-
在我国“海洋强国”战略的指引下,沿海地区成为我国经济快速发展的先行区,开发规模不断扩大、城镇化进程迅速加快[1-2]。在经济快速发展的同时,生态破坏、环境污染等问题逐渐显现出来[3- 4]。沿海地区快速发展经济、过度开采地下水直接造成了海水入侵的问题[5],因其会使沿海地带地下水变咸[6- 7]、水田面积减少[8],造成土壤盐渍化[9]等危害,受到广泛关注。很多研究指出,海水入侵显著影响地下水矿化度、含盐量和土壤理化性质等,进而形成土壤盐渍化,导致土壤功能退化[10-12]。徐兴永等提出,海水入侵和土壤盐渍化属于典型的链式结构灾害,在时间上有先后、空间上彼此相依、成因上相互关联[13]。而且目前的研究发现,大部分北方沿海发展城市的土壤盐渍化问题与海水入侵有关[14]。
大连市是我国北方重要的港口城市,三面靠海,属于典型的沿海经济开发区,自20世纪70年代以来,大连市就因开采地下水造成了海水入侵的问题,地下水环境受到污染,有些地区甚至出现了土壤盐渍化的现象,严重阻碍了大连市的经济发展[15-16]。目前,相关学者对大连市海水入侵的成因[17-19]、分布范围[20]、对城市化的影响及防治措施进行了探究[21],但少有开展海水入侵对土壤盐渍化空间关联影响的研究,导致防治措施的提出缺乏空间位置的针对性。因此探究大连市海水入侵与土壤盐渍化的程度及空间关联性具有重要意义。
庄河市是大连地区的沿海城市,近年被确定为海绵城市试点。通过对庄河市沿海地区海水入侵区的地下水、土壤进行采样分析,分析研究区地下水盐分与土壤盐碱化程度空间分布特征,结合SPSS聚类分析及GIS空间分析技术,解析沿海地带海水入侵和土壤盐渍化的空间关联性,并提出防治措施,以期为后续沿海地区海水入侵、区域盐碱化防治的研究提供指导。
沿海发展区海水入侵与土壤盐渍化空间关联解析
Spatial correlation analysis of seawater intrusion and soil salinization in coastal developed area
-
摘要: 沿海地区经济的快速发展、资源的大量开发,使海水入侵、土壤盐渍化等海岸带环境问题加剧。为了研究沿海发展区海水入侵与土壤盐渍化程度与驱动因素,探究海水入侵与土壤盐渍化的空间关联性,选择沿海的海绵城市试点—庄河市为研究对象,通过地下水与土壤的野外采样检测,运用kriging插值法分析研究区地下水与土壤盐渍化空间分布特征,利用SPSS聚类分析、ArcGIS10.2实现海水入侵与土壤盐渍化的空间关联解析。结果表明:庄河市沿海地带地下水位低、埋深浅处易发生海水入侵,40%的地下水氯离子浓度(23.40 — 432.60 mg·L−1)和矿化度(0.22 — 1.98 g·L−1)超标,超标点位由海水入侵引起;土壤pH值和全盐含量分别在6.20 — 8.30和0.10% — 0.80%之间,盐渍化土壤亦主要分布在沿海地带,以氯化物—硫酸盐土以及硫酸盐—氯化物型为主;地下水浓度与土壤盐渍化程度呈现由沿海向内陆逐渐降低的空间一致性;地下水埋深、矿化度与土壤全盐含量呈现较高的相关性,表明海水入侵对土壤盐分有直接影响,贡献率达到50%以上,是庄河市沿海地带土壤盐渍化问题的主要控制因素,最后,提出庄河市防止海水入侵是治理土壤盐渍化的根本措施,为后续沿海地区盐碱化防治研究提供方向。Abstract: With the rapid development of the economy and the exploitation of resources in coastal areas, the environmental problems such as seawater intrusion and soil salinization have been aggravated. Zhuanghe, a coastal sponge City was selected as the research area to study the driving factors and the degree of seawater intrusion and soil salinization in coastal development areas. We also explored the spatial correlation of seawater intrusion and soil salinization. The Kriging interpolation method was used to analyze the spatial distribution of groundwater and soil salinization in the study area through field sampling and detection of groundwater and soil. SPSS cluster analysis and arcgis 10.2 were used for the spatial correlation analysis of seawater intrusion and soil salinization. The results showed that: in the coastal zone of Zhuanghe City, seawater intrusion was easy to occur at the low groundwater level and shallow depth, 40% of groundwater
