-
《土壤污染防治法》规定“国务院生态环境主管部门根据土壤污染状况、公众健康风险、生态风险和科学技术水平,并按照土地用途,制定国家土壤污染风险管控标准”。《生态环境标准管理办法》指出“制定生态环境风险管控标准,应当根据环境污染状况、公众健康风险、生态环境风险、环境背景值和生态环境基准研究成果等因素,区分不同保护对象和用途功能,科学合理确定风险管控要求”。因此,土壤生态风险是我国土壤污染防治的重要目标,建立基于生态风险的土壤风险管控标准(土壤生态筛选值),是我国土壤生态环境法律法规的要求。然而,《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618—2018)中仅部分指标考虑了污染物对农作物生长和土壤生态的影响[1],《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600—2018)未考虑土壤污染物的生态风险[2]。
欧美发达国家更早开展了土壤生态筛选值的相关研究,部分国家已制定了土壤生态筛选值。美国环境保护局(Environmental Protection Agency,EPA)于2003年颁布了土壤生态筛选值制定技术导则,逐步建立了21种污染物的土壤生态筛选值(Ecological Soil Screening Levels,Eco-SSL)[3]。英国环境署(Environment Agency,EA)针对9种重金属和10种有机物,建立了适用于土壤生态风险评估的土壤筛选值(Soil Screening Values,SSV)[4]。荷兰住房、空间规划和环境部(The Ministry of Housing,Spatial Planning and the Environment,VROM)发布了基于生态和健康风险的土壤质量标准[5]。加拿大环境部长理事会(Canadian Council of Ministers of the Environment,CCME)制定了不同用地方式下,基于生态风险和人体健康的土壤质量指导值(Soil Quality Guideline,SQG)[6]。与上述国家相比,我国土壤污染生态风险研究基础相对薄弱,有关土壤生态筛选值的综述研究相对较少。因此,本研究通过对英国、美国、荷兰和加拿大土壤生态筛选值的定位、关键受体、暴露途径、推导方法和生物有效性等方面进行对比分析,结合我国土壤生态风险的研究基础和现状,提出我国土壤生态筛选值的制定建议,以期为我国土壤风险管控标准的优化和完善提供参考。
-
与人体健康风险相比,不同国家对土壤生态系统保护的认知和重视程度各不相同。相比相对成熟的健康风险评估方法,各国土壤生态风险评估研究和技术水平相对滞后。但土壤生态筛选值作为土壤污染生态风险初步识别与筛选的重要管理工具,目前已成为环境管理者和土壤生态研究学者的普遍共识[7]。
美国作为最早开展土壤污染生态风险研究的国家,分别于1992年和1998年发布了《生态风险评价框架》[8]和《生态风险评价指南》[9]。在此基础上,美国建立了包含8个步骤的《超级基金生态风险评价方法》[10],用于指导和规范超基金场地的生态风险评价。其中,在超基金场地调查的第二阶段,调查人员通过对比场地内土壤污染物的最大暴露浓度和土壤Eco-SSL,判断是否需对场地内土壤开展更加深入的调查和风险评估。
英国为响应《环境保护法》等法律法规中对污染土壤的相关要求,针对可能产生生态风险的污染场地(主要为自然保护区和鸟类保护区),构建了层次化的生态风险评估框架,评估土壤中污染物对生态系统产生的潜在风险[11]。在初步构建污染场地概念模型后,土壤SSV作为现场调查的筛选工具(第一层次),用来筛选关注污染物,确定是否开展的定量风险评估(第二层次)和因果归因分析(第三层次)[12]。
荷兰于2008年重新修订了《土壤质量法令》,首次提出了可持续土壤治理概念。通过计算土壤污染对食品安全、生态风险和人体健康的环境风险限值构建土壤质量标准,包括背景值、最大值(maximal values,MV)和干预值(intervention values,IV)。其中,居住和工业用地的土壤MV和IV取生态风险限值和人体健康限值的最小值,通常由生态风险限值决定[5]。当土壤污染物浓度低于居住或工业用地的MV时,土壤被认为适用于居住或工业用地;当土壤污染物浓度超过IV时,应启动特定场地的标准生态风险评估(毒性单元法)和详细生态风险评估(证据权重分析法),判断开展修复的紧迫性;当土壤污染物浓度介于两者之间,土壤不可被开发利用。
加拿大于1996年依据保护生态和人体健康的原则,计算保护生态环境的土壤质量指导值(environmental soil quality guideline,SQGE)和保护人体健康的土壤质量指导值(human health soil quality guideline,SQGHH),取二者的低值作为最终指导值(SQGF)[6]。当土壤污染物浓度低于指导值时,土壤污染风险可忽略,当土壤污染物浓度高于指导值时,应开展调查以确定是否需要采取修复措施。但加拿大土壤质量指导值不具有法律约束力,在具体管控过程中土地拥有者可采用各省制定的标准值,如安大略省和哥伦比亚省在各省污染场地条例中规定的强制性土壤筛选值,但各省制定的筛选值在土地利用方式划分和标准值推导方法等方面与SQG存在差异。
-
由于土壤生态系统的复杂性,不同生物对污染物的毒害响应可能存在差异,然而土壤生态筛选值在制定过程中无法将整个陆生生态系统的生物均纳入考虑范围。因此,各国土壤生态筛选值的计算均依赖于少数具有代表性的关键受体[13]。如表1所示,不同国家土壤生态筛选值考虑的关键受体根据暴露途径分成土壤直接接触、土壤和食物摄入和土壤-地下水迁移3类。
土壤直接接触途径是各国土壤生态筛选值均考虑的暴露途径,多数机构将陆生植物(生产者)、无脊椎动物(消费者)和土壤微生物(分解者)及其主导的生态功能作为该途径的关键受体。美国Eco-SSL分别计算保护陆生植物和无脊椎动物的筛选值,未考虑保护土壤微生物或生态功能。英国和荷兰根据欧盟风险评价技术导则文件(Technical Guidance Document on Risk Assessment,TGD),将陆生植物和无脊椎动物作为一组,土壤微生物及其生态功能作为一组,取两组风险限值的最小值作为保护直接接触途径受体的筛选值[14]。加拿大直接接触途径的土壤质量指导值(soil quality guideline for soil contact,SQGsc)基于植物和无脊椎动物的直接接触毒性数据,根据毒性数据的获取情况,选择将植物和无脊椎动物分组或统一计算限值。此外,加拿大将土壤微生物过程推导的土壤质量指导值(soil quality guideline for nutrient and energy cycling,SQGNEC)作为检查机制,通过专家判断后与基于植物和无脊椎动物推导的限值进行比较,通常取最小值作为最终SQGsc。
土壤和食物摄入途径主要保护土壤污染经食物链威胁的高等生物(生物累积和生物放大的二次毒性)。英国针对lg Kow大于3的污染物考虑了食物链的二次毒性。荷兰与英国类似,在计算具有生态价值的绿地(体育公园、休闲区和公园等)土壤MV时,考虑土壤污染对食肉动物(鸟类和哺乳动物)的二次毒性,但在IV推导过程中未考虑二次毒性[14]。美国鸟类和哺乳动物的Eco-SSL考虑保护食草动物、地面食虫动物和食肉动物,根据6种通用替代受体(3种鸟类和3种哺乳动物)和暴露途径推导。加拿大仅农业用地制定了保护经放牧摄取土壤和食物中污染物的野生动物和牲畜的指导值(soil quality guideline for soil and food ingestion,SQGI),且只考虑食草动物。但针对具有强烈生物累积或生物放大特征的持久性物质(如多氯联苯等),加拿大农业和住宅/公园用地进一步制定了保护经食物链途径的一级、二级和三级消费者(包括食草和食肉动物)的SQGI。除美国Eco-SSL外,其余国家土壤二次毒性推导的限值通常与直接接触限值比较后取较小值作为最终筛选值。
土壤污染可能迁移至地下水,对周边地表水和牲畜饮水以及灌溉用水产生危害。加拿大制定了保护土壤-地下水迁移途径的指导值,包括保护淡水生物的指导值(soil quality guideline for freshwater life,SQGFL)和牲畜饮水/灌溉水安全的指导值(soil quality guideline for livestock watering/irrigation water,SQGLW/SQGIW)。
-
土壤直接接触是土壤生态筛选值制定的最重要暴露途径。通常根据单一污染物和单一物种的生态毒理实验获得毒性数据,采用生态风险评估的外推方法制定筛选值。但具体制定过程中,各国在毒性数据选择、外推方法使用和筛选值确定等存在差异(表2)[15]。
通常,毒性数据优先选择影响关键受体个体或种群特性的慢性毒性指标,如生长和繁殖指标,但不同国家的毒性参数选择存在差异。常用的毒性参数包括预测无效应浓度(NOEC)、最大允许阈值(MATC)、最低效应浓度(LOEC)、效应浓度(EC10、EC20、EC25和EC50)和半致死浓度(LC50)等。尽管NOEC、MATC和LOEC受到广泛的质疑(易受生态毒理试验的浓度梯度影响),但NOEC等参数依然被欧洲多数国家用于土壤生态筛选值的推导[13]。效应浓度通过剂量-效应曲线获得,欧盟推荐将EC10和NOEC等效使用,美国和加拿大优先选择具有统计学意义的低水平效应数据(EC20和EC25)。当慢性毒性数据无法满足外推方法要求时,可选择急性毒理试验的LC50或EC50等参数。
