-
煤矸石是采煤和洗煤过程中排放的固体废物,是在成煤过程中与煤层伴生的一种含碳量较低、比煤坚硬的黑灰色岩石[1],可通过堆积、风化、淋溶等多种作用对周边大气、土壤和水体造成不同程度的污染[2- 3]。长期以来,煤矸石被用于低洼地区的垃圾填埋,形成了大量露天堆积物,造成植被破坏、水土流失等环境污染问题。煤矸石长时间的堆积以及治理措施经验的不足,造成门头沟区尾矿库附近的矸石山存在严重的重金属污染,尤其是汞(Hg)[4]。汞是一种毒性很强的重金属元素,在自然界中呈现多种赋存形态,如金属汞、无机结合态汞和有机结合态汞。无机汞的毒性较弱但进入环境后将经历一系列的转化为甲基汞,甲基汞是毒性最强的汞化合物[5]。为有效解决汞污染,联合国环境规划部于2013年制定了国际汞公约《水俣公约》;我国政府于2011年颁布的《重金属污染综合防治“十二五”规划》(国函〔2011〕13号)中,将汞列为重点管理重金属,并制定了汞污染排放量额指标,随后于2013年正式启动973汞污染特性以及环境和减排技术项目[6]。
国内外学者对煤矸石利用方面的研究[7-23]较多,如建材(包括制作水泥、混凝土,制砖,作路基材料,井下填充,土地复垦等)、高值化利用(包括合成陶瓷,制备氧化铝,提取镓、锂等稀有稀土元素)、吸附剂作用、碳回收等,但在环境污染方面的研究较少。对于重金属总量、赋存形态、淋溶等研究[24-29]主要集中于矿区中煤的研究和周边土壤重金属污染评价;对煤矸石中汞的研究主要讨论不同的加热速率、停留时间、气氛条件(N2、O2、CO2)、氧气体积分数等影响因素对煤矸石中汞的热释放[30-32],并表明煤矸石中汞释放的主要因素为温度。然而,北京门头沟区煤矸石中汞的空间分布、迁移富集规律及潜在环境风险却没有被系统地研究过。本次研究区域位于门头沟区的西南和中东部矿集区,具有百年多的煤炭开采历史[33],该地拥有煤和非金属矿产等多种资源,大规模的开采曾带动了当地区域的发展,同时也改变和破坏了当地的地质环境,产生了一系列的环境问题。在煤炭开采过程中遗留下大量煤矸石裸露堆积在地表已成为门头沟矿区的主要污染源,这些露天堆放的煤矸石经过风化和淋滤等作用,成为矿区水土污染的重要来源,对北京市门头沟矿区周边环境造成了严重影响。因此,研究北京市门头沟煤矸石堆放过程中汞的环境效应有着重要的理论和现实意义。
本文以北京市门头沟典型矿区堆积的煤矸石为研究对象,探讨煤矸石中汞的含量及影响因子,并采用改进的BCR连续提取法提取汞的赋存形态,探究在酸雨条件下初始pH、粒径、固液比等因素对汞的溶出特征的影响,为重金属汞的污染监测、矿区的进一步治理及生态修复提供理论依据。
北京市门头沟风化煤矸石中汞的赋存形态与溶出特征分析
Analysis on the occurrence and dissolution characteristics of mercury in weathered coal gangue in Mentougou, Beijing
-
摘要: 为探究堆积煤矸石所产生的重金属的污染问题,本文以北京市门头沟5个典型矿区为研究对象,采集矸石山堆积表面风化煤矸石共45个样品,分析测试矸石样品中汞(Hg)的含量,对不同理化性质下各重金属的变化规律进行了初步探讨;利用改进BCR连续提取法,研究样品中Hg的赋存形态,分析其生物可利用性;采用富集因子法、地累积指数法、风险编码法和个体污染因子法对Hg进行有效性评价;再模拟酸雨条件下Hg的溶出特征及影响因素。结果表明,该研究区Hg的含量为0.085—0.519 mg·kg−1,均值为0.169 mg·kg−1,超过了北京市土壤背景值,超标倍数为4.225;Hg的平均富集系数与地累积指数分别为4.53和1.35,均表现为中度污染;风险编码法和次生相与原生相比值法结果显示为低风险和轻度污染,占比分别为86.67%和31.11%;Hg与Eh呈显著负相关,与含水率呈显著正相关;煤矸石中Hg的主要赋存形态为可氧化态Hg和残渣态Hg,其中可还原态Hg与可氧化态Hg存在显著负相关,TOC、pH与可还原态Hg呈显著正相关;静态淋溶试验表明,雨水酸度、粒径、固液比均会影响Hg的溶出量,在一定条件范围内,煤矸石浸泡液中Hg的溶出量随pH的增大而减小,随粒径的增大而增大,随固液比的增大而增大;在静态淋溶模拟试验中,Hg的最大溶出量严重超出国家标准,为Ⅳ类水质的6.4倍。该研究结果可为进一步了解Hg 在煤矸石中的活性、迁移规律、赋存形态及永定河Hg的污染治理提供科学依据。Abstract: In order to explore the pollution of heavy metals caused by the accumulation of coal gangue, this paper takes 5 typical mining areas in Mentougou, Beijing as the research object. A total of 45 samples of weathered coal gangue on the surface of the gangue hill were collected to analyze and test the content of mercury (Hg) in the gangue samples, and a preliminary discussion on the changing laws of various heavy metals under different physical and chemical properties were investigated; using the improved BCR continuous extraction method to study the