$ {\mathrm{C}\mathrm{l}}_{\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}}^{-} $ (23.40 — 432.60 mg·L−1) and M (0.22 — 1.98 g·L−1) exceed the standard, which was caused by seawater intrusion. The soil’s pH value and total salt content ranged from 6.20 to 8.30 and 0.10% — 0.80%, respectively. The salinized soil was also mainly distributed in the coastal zone, mainly composed of chloride sulfate soil and sulfate chloride type. The results showed that the depth of groundwater, and the degree of mineralization have a high correlation with the soil’s total salt content. This indicated that seawater intrusion directly impacted soil salinity, and the contribution rate was more than 50%, which was the main control factor of soil salinization in the coastal zone of Zhuanghe City. Finally, it was proposed that the prevention of seawater intrusion was the fundamental measure to control soil salinization in Zhuanghe City, which provided the direction for the follow-up study of saline-alkali control in coastal areas.-
Key words:
- seawater intrusion /
- soil salinization /
- Zhuanghe City /
- spatial correlation /
- analysis
-
表 1 研究区自然环境概况
Table 1. Overview of the natural environment in the study area
名称
Name参数
Parameter陆地 面积 4073 km2 海岸线 长度 285 km
海拔平均海拔 >500 m 最高海拔 1130.7 m 最低海拔 <50 m 气候 平均气温 9.1℃ 最高气温 36.6℃ 最低气温 −29.3℃ 年均降水量 754.8 mm 年均蒸发量 1200 mm 表 2 海水入侵分级标准
Table 2. classification standard of seawater intrusion
指标 Index (mg·L−1)${{\rm{Cl}}}_{{\rm{water}}}^{-}/$ M/(g·L−1) 入侵程度 Degree of invasion 地下水水质 Groundwater quality Ⅰ <250 <1.0 未入侵 淡水 Ⅱ 250 — 1000 1.0 — 3.0 轻度入侵 微咸水 Ⅲ >1000 >3.0 严重入侵 咸水 表 3 研究区地下水
和M描述性统计分析$ {\mathrm{C}\mathrm{l}}_{\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}}^{-} $ Table 3. Descriptive statistical analysis of groundwater
and M in the study area$ {\mathrm{C}\mathrm{l}}_{\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}}^{-} $ 指标
Index范围
Range均值
Mean标准
Standard deviation变异系数
Coefficient of variation (CV) (mg·L−1)$ {\mathrm{C}\mathrm{l}}_{\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}}^{-}/ $ 23.40 — 432.60 217.67 92.61 43% M/(g·L−1) 0.22 — 1.98 0.92 0.37 40% 表 4 研究区地下水
和M描述性统计分析$ {\mathrm{C}\mathrm{l}}_{\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}}^{-} $ Table 4. Descriptive statistical analysis of groundwater
and M in the study area$ {\mathrm{C}\mathrm{l}}_{\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}}^{-} $ 指标
Index范围/m
Range均值/m
Mean标准/m
Standard deviation变异系数
Coefficient of variation (CV)地下水埋深 0.90 — 23.10 5.54 4.58 88% 地下水水位 0.80 — 210.90 21.42 39.24 183% 表 5 研究区土壤质地及容重描述性统计分析
Table 5. Descriptive statistical analysis of soil texture and bulk density in the study area
指标
Index范围
Range均值
Mean标准
Standard deviation变异系数
Coefficient of variation (CV)砂粒含量 0.20 — 0.72 0.41 10.39 25% 粉粒含量 0.18 — 0.54 0.33 8.12 25% 黏粒含量 0.10 — 0.40 0.26 4.94 19% 容重/(g•cm−3) 1.26 — 1.50 1.40 0.03 2% 表 6 研究区土壤pH值描述性统计分析