将关键受体的毒性数据(个体水平)通过保守的假设模型外推至种群、群落甚至生态系统水平是土壤生态筛选值制定的关键[16]。欧洲土壤生态筛选值的外推方法相对统一,参考欧盟TGD技术导则中预测无效应浓度(predicted no effect concentration,PNEC)的计算方法。当毒性数据足够多时,采用物种敏感性分布法(species sensitivity distribution,SSD)描述生态系统内有限物种对环境中特定污染物毒性响应效应差异;当毒性数据的生物种类和营养级别单一且数据量较少,选择基于评估因子(assessment factor,AF)的确定性方法;当陆生毒性数据缺失时,可采用基于水生毒性数据和水土分配系数的平衡分配法。加拿大同样优先选择基于分布的方法(证据权重法),将毒性数据排序分布取相应的百分位值作为指导值;当毒性数据不足时,加拿大选择最低效应浓度法(LOEC)或中位效应法(EC50或LC50)。美国Eco-SSL直接取毒性数据的几何均值,由于未能充分利用已有的毒理研究,因此Eco-SSL在筛选能力上存在局限性。
除毒性数据和外推方法外,土壤生态筛选值的确定还受各国土壤环境管理政策的影响。英国SSV作为指示低风险的筛选值,取PENC即5%物种受危害的浓度(5% hazardous concentration,HC5)作为筛选值(低于该值,95%的物种是相对安全的);荷兰MV作为不同用地方式下土壤可持续管理的筛选值,指示中度风险,通常取HC5和HC50(50% hazardous concentration)的几何均值;荷兰IV作为界定严重风险的筛选值,取HC50作为筛选值(低于该值,50%的物种是相对安全的)。此外,加拿大在制定筛选值时充分考虑了不同土地利用方式土壤提供的生态服务功能差异,其中农用地和居住用地/公园的SQGsc指示土壤中污染物对生态系统产生的最小不利作用,而商业和工业用地的SQGsc指示低水平不利作用。当采用证据权重法时,SQGsc分别取25%(农用地和居住用地/公园)和50%(商业和工业用地)百分位值;采用确定性方法时,SQGsc分别取毒性数据的最小值(农用地和居住用地/公园)和几何均值(商业和工业用地)。
基于二次毒性的土壤筛选值推导与土壤直接接触途径不同,通常通过构建野生生物模型推导。荷兰和英国构建了“土壤-蚯蚓-哺乳动物或鸟类”的食物链模型,美国构建了三类关键替代物种(食草动物、地面食虫动物和食肉动物)的哺乳动物和鸟类食物链模型。当污染物的生物富集数据可获得时,将哺乳动物或鸟类的毒性数据采用土壤直接接触途径的推导方法得到毒性阈值,通过生物富集数据和构建的模型反推获得土壤二次毒性的筛选值[13]。
为保护土壤-地下水途径,加拿大不列颠哥伦比亚污染场地土壤组构建了土壤-地下水迁移模型,基于加拿大水质指导值(水生生物指导值、牲畜饮水指导值和灌溉水指导值)通过模型反推获得相应的SQGFL和SQGLW/SQGIW[6]。
-
与传统的土壤环境质量标准相比,基于风险的土壤生态筛选值更加强调土壤性质差异、元素形态差异、土壤老化和淋洗等因素对土壤污染物的生物有效性影响[17-18]。如表3所示,各国在筛选值制定和使用过程中主要从三个方面评估污染物的生物有效性,包括土壤背景含量、关键理化性质和毒性试验的淋洗和老化情况。
土壤背景含量指仅受地球化学过程和非点源输入影响的元素或化合物含量。由于生态筛选值主要基于室内外源添加污染的毒性试验,得出污染物的筛选值可能低于土壤背景含量,因此土壤背景含量通常作为检验机制与推导的筛选值进行比较,如美国和加拿大[3]。荷兰和英国认为,环境中自然产生的物质在背景水平上的浓度对于生态系统中的生物多样性和微量营养素是必要的,因此保守的假设土壤背景含量的生物有效性和生物毒性可忽略不计,将实验室推导的阈值与背景值相加获得最终的筛选值(风险附加法)[19]。
土壤理化性质被认为是影响污染物生物有效性的关键,不同供试土壤毒性试验获得的毒性数据可能存在较大差异。因此,在推导土壤生态筛选值时,应根据影响生物有效性的土壤关键理化性质对毒性数据进行充分筛选和评估。通常毒性试验的供试土壤理化性质应具有代表性,不应包括极端条件下获得的毒性数据。美国根据pH和有机质含量将毒性数据划分为生物有效性高、中和低的3个等级,推导筛选值时优先选择生物有效性较高的毒性数据。加拿大和美国类似,当超过50%的数据反映出较低的生物有效性,应采用不确定性因子,或将推导的筛选值归类为临时指导值。英国和荷兰通过建立归一化方程,对有机物的毒性数据归一到标准土壤(有机质含量为3.4%),但不建议对重金属毒性数据进行归一化。这主要是因为重金属生物有效性更加复杂,依赖土壤pH等土壤性质的归一方程实际仅模拟土壤孔隙水中重金属浓度,而对于无脊椎动物等摄取土壤的生物,通过孔隙水吸收的重金属浓度往往是可忽略的,因此对重金属归一化不能真实的反映土壤理化性质对污染物生物有效性的影响[13]。
毒性试验外源添加的可溶性金属盐可能引起土壤中离子强度的增加和pH值的下降(淋洗作用),且室内培养条件和培养时间往往无法模拟野外真实污染土壤的老化过程(扩散、固定、成核/沉淀、矿物表面氧化或与土壤中固相形成配合物等)。因此,基于室内外源添加污染的毒性试验往往无法真实反映野外田间土壤污染的真实毒性,导致推导筛选值的不确定性[20]。美国等建议在条件允许的情况下,应对生态毒理试验的供试土壤开展淋洗和老化处理,并在不确定分析中充分考虑毒理试验的淋洗和老化情况,除以相应的不确定性因子获得最终的筛选值。此外,英国等建议可根据经验方程获得的淋洗/老化(leaching/aging factor,L/A)因子对毒性数据进行校准,以获得更能反映真实毒性的毒性数据[4]。
-
我国土壤环境标准工作最早开始于上世纪七十、八十年代的农业环境质量普查评价、土壤环境容量的临界含量和土壤环境背景值等相关研究[21-22],在上述研究基础上,我国制定了《土壤环境质量标准》(GB 15618—1995)。其中,一级标准(背景值)采用地球化学法,根据土壤中元素的地球化学含量状况和分布特征制定;二级和三级标准采用生态环境效应法,该方法体现了我国对土壤生态环境安全的最初探讨,规定了保护农产品质量、农作物生长、土壤生态(生化指标和微生物指标)和水环境安全的土壤中污染物最大允许含量(表4)[23]。
为落实《土壤污染防治行动计划》(土十条)的要求,满足农用地土壤污染风险管控的需要。GB 15618—2018土壤风险管控标准借鉴了GB 15618—1995标准的生态环境效应法(表4),以保护农产品质量为主要目标,兼顾保护农作物生长和土壤生态的需要,结合技术、经济和社会等情况,对控制指标和数值进行修订。其中,Cd、Hg、As、Pb和Cr主要保护农产品质量,Cu、Ni和Zn主要保护农作物生长,并兼顾保护土壤生态。但8种重金属中,仅Ni元素的筛选值是基于我国20多种代表性物种(植物、动物和微生物)和17种代表性土壤的EC10数据,采用了国际生态风险评估方法的SSD法推导。因此,尽管GB 15618—2018标准部分考虑了土壤污染生态风险,但仅土壤Ni的风险筛选值可作为生态筛选值使用。
实际上,我国生态环境效应法中土壤-微生物体系和土壤-作物生长体系与国际土壤生态筛选值中的直接接触途径相似,土壤-农产品质量体系类似于国生态筛值的二次毒性途径,土壤-水体系与加拿大保护水环境的指导值相似,但标准制定的试验和推导方法与国际土壤筛选值存在较大差异(表4)。但根据我国《生态环境标准管理办法》和《环境基准管理办法(试行),土壤环境基准是土壤风险管控标准的制修订基础,而在法律和管理层面我国已将保护农产品质量和保护地下水的土壤环境基准与保护陆生生态的土壤环境基准进行区分。因此,我国土壤生态筛选值的研究范畴应与美国、荷兰和英国等国家相似,以保护直接接触毒性和二次毒性的陆生生态土壤环境基准为基础,不应包括保护农产品质量和保护地下水的土壤环境基准。
-
(1)明确土壤生态筛选值的定位、作用和使用形式
土壤生态筛选值是土壤污染生态风险初步识别与筛选的环境管理工具,然而我国尚未构建本土化的土壤生态风险评估框架体系[24]。因此,“十四五”期间应首先尝试建立我国土壤生态风险评估的基本框架,明确土壤生态筛选值的筛选作用。当前我国土壤风险管控标准按照土地用途制定。其中,GB 15618—2018农用地土壤风险管控标准在控制项目选择和筛选值制定部分考虑了土壤污染生态风险。因此,农用地应继续以当前标准体系为主线,其中土壤-微生物体系和土壤-作物生长体系应以保护直接接触毒性和二次毒性的陆生生态土壤环境基准研究为基础,关键受体、毒性数据和推导方法逐步与国际土壤生态筛选值接轨,进一步完善现有控制项目的筛选值。GB 36600—2018建设用地土壤风险管控标准根据人体健康风险评估方法制定,未考虑污染物的土壤生态风险。然而,无论是公园、绿地与广场、居住用地或是工业用地,其土壤均提供了不同程度的生态服务功能。因此,我国建设用地同样应考虑污染物对土壤生态环境的危害,制定相应的土壤生态筛选值,并根据管理政策需要,选择单独作为1套标准使用,或是与GB 36600—2018标准结合使用。
(2)加强土壤生态毒理学等基础研究
