− HCO3− Na+ K+ Ca2+ Mg2+ 农业
用地TH 1 0.950** 0.713** 0.877** 0.267 0.347* 0.132 0.778** 0.699** 0.663** 0.928** 0.916** TDS 1 0.801 0.922** 0.320* 0.337* 0.186 0.776** 0.796** 0.666** 0.850** 0.939** SO42− 1 0.750** 0.325* 0.093 −0.029 0.606** 0.709** 0.630** 0.624** 0.719** Cl− 1 0.396** 0.262 0.102 0.710** 0.764** 0.616** 0.815** 0.853** NH4+ 1 0.168 −0.496** 0.506** 0.532** 0.393** 0.188 0.402** NO2− 1 0.321* 0.170 0.176 0.030 0.356* 0.303* NO3− 1 −0.292* −0.222 −0.125 0.253 −0.003 HCO3− 1 0.879** 0.668** 0.587** 0.895** Na+ 1 0.642** 0.496** 0.880** K+ 1 0.619** 0.646** Ca2+ 1 0.732** Mg2+ 1 住宅 TH 1 0.767** 0.674** 0.734** −0.363 0.139 0.438 0.465* −0.344 0.513* 0.958** 0.681** TDS 1 0.893** 0.890** −0.122 0.159 0.283 0.626** 0.241 0.598** 0.684** 0.624** SO42− 1 0.832** −0.111 0.197 0.314 0.448* 0.266 0.352 0.593** 0.653** Cl− 1 −0.158 0.158 0.229 0.472* 0.111 0.543* 0.695** 0.614** NH4+ 1 0.272 −0.543* 0.19 0.480* −0.133 −0.436 −0.016 NO2− 1 0.193 0.002 0.06 0.252 0.257 0.207 NO3− 1 −0.373 −0.441 0.065 0.487* 0.099 HCO3− 1 0.424 0.564** 0.333 0.43 Na+ 1 0.089 −0.445* 0.032 K+ 1 0.471* 0.460* Ca2+ 1 0.531* Mg2+ 1 湿地 TH 1 0.946** 0.639** 0.722** −0.031 0.217 0.421 0.786** 0.789** 0.298 0.883** 0.818** TDS 1 0.611** 0.736** 0.109 0.098 0.333 0.830** 0.918** 0.291 0.787** 0.823** SO42− 1 0.756** 0.053 0.14 0.379 0.16 0.416 0.077 0.685** 0.391 Cl− 1 0.213 0.225 0.235 0.302 0.600** −0.057 0.705** 0.505* NH4+ 1 0.2 −0.552* 0.055 0.176 −0.301 −0.175 0.048 NO2− 1 0.265 0.043 −0.021 0.108 0.157 0.219 NO3− 1 0.168 0.213 0.169 0.315 0.463* HCO3− 1 0.844* 0.396 0.565* 0.821* Na+ 1 0.281 0.591** 0.825* K+ 1 0.296 0.261 Ca2+ 1 0.556* Mg2+ 1 注:** 表示在 0.01 水平上线性相关,* 表示在 0.05 水平上线性相关.
