-
目前电子废弃物被公认为是世界上数量增长最快的生活垃圾。根据2020年发布的《The Global E-waste Monitor 202:Quantities, flows and the circular economy potential》显示[1],2019年全球产生了5360万吨电子废弃物,与2014年相比增长了21%;据预测到2030年全球电子废弃物产量将达到7400万吨。中国是世界上电子废弃物产量增长最快的国家,目前电子废弃物产量已超过美国跃居世界首位,据预测到2030年中国将产生2840万吨电子废弃物[2]。相较于庞大的产量,我国电子废弃物简易落后的拆解处理技术及装备,不合理、粗放式回收处理给环境和人类健康带来了严重的负面影响[3]。其中电子废弃物拆解区重金属污染问题早就受到研究者的关注。大量研究证实中国尤其是台州、贵屿和清远等传统电子废弃物拆解区环境中重金属污染严重,对生态环境和人体健康构成了潜在的巨大威胁[4-6]。
灰尘是一种重要的环境媒介,可以携带环境地表污染物的含量水平、分布、形态等信息。尤其是在电子产品使用过程和后续拆解、破碎过程,污染物不可避免的随着细小的碎屑释放出来,很容易与灰尘结合在一起,因此灰尘被认为是生态系统及人类健康风险的主要来源[7]。
本研究以上海市某正规电子废弃物手工拆解车间为主要研究对象,同时选取某高校研究生办公室和教室进行对照研究,采集室内灰尘样品。采样期间,电子废弃物手工拆解车间主要拆解回收废旧阴极射线管(CRT)电视机,拆解工人利用简单的工具对废旧CRT电视机进行手工拆解,分离出电视机外壳、CRT、电路板、电线以及扬声器等部件,日均拆解量为2000台左右。高校研究生办公室为电脑等电子产品密集使用场所,电脑的保有量为0.31台·m−2。高校教室中的电子产品较少,一般仅为教学多媒体。采集灰尘样品后,用ICP—OES法分析灰尘中Pb、Cu、Zn、As、Cd、Cr和Ni等7种重金属的含量;采用地累积指数法评价室内灰尘中重金属的污染程度;采用US EPA推荐的健康风险评模型,结合中国人群的暴露参数对人体室内灰尘暴露重金属的潜在健康风险进行评价。
电子废弃物拆解车间灰尘中重金属污染特征及职业人群健康风险评价
Pollution characteristics of heavy metals in the dust from e-waste dismantling workshop and health risk assessment of occupational population
-
摘要: 以上海市某正规电子废弃物手工拆解车间为研究对象,同时选取某高校研究生办公室和教室进行对照研究,采集室内灰尘样品,用电感耦合等离子体发射光谱(ICP—OES)法测定了灰尘中铅(Pb)、铜(Cu)、锌(Zn)、砷(As)、镉(Cd)、铬(Cr)和镍(Ni)的含量,采用地累积指数法(Igeo)评价了室内灰尘中重金属的污染程度,采用美国环保署(US EPA)推荐的健康风险评价模型,结合中国人群暴露参数,对人体室内灰尘暴露重金属的潜在健康风险进行评价。研究发现,电子废弃物手工拆解车间室内灰尘中Pb、Cu、Zn、As、Cd、Cr和Ni的平均浓度分别为13611、2034、12503、25.1、10.7、428、915 mg·kg−1,分别是高校研究生办公室的76、6、10、2、3、6、2倍;分别是教室的268、40、33、6、27、19、49倍,可见Pb是电子废弃物手工拆解车间室内灰尘的首要特征污染物;同时距拆解工位距离越远,灰尘中重金属含量越低,表明重金属从点源的扩散是周边环境中重金属污染的主要来源。地累积指数结果表明,电子废弃物手工拆解车间室内灰尘中重金属污染程度远远超过高校研究生办公室和教室,其中Pb(8.43)、Zn(6.30)、Cu(5.42)和Cd(5.16)处于极度污染水平,Ni(3.78)处于重度污染水平,Cr(1.76)和As(1.13)处于中度污染水平。健康风险评价结果表明,在电子废弃物手工拆解车间室内灰尘中Pb是造成非致癌风险的主要重金属,非致癌危险指数(HI)为2.26,大于1,表明Pb可能对拆解工人造成一定的非致癌风险;As、Cd、Cr和Ni的总致癌风险指数(CR)为1.02×10−4,超过了致癌风险可接受水平范围(10−6至10−4),表明电子废弃物拆解活动可能对拆解工人造成一定致癌风险,其中Ni和Cr是造成致癌风险的主要重金属。研究结果表明电子废弃物手工拆解车间室内灰尘中重金属的污染程度与拆解活动密切相关,且对拆解工人会造成一定程度的健康风险。Abstract: Taking a formal e-waste manual dismantling workshop in Shanghai as the research object and a postgraduate office and classrooms of a university as the control sites, indoor dust samples were collected. And the concentrations of lead (Pb), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), chromium (Cr) and nickel (Ni) were detected by inductively coupled plasma