Table 6. Descriptive statistical analysis of soil pH in the study area
指标
Index范围
Range均值
Mean标准
Standard deviation变异系数
Coefficient of variation (CV)pH值 6.20 — 8.30 7.02 0.61 9% 表 7 研究区土壤全盐含量及
/$ {\mathrm{C}\mathrm{l}}^{-} $ 描述性统计分析$ {\mathrm{S}\mathrm{O}}_{4}^{2-} $ Table 7. Descriptive statistical analysis of total soil salt content and
/$ {\mathrm{C}\mathrm{l}}^{-} $ in the study area$ {\mathrm{S}\mathrm{O}}_{4}^{2-} $ 指标
Index范围
Range均值
Mean标准
Standard deviation变异系数
Coefficient of variation (CV)全盐含量 0.10 — 0.80 0.40 0.19 48% /$ {\mathrm{C}\mathrm{l}}^{-} $ $ {\mathrm{S}\mathrm{O}}_{4}^{2-} $ 0.30 — 3.65 1.02 0.67 66% 表 8 土壤盐渍化影响因子相关性分析
Table 8. correlation analysis of influencing factors of soil salinization
类别
Category全盐含量
Total salt content高程
Elevation矿化度
Salinity潜水埋深
Dive depth土壤质地
Soil texture地貌类型 全盐含量 1 −0.397** 0.568** −0.564** −0.411** −0.398** 高程 −0.397** 1 −0.359* 0.645** 0.230 0.486** 矿化度 0.568** −0.359* 1 −0.435** 0.027 −0.326* 潜水埋深 −0.564** 0.645** −0.435** 1 0.212 0.242 土壤质地 −0.411** 0.230 0.027 0.212 1 0.345* 地貌类型 −0.398** 0.486** −0.326* 0.242 0.345* 1 **:在0.01级别(双尾),相关性显著。 **:At 0.01 level(two-tailed),the correlation is significant
*:在0.05级别(双尾),相关性显著。 **:At 0.05 level (two-tailed), the correlation is significant -
[1] 许鹏, 李子牛, 聂鸿鹏. 基于文献计量的我国海水入侵研究现状分析 [J]. 科学技术创新, 2020, 20: 157-159. doi: 10.3969/j.issn.1673-1328.2020.28.069 XU P, LI Z N, NIE H P. Analysis of current research status of seawater intrusion in my country based on bibliometrics [J]. Science and Technology Innovation, 2020, 20: 157-159(in Chinese). doi: 10.3969/j.issn.1673-1328.2020.28.069
[2] 孙小祥, 顾之与, 于英鹏. 江苏沿海地区经济发展的现状、问题与对策 [J]. 浙江农业科学, 2019, 60(10): 1709-1711. SUN X X, GU Z Y, YU Y P. The current situation, problems and countermeasures of economic development in Jiangsu coastal areas [J]. Zhejiang Agricultural Sciences, 2019, 60(10): 1709-1711(in Chinese).
[3] 叶阿忠, 郑航. FDI、经济发展水平对环境污染的非线性效应研究—基于中国省际面板数据的门限空间计量分析 [J]. 工业技术经济, 2020, 39(8): 148-153. doi: 10.3969/j.issn.1004-910X.2020.08.019 YE A Z, ZHENG H. Research on the nonlinear effects of FDI and economic development level on environmental pollution: a threshold space econometric analysis based on China’s provincial panel data [J]. Industrial Technology & Economy, 2020, 39(8): 148-153(in Chinese). doi: 10.3969/j.issn.1004-910X.2020.08.019
[4] 孙军. 我国沿海经济崛起视阈下的海洋环境污染问题及其治理 [J]. 江苏大学学报(社会科学版), 2017, 19(1): 46-50. SUN J. Marine environmental pollution and its treatment from the perspective of my country’s coastal economic rise [J]. Journal of Jiangsu University (Social Science Edition), 2017, 19(1): 46-50(in Chinese).