Note:** P<0.01; * P<0.05. -
[1] MA B, JIN M G, LIANG X, et al. Groundwater mixing and mineralization processes in a mountain–oasis–desert basin, northwest China: Hydrogeochemistry and environmental tracer indicators [J]. Hydrogeology Journal, 2018, 26(D22): 233-250. [2] JIANG Y, WU Y, GROVES C, et al. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China [J]. Journal of Contaminant Hydrology, 2009, 109(1-4): 49-61. doi: 10.1016/j.jconhyd.2009.08.001 [3] QIN R, WU Y, XU Z, et al. Assessing the impact of natural and anthropogenic activities on groundwater quality in coastal alluvial aquifers of the lower Liaohe River Plain, NE China [J]. Applied Geochemistry, 2013, 31(2): 142-158. [4] XUE D, BOTTE J, BAETS B D, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface-and groundwater [J]. Water Research, 2009, 43(5): 1159-1170. doi: 10.1016/j.watres.2008.12.048 [5] REN C B , ZHANG Q Q. Groundwater chemical characteristics and controlling factors in a region of Northern China with intensive human activity [J]. International Journal of Environmental Research and Public Health, 2020, 17: 9126. doi: 10.3390/ijerph17239126 [6] PAZAND K, KHOSRAVI D, GHADERI M R, et al. Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: A case study of Ardestan basin in Central Iran [J]. Groundwater for Sustainable Development, 2018, 6: 245-254. doi: 10.1016/j.gsd.2018.01.008 [7] HUANG G, SUN J, ZHANG Y, et al. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China [J]. Science of the Total Environment, 2013, 463–464(5): 209-221. [8] 孙厚云, 毛启贵, 卫晓锋, 等. 哈密盆地地下水系统水化学特征及形成演化 [J]. 中国地质, 2018, 45(6): 1128-1141. SUN H Y, MAO Q G, WEI X F, et al. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami basin [J]. Geology in China, 2018, 45(6): 1128-1141(in Chinese).
[9] 崔佳琪, 李仙岳, 史海滨, 等. 河套灌区地下水化学演变特征及形成机制 [J]. 环境科学, 2020, 41(9): 135-144. CUI J Q, LI X Y, SHI H B, et al. Chemical evolution and formation mechanism of groundwater in Hetao Irrigation Area [J]. Environmental Science, 2020, 41(9): 135-144(in Chinese).
[10] 刘江涛, 蔡五田, 曹月婷, 等. 沁河冲洪积扇地下水水化学特征及成因分析 [J]. 环境科学, 2018, 39(12): 142-153. LIU J T, CAI W T, CAO Y T, et al. Hydrochemical characteristics of groundwater and the origin in alluvial-proluvial fan of Qinhe River [J]. Environmental Science, 2018, 39(12): 142-153(in Chinese).
[11] 安乐生, 赵全升, 叶思源, 等. 黄河三角洲浅层地下水化学特征及形成作用 [J]. 环境科学, 2012, 33(2): 370-378. AN L S, ZHAO Q S, YE S Y, et al. Hydrochemical characteristics and formation mechanism of shallow groundwater in the Yellow River delta [J]. Environmental Science, 2012, 33(2): 370-378(in Chinese).
[12] ZHANG Q Q, WANG L, WANG H W, et al. Spatio-temporal variation of groundwater quality and source apportionment using multivariate statistical techniques for the Hutuo River alluvial-pluvial fan, China [J]. International Journal of Environmental Research and Public Health, 2020, 17: 1055. doi: 10.3390/ijerph17031055 [13] 郭高轩, 侯泉林, 许亮, 等. 北京潮白河冲洪积扇地下水水化学的分层分带特征 [J]. 地球学报, 2014, 35(2): 204-210. doi: 10.3975/cagsb.2014.02.12 GUO G X, HOU Q L, XU L, et al. Delamination and zoning characteristics of quaternary groundwater in Chaobai alluvial-proluvial fan, Beijing, based on hydrochemical analysis [J]. Acta Geoscientica Sinica, 2014, 35(2): 204-210(in Chinese). doi: 10.3975/cagsb.2014.02.12
[14] ZHANG Q Q, WANG H W. Assessment of sources and transformation of nitrate in the alluvial-pluvial fan region of north China using a multi-isotope approach [J]. Journal of Environmental Sciences, 2020, 89: 9-22. doi: 10.1016/j.jes.2019.09.021 [15] KNEZOVIC N J, MEMIC M, MABIC M, et al. Correlation between water hardness and cardiovascular diseases in Mostar city, Bosnia and Herzegovina [J]. Journal of Water and Health, 2014, 12(4): 817-823. doi: 10.2166/wh.2014.129 [16] KOUSA A, HAVULINNA A, MOLTCHANOVA E, et al. Calcium magnesium ratio in local ground-water and incidence of acute myocardial in faction among males in rural Finland [J]. Environmental Health Perspect, 2006, 114(1): 730-734. [17] 中华人民共和国自然资源部. 地下水质量标准(GB/T 14848-2017). 中华人民共和国国家质量监督检验检疫局, 2017. Ministry of natural resources of the People's Republic of China. Standard for Groundwater quality. (GB/T 14848-2017). General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2017(in Chinese).