保护陆生生态的土壤环境基准研究是土壤生态筛选值的基础,建立足够数量和质量的生态毒性数据库是合理制定土壤生态筛选值的关键[25-26]。美国石油学会指出国际土壤生态筛选值的数据基础是互通的,除各国管理政策导致的差异外,筛选值的差异更多来自于各国对本土生态毒理数据的使用[13]。我国土壤污染生态毒理研究起步较晚,早期生态环境效应法在试验规范性与标准生态毒理学实验存在不少差距,不同研究团队的培养条件和培养时间等试验条件差异较大[25-26]。因此,缺乏我国代表性物种和典型土壤的生态毒理数据已成为合理制定土壤生态筛选值的瓶颈。此外,国内生态毒理数据分布于各个研究团队,缺少国家级的官方共享平台对国内毒理数据进行整合,类似美国ECOTOX数据库[27-28]。因此,“十四五”应针对关键污染物开展基于我国代表性物种和典型土壤的生态毒理实验,构建适合我国土壤生态系统的基础毒性数据库和共享平台,为土壤生态筛选值制定提供充足的数据基础。
(3)建立科学、规范的土壤生态筛选值制定方法
规范性文件的缺失是制约我国土壤生态筛选值制定的重要因素。2019年,生态环境部发布了《生态安全土壤环境基准技术指南(征求意见稿)》,以期作为指导性文件开展保护直接接触途径的陆生生态土壤环境基准研究。但由于当时条件未成熟,技术指南未能正式发布,目前由生态环境部南京环境科学研究所继续对指南进行修改和完善。除技术导则外,我国尚缺指导开展生态毒理试验的相关配套指南,包括代表性物种名录、生物试验方法和毒性数据筛选和评估等。目前已开展的毒性试验主要依赖于国外机构推荐的物种和试验方法,如经济合作与发展组织(Organization for Economic Co-operation and Development,OECD)、美国试验与材料学会(American Society of Testing Materials,ASTM)和美国EPA等。因此,“十四五”期间建议结合我国土壤生态系统特征和环境管理需求,确定能够反映我国区域特征的代表性生态物种;参考国内外土壤质量或化学品评价的标准生态毒理方法,制订本土化生态毒理试验系列导则;参考国外土壤生态筛选值制定技术指导,进一步完善保护陆生生态的土壤环境基准制定技术方法。
(4)持续开展土壤污染物的生物有效性研究
土壤污染物的生态毒性取决于生物有效性。尽管存在争议,归一化方程被认为是定量表征毒性数据与土壤理化性质关系的有效工具。实际上,我国GB 15618—2018标准在推导过程中已使用基于生物富集因子(Bioconcentration Factor,BCF)的归一化方程,但当前保护陆生生态的土壤环境基准研究中缺乏对污染物生物有效性的探讨,大部分研究没有量化土壤理化性质对毒性数据的影响[29]。此外,我国已开展的土壤生态毒理试验缺少对供试土壤进行淋洗和老化处理,且针对我国土壤区域特征的污染物L/A因子研究相对较少,导致室内毒性试验结果不能真实反映污染物的真实毒性,影响土壤生态筛选值制定的合理性[30-31]。因此,建议持续开展土壤污染物的生物有效性研究,建立针对性和适用性强的归一化方程和L/A因子,在充分考虑生物有效性的情况下,完善我国土壤生态筛选值的表征形式,如参考GB 15618—2018标准,基于关键土壤理化性质制定合理的筛选值。
-
(1)土壤生态筛选值是土壤污染生态风险初步识别与筛选的重要环境管理工具。十四五期间,应初步构建我国土壤生态风险评估框架,明确土壤生态筛选值的定位、作用和使用形式。
(2)保护陆生生态的土壤环境基准研究是制定合理生态筛选值的基础。建议加强土壤生态毒理学等基础研究,建立科学、规范的土壤生态筛选值制定方法和配套指南,为合理制定土壤生态筛选值提供理论、方法和数据基础。
(3)土壤污染物的生态毒性取决于生物有效性,土壤理化性质等多种因素可能影响污染物的生物有效性。建议持续开展土壤污染物的生物有效性研究,尝试建立适合我国土壤区域特征的污染物归一化方程和L/A因子经验方程。
不同国家土壤生态筛选值比较与启示
Ecological soil screening values among different countries and implication for China
-
摘要: 土壤污染生态风险防控是我国土壤环境保护和管理的重要目标。与国外发达国家相比,我国尚未建立基于生态风险的土壤筛选值(土壤生态筛选值),当前有关土壤生态筛选值的综述相对较少。本文系统梳理了美国环境保护局(EPA)、英国环境署(EA)、荷兰住房、空间规划和环境部(VROM)和加拿大环境部长理事会(CCME)制定的土壤生态筛选值,从标准定位、关键受体、暴露途径、推导方法和生物有效性等方面进行对比分析。结果表明,不同国家土壤生态筛选值均考虑了土壤直接接触毒性和经生物富集和生物放大的二次毒性,推导方法普遍采用生态风险评估方法,并充分考虑污染物的生物有效性。然而,当前我国土壤风险管控标准中仅GB 15618—2018农用地标准的部分考虑了污染物对农作物生长和土壤生态的影响,且试验和推导方法与国外筛选值存在较大差异。因此,“十四五”期间建议初步构建我国土壤生态风险评估框架,明确土壤生态筛选值的定位、作用和使用形式,加强代表性物种和典型土壤的陆生生态毒理学等基础研究,建立科学、规范的土壤生态筛选值制定方法和配套指南,尝试建立适合我国土壤区域特征的土壤污染归一方程和淋洗/老化因子,为我国土壤生态筛选值的制定提供建议和参考。Abstract: Ecological risk control of soil contamination is an essential target for soil environment protection and management. However, there is still lack of ecological soil screening values (Eco-SSVs) in China and the foundation of the works concerning soil environmental criteria aimed at protecting the terrestrial ecology is also rather weak. In this paper, we systematically compared and analyzed the difference in Eco-SSVs among US Environmental Protection Agency (EPA), UK Environmental Agency (EA), Ministry of Housing, Spatial Planning and the Environment (VORM) of the Netherlands and Canadian Council of Ministers of the Environment (CCME), in aspect of standard positioning, protection objective, derivation method, protective level as well as bioavailability factors. The result showed that both the toxicity induced by direct exposure to soil and the secondary poisoning via bioaccumulation/ biomagnification are taken into account for the derivation of Eco-SSVs with a widely applied method of ecological risk assessment in all the aforementioned countries. Meanwhile, the bioavailability of pollutants was well considered. However, among all the current risk control standard of soil contamination in our country, the consideration of ecological risk on crop growth and soil ecosystem was only observed in GB 15618—2018. On such a basis, constructing the framework of soil ecological risk assessment and specifying the role, function and the application form of Eco-SSVs were highly proposed during the 14th Five-Year Plan of our country. Moreover, we highlight strengthening the research of terrestrial ecotoxicity involved in local species and typical soil types in China, establishing the scientific and standardized derivation method of Eco-SSVs as well as the corresponding guideline, and establishing the normalized model and leaching/aging factor, which could provide scientific and technological base for the formulation of Eco-SSVs in our country.