occurrence of Hg in the sample and analyze its bioavailability; and the enrichment factor method, the geoaccumulation index method, risk coding method and individual pollution factor method were used to evaluate the effectiveness of Hg; the dissolution characteristics and factors affecting Hg under acid rain conditions were then simulated. The results showed that the content of Hg in the study area was 0.085—0.519 mg·kg−1, with an average value of 0.169 mg·kg−1, which exceeded the Beijing soil background value with a multiple of 4.225; the average enrichment coefficient of Hg and land accumulation index are 4.53 and 1.35 respectively, both of which are moderate pollution; the results of risk coding method and secondary phase to primary phase ratio method show low risk and light pollution, accounting for 86.67% and 31.11% respectively; Hg are significantly negatively correlated with Eh, and positively correlated with moisture content; the main occurrence forms of Hg in coal gangue are oxidizable Hg and residual Hg, among which there is a significant negative correlation between reducible Hg and oxidizable Hg, there is a significant positive correlation between TOC, pH and the reducible Hg; the static leaching test shows that the acidity of rainwater, particle size, and solid-liquid ratio will all affect the dissolution of Hg. Within a certain range of conditions, the dissolution of Hg in the coal gangue soaking solution decreases with pH increases, and it increases with the increase of particle size and solid-liquid ratio; In the static leaching simulation test, the maximum dissolution of Hg seriously exceeded the national standard, and it was 6.4 times as much as the value of Class Ⅳ water quality. The research results can provide a scientific basis for further understanding of the activity, migration law, occurrence form of Hg in coal gangue and the Hg pollution control of Yongding River.
-
Key words:
- mercury /
- coal gangue /
- occurrence states /
- static leaching
-
表 1 煤矸石中汞含量描述性统计分析(mg·kg−1)
Table 1. Descriptive statistical analysis of Hg content in coal gangue (mg · kg−1)
重金属元
Heavy metal
elements最小值
Minimum最大值
Maximum平均值
Mean标准差
Standard
deviation偏度
Skewness峰度
Kurtosis变异系数
Coefficient of
variationEF Igeo Hg 0.085 0.519 0.169 0.089 5.17 5.55 52.09% 4.53 1.35 表 2 煤矸石中重金属含量与各理化指标间的相关系数
Table 2. Correlation coefficients between Hg content in coal gangue and various physical and chemical indicators