[18] 冯建国, 赫明浩, 李贵恒, 等. 泰莱盆地孔隙水水化学特征及其控制因素分析 [J]. 环境化学, 2019, 38(11): 2594-2600. FENG J G, HE M H, LI G H, et al. Analysis of hydrochemical characteristics and controlling factors of porewater in the Tailai Basin [J]. Environmental Chemistry, 2019, 38(11): 2594-2600(in Chinese).
[19] 唐金平, 张强, 胡漾, 等. 湔江冲洪积扇地下水化学特征及控制因素分析 [J]. 环境科学, 2019, 40(7): 3089-3098. TANG J P, ZHANG Q, HU Y, et al. Groundwater chemical characteristics and analysis of their controlling factors in an Alluvial Fan of Jianjiang River [J]. Environmental Science, 2019, 40(7): 3089-3098(in Chinese).
[20] 张千千, 王慧玮, 王龙, 等. 滹沱河冲洪积扇地区地下水硬度升高的机理研究 [J]. 环境科学与技术, 2018, 41(S2): 62-68. ZHANG Q Q, WANG H W, WANG L, et al. Increasing mechanism of groundwater total hardness (TH) in the Hutuo River alluvial-pluvial fan [J]. Environmental Science & Technology, 2018, 41(S2): 62-68(in Chinese).
[21] GAILLARDET J, DUPRE B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1-4): 3-30. doi: 10.1016/S0009-2541(99)00031-5 [22] GUO G, WU F, XIE F, et al. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China [J]. Journal of Environmental Sciences, 2012(3): 410-418. [23] LIU C Q, LI S L, LANG Y C, et al. Using delta15N- and delta18O-values to identify nitrate sources in karst ground water, Guiyang, southwest China[J]. Environmental Science & Technology, 2006, 40(22): 6928. [24] ZHANG Q, WANG H, WANG Y, et al. Groundwater quality assessment and pollution source apportionment in an intensely exploited region of northern China [J]. Environmental Science & Pollution Research, 2017, 24(20): 16639. [25] ZHANG Q, WANG X, WAN W, et al. The spatial-temporal pattern and source apportionment of water pollution in a trans-urban river [J]. Polish Journal of Environmental Studies, 2015, 24(2): 841-851. [26] SU S, ZHI J, LOU L, et al. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques [J]. Physics & Chemistry of the Earth, 2011, 36(9-11): 379-386. [27] NESTLER A, BERGLUND M, ACCOE F, et al. Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies [J]. Environmental Science Pollution Research, 2011, 18(4): 519-533. doi: 10.1007/s11356-010-0422-z [28] PASTEN –ZAPATA E, LEDESMA-RUIZ R, HARTER T, et al. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach [J]. Science of Total Environment, 2014, 470/471(2): 855-864. [29] JIN Z, XUE Q, CHEN L, et al. Using dual isotopes to evaluate sources and transformations of nitrate in the West Lake watershed, eastern China [J]. Journal of Contaminant Hydrology, 2015, 177/178: 64-75. doi: 10.1016/j.jconhyd.2015.02.008 [30] KUMAZAWA K. Nitrogen fertilization and nitrate pollution in groundwater in Japan: present status and measures for sustainable agriculture [J]. Nutr Cycl Agroecosyst, 2002, 63(2/3): 129-137. doi: 10.1023/A:1021198721003 [31] ZHANG Q, SUN J, LIU J, et al. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south china [J]. Journal of Contaminant Hydrology, 2015, 182: 221-230. doi: 10.1016/j.jconhyd.2015.09.009