-
随着矿区农业、采矿业以及化工生产业的不断发展,污染物不断地排放,导致矿区地区浅层地下水不同程度的污染[1-3]。监测显示,某矿区地下水中超标的污染物有重金属Cr、阴离子
SO2−4 、F−等。Cr(Ⅵ)在环境中呈流动态,毒性很高,很容易穿透细胞壁,在细胞代谢过程中,可引起DNA氧化和非氧化2种形式的损坏,从而导致突变和染色体断裂,影响DNA的自然复制和转录,并能引起突变,主要导致肝细胞功能、肾脏和肺部的癌变[4-6];长期饮用高氟水,轻者牙齿产生斑釉、关节疼痛,重者会影响骨骼发育,甚至丧失劳动力[7-9]。目前,我国有400余个城市以地下水为供水水源[10],有些城市地下水甚至成为唯一供水水源。地下水关乎人民健康,一旦受到污染,造成的危害将无法估量。因此,寻找合适的污染地下水治理技术显得尤为重要。硫酸盐还原菌(SRB)价格低廉,是去除重金属离子非常有效的方法之一。董慧等[11]利用SRB去除矿山废水中污染物,在进水pH为3.0、水温为26~27 ℃、进水Fe2+的质量度低于450 mg·L−1、mCOD/m硫酸根离子>2.0的条件下,
SO2−4 平均去除率在80%以上,且对水中耗氧有机污染物(以COD计)有较好的去除效果,对重金属平均去除率在99%以上。董艳荣等[12]研究了SRB分离及处理煤矿酸性废水工艺,结果表明,在接种量为10%、接种时间为5 d条件下,对煤矿酸性废水中SO2−4 和Fe2+的去除率分别为74.71%和99.18%。SRB虽然在处理污染水方面具有一定的优势,但SRB需要充足碳源,且易受外界因素干扰,单独作用效果差。而SRB固定化技术是将其高度密集于一个有限的空间内,使其保持一定活性,具有处理污水效果好、利于固液分离、可重复利用、回收方便和抗重金属离子抑制能力强等优点[13-14]。安文博等[15]利用生铁屑固定SRB的实验表明,SRB颗粒能够抵抗pH=4的酸溶液,并在碱、盐溶液中能够保持较好稳定性,对Mn2+的吸附容量符合Freundlich等温吸附方程(R2=0.988 68,1/n=0.489 6),吸附动力学符合Elovich动力学模型(R2=0.996 4)。有机-无机杂化材料是一种介于有机聚合物和无机聚合物之间的一种新型纳米复合材料[16-17],其兼具两者的优点,目前,已有研究将其用于水处理技术中。邱迅[18]研究了一种基于二氧化硅的有机-无机杂化材料,将其用于处理水中低浓度的Cu2+、Cr6+等重金属离子,结果表明,该种杂化材料对Cu2+具有一定的吸附选择性,且在中性条件下吸附效果较好,可将50 mg·L−1以下的K2Cr2O7溶液中的Cr(Ⅵ)几乎完全还原并吸附。该矿区地下水污染成分复杂,单一杂化材料无法使出水Cr(Ⅵ)、
SO2−4 浓度满足要求,单一SRB无法使F−有效去除,目前,很少有研究可同时去除该地区多种污染成分的材料。所以,为克服单一处理方法的局限性,考虑将杂化材料与SRB结合,实现对污染物的有效去除。参考周彩华等[19]利用溶胶-凝胶工艺制备氧化锆溶胶、王国祥[20]利用二氧化钛与丙烯酰胺杂化制备杂化材料的实验方法,本研究选择ZrOCl2与丙烯酰胺单体杂化聚合,得到纳米ZrO2-聚丙烯酰胺杂化材料,利用该杂化材料中聚丙烯酰胺这一中间物质对SRB进行固定化处理,形成纳米ZrO2-SRB颗粒。该颗粒对水中污染物具有还原和吸附双重作用,可以同时去除铬和氟。1. 材料与方法
1.2 硫酸盐还原菌的富集、分离与鉴定
实验所用菌株取自阜新市皮革园区生化池。以乙醇为碳源、按5%接种量接入菌株进行富集培养,直至其适应新碳源环境,并能够大量繁殖;采用叠皿夹层培养法对菌株进行纯化分离,直至得到形态单一菌落,将其继续培养即得到纯化的菌株;对菌株分别进行革兰氏染色、芽孢染色、在1 600倍油镜下镜检观察;将菌株置于2份等量的浅层液体培养基中培养:1份进行摇床振荡好氧培养,1份在液体培养基液面滴加石蜡油置于厌氧培养箱中进行厌氧培养。3 d后分别进行基因测序,并利用透射电镜在放大30 000倍条件下进行镜检观察。
1.2 纳米ZrO2-聚丙烯酰胺杂化材料制备
室温下,称取2 g氧氯化锆,溶于200 mL质量分数为95%的乙醇溶液中,ZrOCl2在乙醇溶液中进行水解和缩聚反应,反应如式(1)和式(2)所示。
Zr−Cl+H2O→Zr−OH+HCl (1) Zr−OH+HO−Zr−O→Zr+H2O (2) 在得到无色透明的纳米二氧化锆明胶后,向200 mL溶胶中加入0.6 g丙烯酰胺单体、0.05 g亚硫酸氢钠和过硫酸钾作为引发剂,将混合溶液充分搅拌均匀,在25 ℃下,进行聚合反应30 min,得到纳米ZrO2-聚丙烯酰胺无机-有机杂化材料。
1.3 硫酸盐还原菌的固定化
称取质量分数为2.5%的海藻酸钠于300 mL蒸馏水中,充分溶胀后,加入200 mL纳米ZrO2-聚丙烯酰胺杂化材料混匀溶解,密封并于室温下存放8~12 h,再向混合溶液中加入质量分数为2.5%的制孔剂聚乙二醇以及100 mL经驯化培养后处于对数期生长的菌液(平板计数法得到菌液对数期的菌密度为3×108个·mL−1),充分混合、搅拌均匀后,利用注射器滴入到pH=6的2%CaCl2饱和硼酸溶液中,期间利用搅拌器以100 r·min−1的搅拌速率进行交联。4 h后取出颗粒,用0.9%生理盐水进行冲洗,再吸干表面水分,重复3遍。在小球使用前,再放入富集培养基中激活12 h。
1)机械强度测试。将固定化细菌颗粒放于100 mL的玻璃注射器中,向玻璃注射器施加一定的压力,观察颗粒的破损情况;同时,用手捏固定好的细菌颗粒,根据整个过程细菌颗粒的变化情况来描述其机械强度,从颗粒的硬度以及弹性对其进行强度分级:当颗粒较软时,认为其强度等级较差;当颗粒具有一定的硬度、弹性较差时,认为其强度等级中等;当颗粒具有一定的硬度且弹性好时,认为其强度等级良好;当颗粒硬度大且易碎时,认为其强度等级为优。
2)传质性能测试。将固定化的细菌颗粒加入到一定量的滴有墨水的蒸馏水中,2 h后取出,观察颗粒颜色进入颗粒的深度,与未加入墨水的固定化颗粒进行对比,确定其传质性能,传质性能分级如下:当颗粒仅有表面变黑且颜色较浅时,认为其传质能力较差;当距离颗粒中心约1/2处变黑且颜色较深时,认为其传质能力中等;当颗粒中心变黑、颜色较浅时,认为其传质能力良好;当颗粒中心变黑、颜色较深时,认为其传质能力为优。
3)成球性能测试。根据固定化过程肉眼判断成球状况的规则性,根据颗粒成球的黏连性判断颗粒的成球性能。成球性能分级如下:当难于成球、黏连严重时,认为其成球性能较差;当成球的形状不规则、部分黏连时,认为其成球性能中等;当成球形状规则、部分黏连时,认为其成球性能良好;当成球形状规则、无黏连时,认为其成球性能为优。
4)细菌活性测试。取一定量的细菌颗粒,置于上述配置的细菌富集培养基中,并向培养基中加入浓度为500 mg·L−1的
SO2−4 ,隔一段时间后,观察培养基的颜色变化情况,测定SO2−4 的浓度变化,根据是否产生臭鸡蛋味的气体情况来判断固定化细菌的活性。细菌活性分级如下:当溶液颜色无明显变化、SO2−4 去除率<20%、产生极少臭鸡蛋气味气体时,认为其活性较差;当溶液颜色较浅、SO2−4 去除率为40%~60%、产生少量臭鸡蛋气味气体时,认为其活性中等;当溶液变为较黑色、SO2−4 去除率60%~80%、产生较多臭鸡蛋气味气体时,认为其活性良好;当溶液变为深黑色、SO2−4 去除率80%~95%、产生大量的臭鸡蛋气味气体时,认为其活性为优。1.4 动态实验
设计6组直径为50 mm、高为50 cm、总容积为0.98 L的动态柱,底部0~3 cm填有进水炉渣含水层,含水层以上30 cm填充反应层,反应层以上设有3 cm炉渣过滤层,如图1所示。1#柱反应层采用纳米ZrO2-SRB颗粒,颗粒中包含200 mL杂化材料和100 mL菌液,进水水力负荷为2.935 m3·(m2·d)−1,进水成分近似模拟该地区地下水的成分:5 mg·L−1 F−、10 mg·L−1 Cr(Ⅵ)、10 mg·L−1 Cr(Ⅲ)、500 mg·L−1
SO2−4 、pH=4.6;2#柱反应层采用与1#柱相同密度的SRB,进行挂膜处理,且在2#柱中加入与1#柱相同量的杂化材料;3#、4#柱进水水力负荷分别为1.468、4.403 m3·(m2·d)−1,5#柱进水成分中将Cr(Ⅵ)提高为50 mg·L−1,6#柱进水成分中将F−提高为10 mg·L−1;各柱中保持纳米ZrO2-SRB颗粒数量以及其他进水条件均与1#柱相同。连续测定出水各个污染物的浓度及pH的提升效果。1.5 再生实验
利用0.1 mol·L−1 HCl、0.2 mol·L−1乙醇和质量分数为2.5%硫脲作为洗脱液,将吸附污染离子后的纳米ZrO2-SRB颗粒加入50 mL洗脱液,并在35 ℃下180 r·min−1下振荡处理60 min,再放入富集培养基中激活12 h。脱附完成后,再次进行吸附,如此吸附-脱附重复3次,并计算每次再生后颗粒对Cr(Ⅵ)、Cr(Ⅲ)、
SO2−4 、F−的去除率。1.6 测定方法
pH采用玻璃电极法测定;Cr(Ⅵ)采用二苯碳酰二肼分光光度法测定;Cr(Ⅲ)采用高锰酸钾氧化-二苯碳酰二肼分光光度法测定;
SO2−4 采用铬酸钡分光光度法测定;F−采用离子选择电极法测定。2. 结果与分析
2.1 硫酸盐还原菌的鉴定结果与分析
1 600倍油镜下镜检SRB的革兰氏染色、经番红复染的芽孢染色、SRB透射电镜放大30 000倍的检测结果如图2所示。由图2(a)可看出,经革兰氏染色后,SRB被染为红色,初步判断该菌株呈阴性;由图2(b)可看出,经番红复染后被染为红色,说明该菌株无芽孢;由图2(c)可明显看出,该菌株呈杆状,且具有鞭毛。