Hg TOC pH Eh ${\omega _{{{\rm{H}}_{\rm{2}}}{\rm{O}}}} $ Hg 1 TOC 0.251 1 pH 0.256 .531** 1 Eh −.326* −.513** −.972** 1 ${\omega _{{{\rm{H}}_{\rm{2}}}{\rm{O}}}} $ .440** .401** −0.147 0.135 1 **. 在 0.01 级别(双尾),相关性显著;*. 在 0.05 级别(双尾),相关性显著。
**Significance level P < 0.01; * Significance level P < 0.05.表 3 煤矸石中Hg的不同形态与pH、TOC的相关性关系
Table 3. Correlation between different forms of Hg in coal gangue and pH and TOC
F1 F2 F3 F4 Hg TOC pH F1 1 F2 0.242 1 F3 −0.225 −.403** 1 F4 0.111 −0.023 .653** 1 Hg 0.015 0.133 0.203 .437** 1 TOC 0.206 .419** 0.055 .475** 0.29 1 pH 0.098 .702** −0.258 0.157 0.266 .531** 1 *. 在 0.05 级别(双尾),相关性显著;**. 在 0.01 级别(双尾),相关性显著。
**Significance level P < 0.01; * Significance level P < 0.05 -
[1] 曹艳芝, 郭少青, 翟晋栋. 煤矸石中汞和砷的赋存形态研究 [J]. 煤田地质与勘探, 2017, 45(1): 26-30. doi: 10.3969/j.issn.1001-1986.2017.01.005 CAO Y Z, GUO S Q, ZHAI J D. The mode of occurrence of mercury and arsenic in coal gangues [J]. Coal Geology & Exploration, 2017, 45(1): 26-30(in Chinese). doi: 10.3969/j.issn.1001-1986.2017.01.005
[2] SZCZEPANSKA J, TWARDOWSKA I. Distribution and environmental impact of coal-mining wastes in Upper Silesia, Poland [J]. Environmental Geology, 1999, 38(3): 249-258. doi: 10.1007/s002540050422 [3] 杨建, 陈家军, 王心义. 煤矸石堆周围土壤重金属污染空间分布及评价 [J]. 农业环境科学学报, 2008(3): 873-878. doi: 10.3321/j.issn:1672-2043.2008.03.007 YANG J, CHEN J J, WANG X Y. Spatial distribution of heavy metals in soils around the coal waste rock pile and their environmental pollution assessment [J]. Journal of Agro-Environment Science, 2008(3): 873-878(in Chinese). doi: 10.3321/j.issn:1672-2043.2008.03.007
[4] 任建莉, 周劲松, 骆仲泱, 等. 煤中汞燃烧过程析出规律试验研究 [J]. 环境科学学报, 2002, 22(3): 289-293. doi: 10.3321/j.issn:0253-2468.2002.03.004 REN J L, ZHOU J S, LUO Z Y, et al. Study of mercury emission during coal combustion [J]. Acta Science Circumstantiae, 2002, 22(3): 289-293(in Chinese). doi: 10.3321/j.issn:0253-2468.2002.03.004
[5] 邢宇鑫, 闫广新, 侯秋丽, 等. 北京门头沟矿集区土壤重金属空间分布及污染特征 [J]. 农业资源与环境学报, 2016, 33(6): 499-507. XING Y X, YAN G X, HOU Q L, et al. Spatial distribution and pollution characteristics of heavy metals in soil of Mentougou mining area of Beijing city, China [J]. Journal of Agricultural Resources and Environment, 2016, 33(6): 499-507(in Chinese).
[6] 冯新斌, 陈玖斌, 付学吾, 等. 汞的环境地球化学研究进展 [J]. 矿物岩石地球化学通报, 2013, 32(5): 503-530. FENG X B, CEHN J B, FU X W, et al. Progresses on environmental geochemistry of mercury [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(5): 503-530(in Chinese).