emission spectrometer (ICP-OES). The pollution levels of heavy metals in the indoor dust were analyzed by the geo-accumulation index (Igeo) method. The potential health risk of human exposure to heavy metals from indoor dust was evaluated by the health risk assessment model recommended by the US EPA combined with the exposure parameters of the Chinese population. The results showed that the mean concentrations of Pb, Cu, Zn, As, Cd, Cr and Ni in the indoor dust of the e-waste manual dismantling workshop were 13611, 2034, 12503, 25.1, 10.7, 428, 915 mg·kg−1, which were 76, 6, 10, 2, 3, 6, 2 times higher than the postgraduate office, and 268, 40, 33, 6, 27, 19, 49 times higher than the classroom, respectively. Pb is the primary characteristic pollutant in the e-waste manual dismantling workshop. The concentrations of heavy metals showed a noticeable decreasing trend with the distance from the e-waste recycling site. It was obvious that the diffusion of heavy metals form the point pollution source made a dominant contribution to the heavy metal pollution in the surrounding areas. The results of the geoaccumulation index showed that in the indoor dust of the e-waste manual dismantling workshop, Pb (8.43), Zn (6.30), Cu (5.42) and Cd (5.16) were extremely polluted, Ni (3.78) was strongly polluted; Cr (1.76) and As (1.33) were moderately polluted. The results of the health risk assessment showed that in the indoor dust of e-waste manual dismantling workshop, Pb was the primary heavy metal causing non-carcinogenic risks. The non-carcinogenic hazard index (HI) of Pb was 2.26, greater than 1, indicating that Pb may pose a certain non-carcinogenic risk to the dismantling workers. The total carcinogenic risk (CR) of As, Cd, Cr and Ni was 1.02×10−4, higher than its threshold value (the range of threshold value was 10−6 to 10−4), indicating that e-waste dismantling activities may pose a certain carcinogenic risk to the dismantling workers, among which Ni and Cr were the main heavy metals causing carcinogenic risks. The results of this study suggested that in the indoor dust of the e-waste manual dismantling workshop, the pollution degree of heavy metals was closely related to the dismantling activities, and heavy metals might cause a certain degree of health risk to the dismantling workers.