好氧和厌氧条件下培养的菌株经DNA测序后,测序结果相同,说明该菌株生化类型为兼性厌氧型。基因测序以及BLAST基因库比对、序列同源性分析如表1所示,可看出,该兼性厌氧菌与Citrobacter amalonaticus TB10的相似性最高,相似度达99.93%,说明该菌株与Citrobacter amalonaticus TB10属于同一性质的菌株,均为柠檬酸性杆菌。并利用MEGA 6.0软件得到所测菌株序列与其他物质的亲缘关系;得到的进化树结果如图3所示。
表 1 序列同源性分析Table 1. Sequence homology analysis菌属 菌株 相似度/% Citrobacter amalonaticus TB10 99.93 Citrobacter amalonaticus HAMBI 1296 99.86 Citrobacter amalonaticus LMG 7873 99.78 Uncultured Citrobacter sp. clone F2AUG.11 99.71 Citrobacter farmeri CIP 104553 99.64 Citrobacter farmeri 17.7 KSS 99.57 Uncultured bacterium clone KSR-CFL3 99.49 Citrobacter amalonaticus OFF7 99.42 Citrobacter sp CF3-C 99.35 Citrobacter sp. enrichment culture clone TB39-15 99.28 2.2 纳米ZrO2-聚丙烯酰胺杂化材料的结构表征分析
将制得的纳米ZrO2-聚丙烯酰胺杂化材料在60 ℃条件下烘干,采用SEM在放大倍数为5 000倍下观察其表观结构,并进行EDS能谱和FT-IR红外光谱分析,结果如图4所示。可以看出,纳米ZrO2-聚丙烯酰胺杂化材料表面孔隙明显,质地均匀,分散性较好;主要含N—H、C—H、C=O、C—N、Zr—O—Zr特征峰,说明杂化材料中既有有机物吸收峰又有无机物吸收峰,由此可见,ZrO2与聚丙烯酰胺间是通过共价键连接。
2.3 纳米ZrO2-SRB颗粒的性能测试
固定化细菌颗粒如图5所示。通过对其做系列性能分析后,发现其在成球过程中形状规则且无黏连,说明其成球性好;在玻璃注射器中施加一定的压力后不易破损,压力增大,破损程度增大,说明其具有一定的硬度、弹性较好;将其加入到滴有墨水的蒸馏水中,2 h取出后发现其中心颜色变黑,且颜色较深,说明其传质性能良好;将其放于培养基中一段时间后,发现培养基颜色变深,且有黑色沉淀生成,会产生一种臭鸡蛋气味的气体产生,此时测定硫酸根的去除率为69.9%,说明其活性良好。
2.4 动态实验结果分析
6个动态柱的出水情况如图6~图11所示。对比1#、2#动态柱出水情况,可以看出,在SRB和杂化材料投加量相同条件下,纳米ZrO2-SRB颗粒反应层对Cr(Ⅵ)、Cr(Ⅲ)、
SO2−4 、F−的去除效果要好于挂膜的SRB,对溶液中Cr(Ⅵ)、Cr(Ⅲ)、SO2−4 的有效去除时间要长于挂膜的SRB反应层,这说明纳米ZrO2-SRB颗粒可以利用杂化材料中的乙醇作碳源。纳米ZrO2-SRB颗粒对溶液中Cr(Ⅵ)、Cr(Ⅲ)、SO2−4 的作用包括SRB和纳米ZrO2的双重作用,而F−的去除主要依靠纳米ZrO2的吸附作用。Cr(Ⅵ)、Cr(Ⅲ)、SO2−4 、F−的最大去除率分别为99.7%、98.8%、70.4%、92.4%;单独的SRB对Cr(Ⅵ)、Cr(Ⅲ)、SO2−4 的最大去除率分别为99.3%、72.4%、71.2%,对F−没有去除效果。且可以看出,2种反应层对pH的提升效果影响较小,这说明溶液中的pH主要靠SRB的作用,纳米ZrO2对溶液pH没有提升作用。对比1#、3#、4#动态柱的出水情况,可以看出,不同进水水力负荷均不会影响到纳米ZrO2-SRB颗粒对Cr(Ⅵ)、Cr(Ⅲ)、
SO2−4 、F−的最大去除率,对Cr(Ⅵ)、Cr(Ⅲ)、SO2−4 、F−的最大去除率分别为99.7%、98.7%、71.2%、93.7%,但随着进水负荷的增大,维持污染物最大去除率的时间较短,pH最大提升水平维持的时间也有所缩短。在进水水力负荷为2.935 m3·(m2·d)−1、反应进行1~14 d时,F−的去除率可以维持在最大水平,7~23 d期间对Cr(Ⅵ)和SO2−4 的去除率可以维持在最大水平;而当水力负荷为4.403 m3·(m2·d)−1时,对F−的去除率仅在4 d前可维持最大,对Cr(Ⅵ)和SO2−4 的去除率仅在4.5~8.5 d时保持最大,可看出,能够保证各个污染物有效去除的时间明显缩短了。这是因为在反应层高度相同时,进水流速越大,对反应层的传质推动力越大,导致污染物与反应层的接触时间缩短,污染物未来得及和反应层充分接触便流出动态柱,但进水流速也不宜太小,太小的进水流速会延长接触时间,在相同的处理时间内处理的水量小,所以最佳进水水力负荷选择2.935 m3·(m2·d)−1较为适宜。对比1#、5#、6# 3个动态柱内的出水情况,可以看出,当Cr(Ⅵ)的浓度增加到50 mg·L−1时,纳米ZrO2-SRB颗粒对Cr(Ⅵ)的最大去除率仍然可维持在99.7%,但在初始1~3 d时,由于SRB的活性较低,5#动态柱出水中Cr(Ⅵ)的去除率仅为62.3%,相比于1#动态柱去除率91.8%,明显有所下降。这说明纳米ZrO2对高浓度Cr(Ⅵ)的选择吸附性较低,但是靠SRB对Cr(Ⅵ)的还原作用仍然可使出水浓度维持在较佳水平,且当Cr(Ⅵ)浓度增大后,不会影响到纳米ZrO2对F−和Cr(Ⅲ)的吸附效果,但对
SO2−4 的去除效果会有一定影响。由此可见,纳米ZrO2对F−和Cr(Ⅲ)的吸附选择性优于Cr(Ⅵ)优于SO2−4 ;当F−浓度增加到10 mg·L−1时,对比1#和6#动态柱内的出水情况,可以看出,6#动态柱中在反应1~3 d时,对F−、Cr(Ⅵ)、SO2−4 的去除率较1#动态柱中的去除率有所变化,对F−的去除率由93.7%上升为96.7%,对Cr(Ⅵ)的去除率由原来的91.8%下降为87.8%,对SO2−4 的去除率由原来的30.2%降为17.5%,对Cr(Ⅲ)的去除效果基本上没有变化,说明纳米ZrO2对F−的吸附性能优于Cr(Ⅲ)、Cr(Ⅵ)和SO2−4 。2.5 吸附再生实验结果分析
纳米ZrO2-SRB颗粒经过0、1、2、3次脱附再生后,对Cr(Ⅵ)、Cr(Ⅲ)、
SO2−4 、F−的去除结果如图12所示。由图12可看出,经过3次循环再生后,较最初对Cr(Ⅵ)、Cr(Ⅲ)、SO2−4 、F−的去除率仅分别降低了1.8%、4.0%、1.5%、4.2%。由此可见,SRB在经过加入碳源乙醇和培养基活化后可以恢复其活性,颗粒可以达到较好的再生效果。这说明0.1 mol·L−1 HCl、0.2 mol·L−1乙醇、质量分数为2.5%硫脲和培养基的活化作用对于纳米ZrO2-SRB颗粒是一种良好的再生剂。2.6 纳米ZrO2-SRB颗粒处理铬和氟污染地下水的机理分析
1)微观结构表征。将包埋后得到的纳米ZrO2-SRB颗粒和处理不含Cr(Ⅲ)的污染地下水后得到的颗粒分别在60 ℃条件下烘干,采用SEM在放大倍数为2 000倍下观察材料的表观结构和XRD分析,结果如图13所示。可以看出,处理污染物前,细菌颗粒呈现明显的微球状,孔道通畅,表面较为光滑,主要含有的成分是ZrO2和一种有机物CH4N2O·C2H2O4。吸附处理污染水后的细菌颗粒形状变得不为明显,且表面变得粗糙,出现大量的凸形褶皱;处理污染水后的颗粒成分主要有C、O、Zr、S、H、Cr、F等元素;处理不含Cr(Ⅲ)的污水后,出现了ZrCr2H10、C6Cr2O12、ZrS0.67、ZrO0.67F2、Cr(OH)3新物质,Cr最终以Cr(Ⅵ)和Cr(Ⅲ)形式存在,说明SRB可将溶液中的
SO2−4 还原为S2-、将Cr(Ⅵ)还原为Cr(Ⅲ),最终以ZrCr2H10、Cr(OH)3、ZrS0.67的形式被去除,且ZrS0.67是硫化物的最终去向,残留在颗粒中;最终产物中含有Cr(Ⅵ),说明ZrO2-SRB处理污染地下水不但具有还原过程还存在纳米ZrO2的吸附过程,可吸附水中的Cr(Ⅵ)和F−,最终分别以C6Cr2O12和ZrO0.67F2形式被去除。2)等温吸附实验。取100 mL含10 mg·L−1 Cr(Ⅵ)、10 mg·L−1 Cr(Ⅲ)、5 mg·L−1 F−、500 mg·L−1
SO2−4 的溶液9份,每份分别加入质量为0.83、1.66、2.49、3.32、4.15、4.98、5.81、6.64、7.47 g纳米ZrO2-聚丙烯酰胺杂化材料,调节原始溶液至pH=7,置于温度为25 ℃条件下,振荡反应20 min后取出,经过滤后分别测定溶液中Cr(Ⅵ)、Cr(Ⅲ)、F−和SO2−4 浓度。Langmuir和Freundlich模型的方程式分别如式(3)和式(4)所示。
CeQe=1bQm+CeQm (3) lnQe=lnKf+1nlnCe (4) 式中:
Ce 为平衡浓度,mg·L−1;b 为Langmuir 吸附常数,L·mg−1;Qm 为达到饱和时的吸附量,mg·g−1;Qe 为达到动态平衡时的吸附量,mg·g−1。Kf 为Freundlich 吸附常数;n 为经验常数。F−、Cr(Ⅵ)、Cr(Ⅲ)、