[7] BANDURA L, FRANUS M, PANEK R, et al. Characterization of zeolites and their use as adsorbents of petroleum substances [J]. Przem Chem, 2015, 94(3): 323-327. [8] CAO Z, CAO Y, DONG H, et al. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue [J]. Int J Miner Process, 2016, 146: 23-28. doi: 10.1016/j.minpro.2015.11.008 [9] GUO Y, YAN K, CUI L, et al. Improved extraction of alumina from coal gangue by surface mechanically grinding modification [J]. Powder Technol, 2016, 302: 33-41. doi: 10.1016/j.powtec.2016.08.034 [10] UCURUM M. Influences of Jameson flotation operation variables on the kinetics and recovery of unburned carbon [J]. Powder Technol, 2009, 191(3): 240-246. doi: 10.1016/j.powtec.2008.10.014 [11] IVINDRA P, WILL H. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis [J]. Cement Concrete Res, 2005, 35: 1155-1164. doi: 10.1016/j.cemconres.2004.10.027 [12] LEE J H, CHOI H J, YOON S Y, et al. Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique [J]. J Porous Mat, 2013, 20(1): 219-226. doi: 10.1007/s10934-012-9591-0 [13] YU J L, MENG F R, LI X C, et al. Power generation from coal gangue in China: Current status and development [J]. Advanced Materials Research, 2012, 550/553: 443-446. doi: 10.4028/www.scientific.net/AMR.550-553.443 [14] BERNARDO E, SCARINCI G, BERTUZZI P, et al. Recycling of waste glasses into partially crystallized glass foams [J]. J Porous Mat, 2010, 17(3): 359-365. doi: 10.1007/s10934-009-9286-3 [15] QIU G, LUO Z, SHI Z, et al. Utilization of coal gangue and copper tailings as clay for cement clinker calcinations [J]. Journal of Wuhan University of Technology-Mater. Sci Ed, 2011, 26(6): 1205-1210. doi: 10.1007/s11595-011-0391-1 [16] PANDEY Y, SANGITA, TARE V. Utilization of coal mixed waste aggregates available at thermal power plants for GSB and asphalt mixtures [J]. Procedia engineering, 2016, 143: 170-177. doi: 10.1016/j.proeng.2016.06.022 [17] 秦倩, 王金满, 胡斯佳. 利用煤矸石粉煤灰制成农田排水混凝土材料的研制实验 [J]. 中国矿业, 2015, 24(7): 39-43. doi: 10.3969/j.issn.1004-4051.2015.07.010 QIN Q, WANG J M, HU S J. Adevelopment test on porous concrete material with coal gangue and fly ash used for farmland drainage in coal mining subsidence area with high ground-water level [J]. China Minging Magazine, 2015, 24(7): 39-43(in Chinese). doi: 10.3969/j.issn.1004-4051.2015.07.010
[18] 谷玲钰, 刘振英, 刘银. 利用煤矸石制备多孔陶瓷的及力学性能研究 [J]. 矿产综合利用, 2018(5): 135-137. doi: 10.3969/j.issn.1000-6532.2018.05.030 GU L Y, LIU Z Y, LIU Y. The Investigation on preparation of porous ceramic by using coal gangue as the raw materials [J]. Multipurpose Utilization of Mineral Resources, 2018(5): 135-137(in Chinese). doi: 10.3969/j.issn.1000-6532.2018.05.030
[19] 刘曙光, 徐良骥, 余礼仁. 煤矸石充填复垦地土壤理化性质的时空变化特征 [J]. 环境工程, 2018, 36(2): 173-177. LIU S G, XU L J, YU L R. Spatiotemporal variation of physical and chemical properties of reclaimed soil in coal fangue filling land [J]. Environmental Engineering, 2018, 36(2): 173-177(in Chinese).
[20] 任雪娇, 夏举佩, 张召述. 煤矸石酸解制备氢氧化铝的实验研究 [J]. 非金属矿, 2012, 35(2): 12-14. doi: 10.3969/j.issn.1000-8098.2012.02.004 REN X J, XIA J P, ZHANG Z S. Experimental study on producing alumina hydroxide with acid hydrolysis from coal gangue [J]. Non-Metallic Mines, 2012, 35(2): 12-14(in Chinese). doi: 10.3969/j.issn.1000-8098.2012.02.004
[21] 郭彦霞, 张圆圆, 程芳琴. 煤矸石综合利用的产业化及其展望 [J]. 化工学报, 2014, 65(7): 2443-2453. doi: 10.3969/j.issn.0438-1157.2014.07.006 GUO Y X, ZHANG Y Y, CHENG F Q. Industrial development and prospect about comprehensive utilization of coal gangue [J]. Ciesc Journa, 2014, 65(7): 2443-2453(in Chinese). doi: 10.3969/j.issn.0438-1157.2014.07.006
[22] 郭海桥, 程伟, 尚志, 等. 水分和冻融循环对酷寒矿区煤矸石风化崩解速率影响的定量研究 [J]. 煤炭学报, 2019, 44(12): 3859-3864. GUO H Q, CHENG W, SHANG Z, et al. Quantitative determination of the effect of moisture and freeze / thaw cycles on coal gaugue decay rate in severe cold mining areas [J]. Jour Nal of China Coal Society, 2019, 44(12): 3859-3864(in Chinese).