[5] 熊贵耀, 付腾飞, 徐兴永, 等. 滨海含水层海水入侵影响因素研究综述 [J]. 海洋科学, 2019, 43(6): 102-112. X G Y, FU T F, XU X Y, et al. A review of research on factors affecting seawater intrusion in coastal aquifers [J]. Marine Science, 2019, 43(6): 102-112(in Chinese).
[6] 周洪杰. 关于海水入侵与土壤盐渍化的研究[D]. 大连: 辽宁师范大学, 2007: 25-33. ZHOU H J. Research on seawater intrusion and soil salinization[D]. Dalian: Liaoning Normal University, 2007: 25-33 (in Chinese).
[7] 廖小梅. 海水入侵对地下水造成的危害 [J]. 中国高新技术企业(中旬刊), 2014, 14(5): 48-50. LIAO X M. Harm to groundwater caused by seawater intrusion [J]. China High-Tech Enterprise (Mid-term), 2014, 14(5): 48-50(in Chinese).
[8] 韩刚. 烟台市海水入侵综合评价与生态修复技术研究[D]. 烟台: 烟台大学, 2013: 45-76 HAN G. Comprehensive assessment of seawater intrusion and ecological restoration technology in Yantai City[D]. Yantai:Yantai University, 2013: 45-76 (in Chinese).
[9] 王军星, 梁浩亮, 黄舜琴. 惠州市大亚湾淡澳河入海口的海水入侵和土壤盐渍化 [J]. 海洋开发与管理, 2018, 35(6): 46-48. doi: 10.3969/j.issn.1005-9857.2018.06.011 WANG J X, LIANG H L, HUANG S Q. Seawater intrusion and soil salinization at the estuary of Danao River in Daya Bay, Huizhou City [J]. Ocean Development and Management, 2018, 35(6): 46-48(in Chinese). doi: 10.3969/j.issn.1005-9857.2018.06.011
[10] COLOMBANI N, MASTROCICCO M. Scenario modelling of climate change's impact on salinization of coastal water resources in reclaimed lands [J]. Procedia Engineering, 2016, 162: 25-31. doi: 10.1016/j.proeng.2016.11.006 [11] Vu D T, YAMADA T, ISHIDAIRA H. Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam [J]. Water Sci Technol, 2018, 77(5-6): 1632-1639. [12] 王瑶, 熊守纯, 张晓光, 等. 葫芦岛沿海区域海水入侵的危害及存在问题 [J]. 黑龙江水利科技, 2013, 41(8): 209-210. doi: 10.3969/j.issn.1007-7596.2013.08.074 WANG Y, XIONG S C, ZHANG X G, et al. The harm and existing problems of seawater intrusion in the coastal area of Huludao [J]. Heilongjiang Water Conservancy Science and Technology, 2013, 41(8): 209-210(in Chinese). doi: 10.3969/j.issn.1007-7596.2013.08.074
[13] 徐兴永, 付腾飞, 熊贵耀, 等. 海水入侵—土壤盐渍化灾害链研究初探 [J]. 海洋科学进展, 2020, 38(1): 1-10. doi: 10.3969/j.issn.1671-6647.2020.01.001 XU X Y, FU T F, XIONG G Y, et al. A preliminary study on the disaster chain of seawater intrusion and soil salinization [J]. Advances in Marine Science, 2020, 38(1): 1-10(in Chinese). doi: 10.3969/j.issn.1671-6647.2020.01.001
[14] 曹建荣. 山东省莱州湾地区海水入侵成因分析 [J]. 中山大学研究生学刊:自然科学与医学版, 2002, 23(1): 104-111. CAO J R. Analysis of the causes of seawater intrusion in Laizhou Bay, Shandong Province [J]. Postgraduate Journal of Sun Yat-sen University:Natural Science and Medicine Edition, 2002, 23(1): 104-111(in Chinese).