SO2−4 4种离子的Langmuir模型和Freundlich模型拟合结果如表2所示。由表2可知,Freundlich模型(R2=0.997 3、0.991 6、0.998 1、0.991 1)相比于Langmuir模型(R2=0.883 9、0.790 0、0.723 2、0.639 6)可以更好地拟合杂化材料对Cr(Ⅵ)、Cr(Ⅲ)、F−、SO2−4 的吸附过程,这说明吸附不仅仅是均匀的单层吸附,更主要的是多层吸附过程。表 2 吸附等温线拟合方程及相关系数Table 2. Adsorption isotherm fitting equation and correlation coefficients离子类型 Langmuir Freundlich 拟合方程 R2 拟合方程 R2 F- 0.883 9 0.997 3 Cr(Ⅵ) 0.790 0 0.991 6 Cr(Ⅲ) 0.723 2 0.998 1 0.639 6 0.991 1 3. 结论
1)室内动态柱实验结果表明:纳米ZrO2-SRB颗粒为反应层、进水水力负荷2.935 m3·(m2·d)−1时对污染物的去除效果更好;且ZrO2-SRB颗粒对F−的吸附选择性优于Cr(Ⅲ)、Cr(Ⅵ)和
SO2−4 。2)结构表征结果表明:纳米ZrO2-SRB颗粒处理污染物后出现大量凸形褶皱,且颗粒组成中出现S、Cr、F元素。
3)纳米ZrO2-SRB颗粒处理污染物的机理为:SRB对Cr(Ⅵ)、
SO2−4 存在还原作用,杂化材料对Cr(Ⅵ)、Cr(Ⅲ)、F−存在吸附作用;且吸附等温线符合Freundlich模型,这说明吸附过程是多层吸附。4) 0.1 mol·L−1 HCl、0.2 mol·L−1乙醇、质量分数为2.5%硫脲和培养基的活化共同作用对于纳米ZrO2-SRB颗粒的再生具有良好的效果。
-
表 1 各国土壤生态筛选值制定考虑的关键受体和暴露途径
Table 1. Key receptors and exposure pathways for consideration of ecological soil screening values
国家1Countries 土壤直接接触途径Soil direct contact route 土壤和食物摄入途径Soil and food ingestion route 土壤-地下水途径Soil-groundwater route 美国 Eco-SSL植物 植物 — — Eco-SSL无脊椎动物 无脊椎动物 — — Eco-SSL哺乳动物 — 哺乳动物 — Eco-SSL鸟类 — 鸟类 — 英国 SSV 植物、无脊椎动物和微生物主导的生态功能 野生生物(哺乳动物和鸟类) — 荷兰 MV 植物、无脊椎动物和微生物主导的生态功能 野生生物(哺乳动物和鸟类) — IV — — 加拿大 SQG农用地 微生物(营养和能量循环)、无脊椎动物、植物/作物和牲畜/野生动物 食草动物(初级消费者)和食肉动物(次级或三级消费者)2 牲畜、作物(灌溉)和淡水生物 SQG居住用地/公园 微生物(营养和能量循环)、无脊椎动物、植物和野生动物 食草动物(初级消费者)和食肉动物(次级或三级消费者)3 淡水生物 SQG商业用地 — SQG工业用地 — 1)Eco-SSL植物、Eco-SSL无脊椎动物、Eco-SSL哺乳动物和Eco-SSL鸟类分别表示保护植物、无脊椎动物、哺乳动物和鸟类的土壤生态筛选值;SSV表示英国土壤生态筛选值;MV和IV表示荷兰最大值和干预值;SQG农用地、SQG居住用地/公园、SQG商业用地和SQG工业用地分别表示农用地、居住/公园、商业和工业用地的土壤质量指导值。 Eco-SSLplants、Eco-SSLinvertebrates、Eco-SSLmammals and Eco-SSLbirds refer to Eco-SSLs for plants, invertebrates, Mammalian and birds, respectively; SSV refers to Soil Screening Values in UK; MV and IV refer to Maximal Values and Intervention Values in The Netherlands, respectively; SQGagriculture, SQGresidential/parkland, SQGcommercial and SQGindustrial refer to Soil Quality Guidelines for agriculture, residential/parkland, commercial and industrial land use, respectively. 2)仅当土壤污染物具有潜在生物累积或生物放大特性时,加拿大农用地的土壤SQG推导才考虑食肉动物等次级或三级消费者的土壤和食物摄入途径。 In the case of substances have a strong tendency to bioaccumulate and/or biomagnify, SQGagricultural for soil and food ingestion should be developed for the protection of secondary and tertiary consumers. 3)仅当土壤污染物具有潜在生物累积或生物放大特性时,加拿大居住用地/公园的土壤SQG推导才考虑食草动物等初级消费者和食肉动物等次级或三级消费者的土壤和食物摄入途径。 In the case of substances have a strong tendency to bioaccumulate and/or biomagnify, SQGresidential/parkland for soil and food ingestion should be developed for the protection of primary, secondary and tertiary consumers. 表 2 各国土壤生态筛选值的推导方法(直接接触途径)
Table 2. Derivation methodologies of ecological soil screening values among different countries(soil direct contact route)
国家Countries 毒性数据1Ecotoxicological data1 外推方法Extrapolation methodologies 筛选值确定Determination of soil screening values 美国 Eco-SSL植物 EC20、MATC和EC10 几何均值法 Eco-SSL无脊椎动物 英国 SSV NOEC、EC10和E(L)C50 物种敏感性分布法(SSD)、评估因子法(AF) PNEC(HC5) 荷兰 MV NOEC、EC10和E(L)C50 物种敏感性分布法(SSD)、评估因子法(AF)和平衡分配法 HC5和HC50的几何均值(约HC20) IV HC50 加拿大 SQG农用地 EC25、LOEC和E(L)C50 证据权重法(EC25分布法)、最低效应浓度法和中位效应法(最小值) 25%百分位值 SQG居住用地/公园 SQG商业用地 EC25、LOEC和E(L)C50 证据权重法(EC25分布法)和最低效应浓度法(几何均值) 50%百分位值 SQG工业用地 1)各国毒性数据按照数据使用优先级排列Ecotoxicological data is listed in order of priority for each country.. 表 3 各国土壤生态筛选值的生物有效性因子
Table 3. Bioavailability factors of ecological soil screening values
国家Countries 背景含量Background concentration 土壤理化性质Soil physico-chemical properties 淋洗-老化处理Leaching/aging treatment 美国 评估毒性数据的质量和Eco-SSL的合理性 优先采用生物有效性高(基于pH和有机质含量)毒性数据 开展淋洗-老化处理的毒理试验 英国 (1)风险添加法(Zn和V)(2)总量法(其余污染物),SSV不应低于土壤背景水平 (1)通用SSV:有机物1: 重金属:毒性数据不进行归一化(2)特定场地SSV有机物2:E(L)Csta/NOECsta=E(L)C/NOEC×3.4SOM 重金属:SSVgeneric和毒性数据根据土壤理化性质(pH、有机质、黏粒和效应阳离子交换量)归一化SSVsite - specific = SSVgeneric×SOM3.4 (1)通用SSV的毒性数据不进行淋洗/老化校准(2)当条件允许,毒性数据可基于淋洗/老化因子(L/F)进行校准 荷兰 风险添加法 (1)有机物1: (2)重金属不建议根据土壤理化性质归一化E(L)Csta/NOECsta=E(L)C/NOEC×3.4SOM — 加拿大 SQG不应低于土壤背景水平 (1)分为粗粒土和细粒土(2)毒性数据考虑生物有效性 — 1)E(L)Csta/NOECsta和E(L)C/NOEC分别表示标准土壤和特定土壤的毒性数据,包括EC、LC和NOEC; SOM表示特定土壤的有机质含量(%)。E(L)Csta/NOECsta and E(L)C/NOEC refer to ecotoxicological data in standard and site specific soil, including EC、LC and NOEC, respectively; SOM refer to soil organic matter (%). 2)SSVgeneric和SSVsite specific分别表示通用筛选值和特定场地的筛选值。SSVgeneric and SSVsite specific refer to generic and site specific soil screening values, respectively 表 4 土壤环境质量标准(GB15618—1995)的生态环境效应法