[23] 陈东, 曹坤. 准格尔矿区煤矸石综合利用新途径 [J]. 中国煤炭, 2017, 43(10): 132-136. doi: 10.3969/j.issn.1006-530X.2017.10.026 CHEN D, CAO K. New method for coal gangue comprehensive utilization in Jungar mining area [J]. China Coal, 2017, 43(10): 132-136(in Chinese). doi: 10.3969/j.issn.1006-530X.2017.10.026
[24] OCHEDI F O, LIU Y, HUSSAIN A. A review on coal fly ash-based adsorbents for mercury and arsenic removal [J]. J Clean Prod, 2020, 267: 122143. doi: 10.1016/j.jclepro.2020.122143 [25] ZHOU Y, REN B, HURSTHOUSE A, et al. Antimony ore tailings: Heavy metals, chemical speciation, and leaching characteristics [J]. Pol J Environ Stud, 2018, 28(1): 485-495. doi: 10.15244/pjoes/85006 [26] LIANG L, XU X, HAN J, et al. Characteristics, speciation, and bioavailability of mercury and methylmercury impacted by an abandoned coal gangue in southwestern China [J]. Environmental science and pollution research international, 2019, 26(36): 37001-37011. doi: 10.1007/s11356-019-06775-7 [27] LI W H, MA Z Y, HUANG Q X, et al. Distribution and leaching characteristics of heavy metals in a hazardous waste incinerator [J]. Fuel, 2018, 233: 427-441. doi: 10.1016/j.fuel.2018.06.041 [28] ZHANG Y J, ZHANG Y L, ZHANG Y, et al. Study on speciation and distribution characteristics of heavy metals in soil around typical coal gangue in Fengfeng Mining Area [J]. IOP conference series. Earth and environmental science, 2019, 371(3): 032081. doi: 10.1088/1755-1315/371/3/032081 [29] 籍永华, 秦丙克, 黄沈丹. 汪家寨煤矿煤中汞的含量分布与赋存状态 [J]. 煤炭技术, 2019, 38(7): 156-159. JI Y H, QIN B K, HUANG S D. Distribution and occurrence state of mercury in coal of Wangjiazhai coal mine [J]. Coal Technology, 2019, 38(7): 156-159(in Chinese).
[30] GUO S, NIU X, ZHAI J. Mercury release during thermal treatment of two Chinese coal gangues [J]. Environ Sci Pollut R, 2017, 24(30): 23578-23583. doi: 10.1007/s11356-017-9980-7 [31] LI B, WANG J H, BI M S, et al. Experimental study of thermophysical properties of coal gangue at initial stage of spontaneous combustion [J]. J Hazard Mater, 2020, 400: 123251. doi: 10.1016/j.jhazmat.2020.123251 [32] 赵文鑫, 刘瑞卿, 张建利, 等. 煤矸石热处理过程中汞的释放行为 [J]. 环境化学, 2019, 38(4): 842-849. doi: 10.7524/j.issn.0254-6108.2018112904 ZHAO W X, LIU R Q, ZHANG J L, et al. Release behaviors of mercury during thermal treatment of three coal gangues [J]. Environmental Chemistry, 2019, 38(4): 842-849(in Chinese). doi: 10.7524/j.issn.0254-6108.2018112904
[33] 齐鸿浩. 京西门头沟煤矿简述 [J]. 首都博物馆丛刊, 2010(1): 59-60. QI H H. Brief introduction of Mentougou coal mine in western Beijing [J]. A Collection of Essays about Capital Museum of China, 2010(1): 59-60(in Chinese).