[15] 林功惠, 刘金萍. 大连市海水入侵现状与治理初步探讨 [J]. 东北水利水电, 2014, 32(7): 32-34. doi: 10.3969/j.issn.1002-0624.2014.07.014 LIN G H, LIU J P. Preliminary discussion on current situation and control of seawater intrusion in Dalian [J]. Northeast Water Resources and Hydropower, 2014, 32(7): 32-34(in Chinese). doi: 10.3969/j.issn.1002-0624.2014.07.014
[16] 周洪杰. 海水入侵对大连市牧城驿地区农田土壤生态的影响 [J]. 国土与自然资源研究, 2006, 4: 34-35. doi: 10.3969/j.issn.1003-7853.2006.01.018 ZHOU H J. Influence of seawater intrusion on farmland soil ecology in Muchengyi area of Dalian City [J]. Research on Land and Natural Resources, 2006, 4: 34-35(in Chinese). doi: 10.3969/j.issn.1003-7853.2006.01.018
[17] 林功惠, 刘金萍, 王春蓓. 大连市海水入侵现状与治理初步探讨[C]. 沈阳: 辽宁省水利学会2012年学术年会论文集, 2012: 31-34. LIN G H, LIU J P, WANG C B. Preliminary discussion on the status and control of seawater intrusion in Dalian [C]. Shenyang:Proceedings of the 2012 Academic Annual Meeting of the Liaoning Hydraulics Society, 2012: 31-34 (in Chinese).
[18] 王涛, 周旭东, 李晶. 大连市海水入侵现状的成因分析及对策研究[C]. 沈阳: 2008年水生态监测与分析学术论坛论文集, 2008:227-231. WANG T, ZHOU X D, LI J. The cause analysis and countermeasures of the current situation of seawater intrusion in Dalian[C]. Shenyang:2008 Water Ecology Monitoring and Analysis Academic Forum Proceedings, 2008:227-231 (in Chinese).
[19] ZHAO J, LIN J, WU J F, et al. Numerical modeling of seawater intrusion in Zhoushuizi district of Dalian City in northern China [J]. Environ Earth Sci, 2016, 75(9): 1-18. [20] 宋青. 大连市甘井子地区地下水资源保护及海水入侵问题探讨 [J]. 地下水, 2014, 36(1): 98-100. doi: 10.3969/j.issn.1004-1184.2014.01.038 SONG Q. Discussion on groundwater resources protection and seawater intrusion in Ganjingzi area of Dalian [J]. Groundwater, 2014, 36(1): 98-100(in Chinese). doi: 10.3969/j.issn.1004-1184.2014.01.038
[21] 张德君, 李雪铭, 单灵芝, 等. 海水入侵对滨海城市化发展的影响研—以大连市为例 [J]. 辽宁师范大学学报(自然科学版), 2014, 3: 422-430. ZHANG D J, LI X M, SHAN L Z, et al. Research on the impact of seawater intrusion on the development of coastal urbanization—taking Dalian as an example [J]. Journal of Liaoning Normal University (Natural Science Edition), 2014, 3: 422-430(in Chinese).
[22] 刘辉, 王正英, 朱爽. 庄河市海水入侵特征初析 [J]. 科技信息, 2009, 8: 639-640. doi: 10.3969/j.issn.1001-9960.2009.30.530 LIU H, WANG Z Y, ZHU S. Preliminary analysis on the characteristics of seawater intrusion in Zhuanghe City [J]. Science and Technology Information, 2009, 8: 639-640(in Chinese). doi: 10.3969/j.issn.1001-9960.2009.30.530
[23] 孟春玲. 庄河市盐碱地土壤农化分析及开发利用报告 [J]. 新农业, 2013, 7(7): 32-33. MENG C L. Agrochemical analysis and development and utilization report of saline-alkali soil in Zhuanghe City [J]. New Agriculture, 2013, 7(7): 32-33(in Chinese).