Table 4. Ecological effect methods of soil quality standards (GB 15618—1995)
体系Systems 土壤-植物体系(作物效应)Soil-plant system (Crop effects) 土壤-微生物体系(微生物效应)Soil-microorganism system(Microbial effects) 土壤-水体系(环境效应)Soil-water system(Environmental effects) 内容 农产品质量 作物生长 生化指标 微生物计数 地下水 地表水 目的 保证公众健康 保持良好的生产力 保持土壤生态良性循环 地下水水质符合国家标准 地表饮用水源地水质符合国家标准 依据 食品卫生标准等 农作物产量减产不大于10% 一种以上的生化指标出现的变化率小于25% 微生物数量出现的变化率小于50% 生活饮用水卫生标准 地表水环境质量标准 -
[1] 生态环境部, 国家市场监督管理总局. 中华人民共和国国家标准: 土壤环境质量 农用地土壤污染风险管控标准 GB 15618—2018[S]. 北京: 中国标准出版社, 2018. National Standard (Mandatory) of the People's Republic of China: Soil environmental quality Risk control standard for soil contamination of agricultural land. GB 15618—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[2] 生态环境部, 国家市场监督管理总局. 中华人民共和国国家标准: 土壤环境质量 建设用地土壤污染风险管控标准 GB 36600—2018[S]. 北京: 中国标准出版社, 2018. National Standard (Mandatory) of the People's Republic of China: Soil environmental quality Risk control standard for soil contamination of development land. GB 36600—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[3] United States Environmental Protection Agency (US EPA). Guidance for developing ecological soil screening levels[R]. Washington DC: US Environmental Protection Agency, 2005. [4] Environment Agency (EA). Derivation and use of soil screening values for assessing ecological risk (Science Report share id26)[R]. Bristol: Environment Agency, 2017. [5] SWARTJES F A, RUTGERS M, LIJZEN J P A, et al. State of the art of contaminated site management in The Netherlands: Policy framework and risk assessment tools [J]. Science of the Total Environment, 2012, 427/428: 1-10. doi: 10.1016/j.scitotenv.2012.02.078 [6] Canadian Council of Ministers of the Environment (CCME). A protocol for the derivation of environmental and human health soil quality guidelines[R]. Ottawa: Canadian Council of Ministers of the Environment, 2006. [7] PERRODIN Y, de BOILLOT C, ANGERVILLE R, et al. Ecological risk assessment of urban and industrial systems: A review [J]. Science of the Total Environment, 2011, 409(24): 5162-5176. doi: 10.1016/j.scitotenv.2011.08.053 [8] United States Environmental Protection Agency (US EPA). Framework for ecological risk assessment[R]. Washington DC: US Environmental Protection Agency, 1992. [9] United States Environmental Protection Agency (US EPA). Guidelines for ecological risk assessment[R]. Washington DC: US Environmental Protection Agency, 1998. [10] United States Environmental Protection Agency (US EPA). Ecological risk assessment guidance for superfund process for designing and conducting ecological risk assessments (Interim Final)[R]. Washington DC: US Environmental Protection Agency, 1997. [11] Environment Agency (EA). An ecological risk assessment framework for contaminants in soil (Science Report SCO70009/SR1)[R]. Bristol: Environment Agency, 2008. [12] Environment Agency (EA). Guidance on the use of soil screening values in ecological risk assessment (Science Report SC070009/SR2B)[R]. Bristol: Environment Agency, 2008. [13] Environment Agency. Soil screening values for use in UK ecological risk assessment[R]. Bristol: Environment Agency, 2008. [14] European Commission (EC). Technical guidance document in support of Commission Directive 93/67/EEC on Risk assessment for new notified substances and Commission Regulation (EC) No 1488/94 on Risk assessment for existing substances and Commission Directive (EC) 98/8 on Biocides, Part 2[R]. Luxembourg: European Commission, 2003. [15] 李勖之, 郑丽萍, 张亚, 等. 应用物种敏感分布法建立铅的生态安全土壤环境基准研究 [J]. 生态毒理学报, 2021, 16(1): 107-118. LI X Z, ZHENG L P, ZHANG Y, et al. Derivation of ecological safety based soil quality criteria for lead by species sensitivity distribution [J]. Asian Journal of Ecotoxicology, 2021, 16(1): 107-118(in Chinese).