[34] 程琳琳, 李继欣, 徐颖慧, 等. 基于综合评价的矿业废弃地整治时序确定 [J]. 农业工程学报, 2014, 30(4): 222-229. doi: 10.3969/j.issn.1002-6819.2014.04.027 CHENG L L, LI J X, XU Y H, et al. Determination of reclamation sequence for mining wasteland based on comprehensive evaluation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(4): 222-229(in Chinese). doi: 10.3969/j.issn.1002-6819.2014.04.027
[35] 程琳琳, 刘昙昙, 杨丽铃, 等. 产业转型背景下的矿业废弃地开发利用模式和战略: 以北京市门头沟区为例 [J]. 中国矿业, 2018, 27(7): 70-74. CHEN L L, LIU T T, YANG L L, et al. Development and utilization of models and strategies of mining wasteland in the background of industrial transformation: taking Mentougou district as an example [J]. China Mining Magazine, 2018, 27(7): 70-74(in Chinese).
[36] 林英华, 宋百敏, 韩茜, 等. 北京门头沟废弃采石矿区地表土壤动物群落多样性 [J]. 生态学报, 2007(11): 4832-4839. doi: 10.3321/j.issn:1000-0933.2007.11.053 LIN Y H, SONG B M, HAN Q, et al. The community diversity of ground-dwelling soil animals in abandoned quarry in Mentougou, Beijing [J]. Acta Ecological Sinica, 2007(11): 4832-4839(in Chinese). doi: 10.3321/j.issn:1000-0933.2007.11.053
[37] 宋文, 何天容. 贵州盘县煤矸石中汞的环境效应 [J]. 生态学杂志, 2009, 28(8): 1589-1593. SONG W, HE T G. Environmental effects of mercury in coal mine spoils in Panxian of Guizhou Province [J]. Chinese Journal of Ecology, 2009, 28(8): 1589-1593(in Chinese).
[38] 王萍, 胡振琪, 马保国, 等. 煤矸石浸水后pH值测定方法及结果比较 [J]. 煤炭科学技术, 2010, 38(2): 108-112. WANG P, HU Z Q, MA B G, et al. Comparison on pH value measuring methods and results of coal rejects after immersion in water [J]. Coal Science and Technology, 2010, 38(2): 108-112(in Chinese).
[39] 宋文, 何天容, 鲁生. 贵州水城煤矸石风化土壤-农作物系统中汞分布规律研究 [J]. 农业环境科学学报, 2010, 29(7): 1326-1332. SONG W, HE T R, LU S. Distribution of mercury species in the soils from weathered coal mine spoils and crops in Shuicheng, Guizhou Province, China [J]. Journal of Agro-Environment Science, 2010, 29(7): 1326-1332(in Chinese).
[40] 耿雅妮, 梁青芳, 杨宁宁, 等. 宝鸡市城区灰尘重金属空间分布、来源及健康风险 [J]. 地球与环境, 2019, 47(5): 696-706. GENG Y N, LIANG Q F, YANG N N, et al. Distribution, sources and health risk assessment of heavy metals in uusts of the urban area of the Baoji City [J]. Earth and Environment, 2019, 47(5): 696-706(in Chinese).
[41] 田和明, 代世峰, 李大华, 等. 重庆南川晚二叠世凝灰岩的元素地球化学特征 [J]. 地质论评, 2014, 60(1): 169-177. TIAN H M, DAI S F, LI D H, et al. Geochemical features of the late permian tuff in Nanchuan District, Chongqing, Southwestern China [J]. Geological Review, 2014, 60(1): 169-177(in Chinese).
[42] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价 [J]. 环境科学, 2020, 41(6): 2822-2833. CHEN W X, LI Q, WANG Z, et al. Spatial Distribution characteristics and pollution evaluation of heavy metals in arable land soil of China [J]. Environmental Science, 2020, 41(6): 2822-2833(in Chinese).
[43] 秦延文, 张雷, 郑丙辉, 等. 太湖表层沉积物重金属赋存形态分析及污染特征 [J]. 环境科学, 2012, 33(12): 4291-4299. QIN Y W, ZHANG L, ZHENG B H, et al. Speciation and pollution characteristics of heavy metals in the sediment of Taihu Lake [J]. Environmental Science, 2012, 33(12): 4291-4299(in Chinese).
[44] 林承奇, 黄华斌, 胡恭任, 等. 九龙江流域水稻土重金属赋存形态及污染评价 [J]. 环境科学, 2019, 40(1): 453-460. LIN C Q, HUANG H B, HU G R, et al. ssessment of the speciation and pollution of heavy metals in paddy soils from the Jiulong River Basin [J]. Environmental Science, 2019, 40(1): 453-460(in Chinese).