[24] LIU K, SHPARLINSKI I E, ZHANG T. Average distribution of k‐free numbers in arithmetic progressions [J]. Math Nachr, 2020, 293(8): 1505-1514. doi: 10.1002/mana.201900006 [25] 周贤成. 浅析标准差在水工混凝土强度质量控制中的作用 [J]. 四川水利, 2020, 41(4): 115-117. ZHOU X C. Analysis on the role of standard deviation in the quality control of hydraulic concrete strength [J]. Sichuan Water Resources, 2020, 41(4): 115-117(in Chinese).
[26] GARG N, PACHORI M. Use of coefficient of variation in calibration estimation of population mean in stratified sampling [J]. Commun Stat-Theor M, 2019(1): 1-11. [27] CHOUKSEY N, MISHRA G C, CHOUKSEY R. GIS-based interpolation methods for estimating spatial distribution of nitrogen content in the soil [J]. Journal of Krishi Vigyan, 2018, 7(special): 78. doi: 10.5958/2349-4433.2018.00163.0 [28] 赵建. 海水入侵水化学指标及侵染程度评价研究 [J]. 地理科学, 1998, 1(1): 3-5. ZHAO J. Study on the evaluation of seawater intrusion water chemical index and infestation degree [J]. Geographical Sciences, 1998, 1(1): 3-5(in Chinese).
[29] 顾云碧, 郑晓琴, 徐丽丽, 等. 上海地区海水入侵风险调查研究 [J]. 海洋技术学报, 2015, 34(6): 108-111. GU Y B, ZHENG X Q, XU L L, et al. Investigation on the risk of sea water intrusion in Shanghai area [J]. Journal of Ocean Technology, 2015, 34(6): 108-111(in Chinese).
[30] GEBREMESKEL G, GEBREMICAEL T G, KIFLE M, et al. Salinization pattern and its spatial distribution in the irrigated agriculture of Northern Ethiopia: an integrated approach of quantitative and spatial analysis [J]. Agr Water Manage 2018.206: 147-157. [31] NIñEROLA V B, NAVARRO-PEDREñO J, LUCAS, IGNACIO GÓMEZ, et al. Geostatistical assessment of soil salinity and cropping systems used as soil phytoremediation strategy [J]. J Geochem Explor J Assoc Explor Geochem, 2017, 174: 53-58. doi: 10.1016/j.gexplo.2016.06.008 [32] CHO, KI HWAN, BEON, et al. Dynamics of soil salinity and vegetation in a reclaimed area in Saemangeum, Republic of Korea [J]. Geoderma:Int J Soil Sci, 2018, 321: 42-51. [33] SANKAR B G, KUMAR S P, RABINDRANATH C. Assessment of spatial variability of soil properties using geostatistical approach of lateritic soil (West Bengal, India) [J]. Ann Agrar Sci, 2018, 16(4): 436-443. doi: 10.1016/j.aasci.2018.06.003 [34] SHAHID S A, ABDELFATTAH M A, TAHA F K. Developments in soil salinity assessment and reclamation [M]. Berlin: Springer, Dordrecht, 2013. [35] 周慧芳, 谭红兵, 高将, 等. 南通地区地下水咸化机理分析及改良措施 [J]. 水资源保护, 2015, 31(4): 70-76. ZHOU H F, TAN H B, GAO J, et al. Analysis of groundwater salinization mechanism in Nantong area and improvement measures [J]. Water Resources Protection, 2015, 31(4): 70-76(in Chinese).
[36] 刘衍君. 莱州湾南岸海水入侵区土壤盐渍化驱动力分析与生态对策 [J]. 中国农学通报, 2012, 28(2): 209-213. doi: 10.3969/j.issn.1000-6850.2012.02.042 LIU Y J. The driving force analysis and ecological countermeasures of soil salinization in the seawater intrusion area on the south coast of Laizhou Bay [J]. Chinese Agricultural Science Bulletin, 2012, 28(2): 209-213(in Chinese). doi: 10.3969/j.issn.1000-6850.2012.02.042