[16] 颜增光, 谷庆宝, 周娟, 等. 构建土壤生态筛选基准的技术关键及方法学概述 [J]. 生态毒理学报, 2008, 3(5): 417-427. YAN Z G, GU Q B, ZHOU J, et al. A synoptic review of the technical tips and methodologies for the development of ecological soil screening benchmarks [J]. Asian Journal of Ecotoxicology, 2008, 3(5): 417-427(in Chinese).
[17] 周启星, 滕涌, 展思辉, 等. 土壤环境基准/标准研究需要解决的基础性问题 [J]. 农业环境科学学报, 2014, 33(1): 1-14. doi: 10.11654/jaes.2014.01.001 ZHOU Q X, TENG Y, ZHAN S H, et al. Fundamental problems to be solved in research on Soil-environmental Criteria/standards [J]. Journal of Agro-Environment Science, 2014, 33(1): 1-14(in Chinese). doi: 10.11654/jaes.2014.01.001
[18] 周启星. 环境基准研究与环境标准制定进展及展望 [J]. 生态与农村环境学报, 2010, 26(1): 1-8. doi: 10.3969/j.issn.1673-4831.2010.01.001 ZHOU Q X. Advances and prospect of research on environmental criteria/benchmarks and enactment of environmental standards [J]. Journal of Ecology and Rural Environment, 2010, 26(1): 1-8(in Chinese). doi: 10.3969/j.issn.1673-4831.2010.01.001
[19] CROMMENTUIJN T, SIJM D, de BRUIJN J, et al. Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations [J]. Journal of Environmental Management, 2000, 60(2): 121-143. [20] 王小庆, 李菊梅, 韦东普, 等. 土壤中铜生态阈值的影响因素及其预测模型 [J]. 中国环境科学, 2014, 34(2): 445-451. WANG X Q, LI J M, WEI D P, et al. Major soil factors affecting ecological threshold for copper and the predictable models [J]. China Environmental Science, 2014, 34(2): 445-451(in Chinese).
[21] 吴燕玉, 陈涛, 张学询, 等. 污灌区环境质量评价的原则和程序 [J]. 农业环境科学学报, 1983, 2(2): 1-5. WU Y Y, CHEN T, ZHANG X X, et al. Principles and procedures for environmental quality assessment of sewage irrigation areas [J]. Journal of Agro-Environmental Science, 1983, 2(2): 1-5(in Chinese).
[22] 夏增禄. 土壤环境容量在总量控制上的应用 [J]. 环境科学, 1985, 6(1): 56-60. XIA Z L. The application of soil environmental capacity to total quantity control [J]. Environmental Science, 1985, 6(1): 56-60(in Chinese).
[23] 夏家淇. 土壤环境质量标准详解[M]. 北京: 中国环境科学出版社, 1996. XIA J Q. Detailed explanation of soil environmental quality standards [M]. Beijing: China Environment Science Press, 1996(in Chinese).
[24] 龙涛, 邓绍坡, 吴运金, 等. 生态风险评价框架进展研究 [J]. 生态与农村环境学报, 2015, 31(6): 822-830. doi: 10.11934/j.issn.1673-4831.2015.06.005 LONG T, DENG S P, WU Y J, et al. Advancement in study on development of ecological risk assessment framework [J]. Journal of Ecology and Rural Environment, 2015, 31(6): 822-830(in Chinese). doi: 10.11934/j.issn.1673-4831.2015.06.005
[25] 窦韦强, 安毅, 秦莉, 等. 农用地土壤重金属生态安全阈值确定方法的研究进展 [J]. 生态毒理学报, 2019, 14(4): 54-64. DOU W Q, AN Y, QIN L, et al. Research progress in determination methods of ecological safety thresholds for heavy metals in agricultural land [J]. Asian Journal of Ecotoxicology, 2019, 14(4): 54-64(in Chinese).
[26] 张霖琳, 金小伟, 王业耀. 土壤污染物的生态毒理效应和风险评估研究进展 [J]. 中国环境监测, 2020, 36(6): 5-13. ZHANG L L, JIN X W, WANG Y Y. Research progress on ecotoxicological effects and risk assessment of soil pollutants [J]. Environmental Monitoring in China, 2020, 36(6): 5-13(in Chinese).
[27] 吴爱明, 赵晓丽, 冯宇, 等. 美国生态毒理数据库(ECOTOX)对中国数据库构建的启示 [J]. 环境科学研究, 2017, 30(4): 636-644. WU A M, ZHAO X L, FENG Y, et al. The enlightenment of the ecotoxicolohy knowledgebase(ECOTOX) for its establishment in China [J]. Research of Environmental Sciences, 2017, 30(4): 636-644(in Chinese).
[28] 刘娜, 金小伟, 王业耀, 等. 生态毒理数据筛查与评价准则研究 [J]. 生态毒理学报, 2016, 11(3): 1-10. doi: 10.7524/AJE.1673-5897.20160503005 LIU N, JIN X W, WANG Y Y, et al. Review of criteria for screening and evaluating ecotoxicity data [J]. Asian Journal of Ecotoxicology, 2016, 11(3): 1-10(in Chinese). doi: 10.7524/AJE.1673-5897.20160503005
[29] 王小庆, 马义兵, 黄占斌. 土壤中镍生态阈值的影响因素及预测模型 [J]. 农业工程学报, 2012, 28(5): 220-225. doi: 10.3969/j.issn.1002-6819.2012.05.037 WANG X Q, MA Y B, HUANG Z B. Influence factors and prediction model for soil nickel ecological threshold [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 220-225(in Chinese). doi: 10.3969/j.issn.1002-6819.2012.05.037
[30] 李宁, 郭雪雁, 陈世宝, 等. 基于大麦根伸长测定土壤Pb毒性阈值、淋洗因子及其预测模型 [J]. 应用生态学报, 2015, 26(7): 2177-2182. LI N, GUO X Y, CHEN S B, et al. Toxicity thresholds and predicted model of Pb added to soils with various properties and its leaching factors as determined by barley root-elongation test [J]. Chinese Journal of Applied Ecology, 2015, 26(7): 2177-2182(in Chinese).
[31] 王晓南, 陈丽红, 王婉华, 等. 保定潮土铅的生态毒性及其土壤环境质量基准推导 [J]. 环境化学, 2016, 35(6): 1219-1227. doi: 10.7524/j.issn.0254-6108.2016.06.2015101402 WANG X N, CHEN L H, WANG W H, et al. Ecotoxicological effect and soil environmental quality criteria of lead in the fluvo-aquic soil of Baoding [J]. Environmental Chemistry, 2016, 35(6): 1219-1227(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015101402
-