[45] 孙境蔚, 胡恭任, 于瑞莲, 等. 铁观音茶园土壤-茶树体系中重金属的生物有效性 [J]. 环境化学, 2020, 39(10): 2765-2776. doi: 10.7524/j.issn.0254-6108.2020022403 SUN J W, HU G W, YU R L, et al. Bioavailability of heavy metals in soil-tea plant system of Tieguanyin tea garden [J]. Environmental Chemistry, 2020, 39(10): 2765-2776(in Chinese). doi: 10.7524/j.issn.0254-6108.2020022403
[46] 冯精兰, 胡鹏抟, 刘群, 等. 黄河中下游干流沉积物中重金属的赋存形态及其生态风险 [J]. 环境化学, 2015, 34(1): 178-185. doi: 10.7524/j.issn.0254-6108.2015.01.2014032102 FENG J L, HU P T, LIU Q, et al. Chemical speciation and risk assessment of heavy metals in the sediments from the mainstream of middle and lower reaches of Yellow River [J]. Environmental Chemistry, 2015, 34(1): 178-185(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.01.2014032102
[47] 王闯, 单保庆, 唐文忠, 等. 官厅水库典型入库河流(洋河)表层沉积物重金属赋存形态特征 [J]. 环境科学学报, 2017, 37(9): 3471-3479. WANG C, SHAN B Q, TANG W Z, et al. Heavy metal speciation in the surface sediments of Yang River System (Guanting Reservoir) [J]. Acta Scientiae Circumstantiae, 2017, 37(9): 3471-3479(in Chinese).
[48] 马芳, 秦俊梅, 白中科. 不同风化程度对煤矸石盐分与pH值的影响 [J]. 山西农业大学学报(自然科学版), 2007(1): 55-57,70. MA F, QIN J M, BAI Z K. Effects of weathering degree on the total salt and ph of weathering coal waste rock [J]. J. Shanxi Agric Univ(Natural Science Edition), 2007(1): 55-57,70(in Chinese).
[49] 刘沙沙, 付建平, 蔡信德, 等. 重金属污染对土壤微生物生态特征的影响研究进展 [J]. 生态环境学报, 2018, 27(6): 1173-1178. LIU S S, FU J P, CAI X D, et al. Effect of heavy metals pollution on ecological characteristics of soil microbes: A review [J]. Ecology and Environmental Sciences, 2018, 27(6): 1173-1178(in Chinese).
[50] 魏复盛, 杨国治, 蒋德珍, 等. 中国土壤元素背景值基本统计量及其特征[J]. 中国环境监测, 1991, 7(1): 1: 6. . [51] QIAO P, YANG S, LEI M, et al. Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector [J]. Sci Total Environ, 2019, 664: 392-413. doi: 10.1016/j.scitotenv.2019.01.310 [52] 胡青青, 沈强, 陈飞, 等. 重构土壤垂直剖面重金属Cd赋存形态及影响因素 [J]. 环境科学, 2020, 41(6): 2878-2888. HU Q Q, SHEN Q, CHEN F, et al. Reconstructed soil vertical profile heavy metal Cd occurrence and its influencing factors [J]. Environmental Science, 2020, 41(6): 2878-2888(in Chinese).
[53] LI H X, JI H B. Chemical speciation, vertical profile and human health risk assessment of heavy metals in soils from coal-mine brownfield, Beijing, China [J]. J Geochem Explor, 2017, 183: 22-32. doi: 10.1016/j.gexplo.2017.09.012 [54] LI H X, JI H B, SHI C J, et al. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health [J]. Chemosphere, 2017, 172: 505-515. doi: 10.1016/j.chemosphere.2017.01.021 [55] 毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展 [J]. 环境科学研究, 2018, 31(10): 1669-1676. MAO L C, YE H. Influence of redox potential on heavy metal behavior in soils: A review [J]. Research of Environmental Sciences, 2018, 31(10): 1669-1676(in Chinese).
[56] 毛海涛. 贵州典型矿区煤矸石自然风化及资源化过程中汞的环境效应初步分析[D]. 贵阳: 贵州大学, 2009. MAO H T. Environmental effects of mercury on natural weathering and resource utilization of coal gangue in typical mining areas of Guizhou Province[D]. Guiyang: Guizhou University, 2009(in Chinese).
[57] 夏毅民, 郑刘根, 邱征, 等. 铜陵某富硫尾矿库周边土壤重金属污染特征及风险评价 [J]. 环境污染与防治, 2020, 42(4): 493-499. XIA Y M, ZHENG L G, QIU Z, et al. Heavy metal pollution characteristics and risk assessment of soil around a sulfur-rich tailings pond in Tongling [J]. Environmental Pollution & Control, 2020, 42(4): 493-499(in Chinese).
[58] 庞文品, 秦樊鑫, 吕亚超, 等. 贵州兴仁煤矿区农田土壤重金属化学形态及风险评估 [J]. 应用生态学报, 2016, 27(5): 1468-1478. PANG W P, QIN F X, LV Y C, et al. Chemical speciations of heavy metals and their risk assessment in agricultural soils in a coal mining area from Xingren County, Guizhou Province, China [J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1468-1478(in Chinese).
[59] 乔晓燕, 尹佳莉, 李林, 等. 2003—2015年北京市观象台酸雨特征及长期趋势分析 [J]. 沙漠与绿洲气象, 2018, 12(4): 52-57. doi: 10.12057/j.issn.1002-0799.2018.04.008 QIAO X Y, YIN J L, L L, et al. Characteristics and trend analysis of acid rain from 2003 to 2015 in Beijing Meteorological Observatory [J]. Desert and Oasis Meteorology, 2018, 12(4): 52-57(in Chinese). doi: 10.12057/j.issn.1002-0799.2018.04.008
[60] 徐梅, 祝青林, 朱玉强, 等. 近20年天津市酸雨变化特征及趋势分析 [J]. 气象, 2016, 42(4): 436-442. doi: 10.7519/j.issn.1000-0526.2016.04.006 XU M, ZHU Q L, ZHU Y Q, et al. Characteristics and variation trend of acid rain in Tianjin during the last 20 years [J]. Meteorlolgical Monthly, 2016, 42(4): 436-442(in Chinese). doi: 10.7519/j.issn.1000-0526.2016.04.006
[61] 吴代赦, 郑宝山, 康往东, 等. 煤矸石的淋溶行为与环境影响的研究——以淮南潘谢矿区为例 [J]. 地球与环境, 2004(1): 55-59. WU D S, ZHENG B S, KANG W D, et al. Leaching behavior of coal spoils and environmengtal impacts [J]. Earth and Environment, 2004(1): 55-59(in Chinese).
[62] LIN H, LI G Y, DONG Y B, et al. Effect of pH on the release of heavy metals from stone coal waste rocks [J]. Int J Miner Process, 2017, 165: 1-7. doi: 10.1016/j.minpro.2017.05.001 [63] 金肇岩. 煤中砷、汞的淋滤迁移规律研究[D]. 成都: 成都理工大学, 2011. JIN Z Y. The leaching and transformation of As, Hg in coal[D]. Chengdu: Chengdu University of Technology, 2011(in Chinese).
[64] DONG Y, LIU Y, LIN H. Leaching behavior of V, Pb, Cd, Cr, and As from stone coal waste rock with different particle sizes [J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(8): 861-870. doi: 10.1007/s12613-018-1635-2 [65] 尹升华, 吴爱祥, 王少勇, 等. 溶液对斑岩铜矿废石的浸蚀机理及其力学特性 [J]. 中南大学学报(自然科学版), 2013, 44(1): 309-314. doi: 10.11817/j.issn.1672-7207.2013.01.037 YIN S H, WU A X, WANG S Y, et al. Erosion mechanism of waste rocks and its mechanical properties during dump leaching [J]. Journal of Central South University(Science and Technology), 2013, 44(1): 309-314(in Chinese). doi: 10.11817/j.issn.1672-7207.2013.01.037
[66] 岳娟. 煤矸石中重金属元素的形态及淋溶实验研究[D]. 太原: 山西大学, 2010. YUE J. Chemical forms and leaching experiment of heavy metals in coal gangue[D]. Taiyuan: Shan'xi University, 2010(in Chinese).