-
Key words:
- e-waste dismantling /
- dust /
- heavy metals /
- pollution characteristics /
- health risk assessment
-
表 1 灰尘样品采样信息
Table 1. Dust sample sampling information
采样点
Sampling points采样位置
Sampling locations代号
Name样品数量
Number电子废弃物手工拆解车间内(1 间) 废旧CRT电视机拆解工位 CJGW 3 车间地面 CJDM 3 电子废弃物手工拆解车间外(2 个) 车间外部空地 CJWB 3 公司周边道路 DL 3 研究生办公室(2 间) 地面 BGS 3 教室(20 间) 地面 JS 3 废旧CRT电视机(15 个) 外壳内部 DSJK 3 表 2 不同人群的暴露参数取值
Table 2. Values of exposure parameters in different populations
参数
Parameter含义
Implication参考值
ReferenceinhaleR /(m3·d−1) 呼吸摄入率 15.7[16] EF /(d·a−1) 人体暴露频率 250[17] ED /a 暴露持续时间 10[17]/4a PEF /(m3·kg−1) 颗粒排放因子 1.36×109[18] BW /kg 平均体重 61.9[16] AT非致癌 /d 平均接触时间 2500[17] / 1000b AT致癌 /d 平均终身接触时间 17500[19] ingestR /(mg·d−1) 灰尘摄入率 50[16] SA /cm2 皮肤接触污染物质面积 2253[17] / 4000c ABS 皮肤吸收因子 0.001 / 0.03[18] d AF /(mg·cm−2·d−1) 附着于皮肤的灰尘 0.22[20] 注:a,拆解车间人群持续暴露时间为10年,高校研究生办公室、教室人群暴露时间为4年;b,拆解车间人群平均接触时间为2500 d,高校研究生办公室、教室人群平均接触时间为1000天;c,办公室和教室接触人群取人体表面积的25%;d,As为0.03,其余元素为0.001。
a, the continuous exposure time of the population in the dismantling workshop is 10 years, and the exposure time of the population in the university graduate office and classroom is 4 years; b, the average contact time of the population in the dismantling workshop is 2500 days, and the average contact time of the population in the university graduate office and classroom is 1000 days; c, taking 25% of the human body surface area of the population in the university graduate office and classroom; d, As is 0.03, the other elements are 0.001.表 3 重金属非致癌参考剂量(RfD)和致癌斜率因子(SF)[21]
Table 3. Non-carcinogenic reference dose (RfD) and carcinogenic slope factor (SF) of heavy metals
重金属
MetalRfD /(mg·kg−1·d−1) SF /((kg·d)·mg−1) 呼吸吸入
Inhale经口摄入
Ingest皮肤接触
Dermal呼吸吸入
Inhale经口摄入
Ingest皮肤接触
DermalCu 4.00×10−2 4.00×10−2 1.20×10−2 Pb 3.52×10−3 3.50×10−3 5.25×10−3 Zn 3.00×10−1 3.00×10−1 6.99×10−2 As 1.23×10−4 3.00×10−4 3.00×10−4 1.50 1.50 7.50 Cd 1.00×10−4 1.00×10−3 4.00×10−5 6.40 6.10 6.10 Cr 2.86×10−5 3.00×10−3 6.00×10−5 42.0 0.50 20.0 Ni 2.06×10−2 2.06×10−2 5.04×10−2 0.84 0.84a 0.84 注:a,无Ni的经口摄入致癌斜率因子参考值,此处参考呼吸吸入和皮肤接触。
a, Reference value of carcinogenic slope factor for oral intake without Ni, here refer to breathing inhalation and skin contact.表 4 灰尘样品中重金属平均浓度(mg·kg−1)
Table 4. Mean heavy metal concentrations in indoor dust samples (mg·kg−1)
采样点
Sampling pointPb Cu Zn As Cd Cr Ni CJCJ 13611 ± 3821 2034 ± 241 12503 ± 429 25.1 ± 13.6 10.7 ± 5.18 428 ± 66.6 915 ± 401 BGS 178 ± 12.0 340 ± 82.0 1268 ± 76.9 15.9 ± 1.75 3.66 ± 0.22 77.0 ± 3.35 442 ± 39.8 JS 50.8 ± 0.78 51.1 ± 13.4 383 ± 142 3.96 ± 1.40 0.40 ± 0.05 22.4 ± 4.96 18.6 ± 6.24 表 5 灰尘样品中重金属危险指数(HI)
Table 5. The hazard index of heavy metals in indoor dust samples
重金属
MetalCJCJ BGS JS HQinhale HQingest HQdermal HI HQinhale HQingest HQdermal HI HQinhale HQingest HQdermal HI Pb 5.15×10−4 2.24 1.48×10−2 2.26 2.70×10−6 1.18×10−2 1.38×10−4 1.19×10−2 7.69×10−7 3.35×10−3 3.93×10−5 3.39×10−3 Cu 6.77×10−6 2.93×10−2 9.69×10−4 3.03×10−2 4.53×10−7 1.96×10−3 1.15×10−4 2.08×10−3 6.81×10−8 2.95×10−4 1.73×10−5 3.12×10−4 Zn 5.55×10−6 2.40×10−2 1.02×10−3 2.51×10−2 2.25×10−7 9.75×10−4 7.37×10−5 1.05×10−3 6.80×10−8 2.95×10−4 2.23×10−5 3.17×10−4 As 2.72×10−5 4.82×10−2 1.43×10−2 6.26×10−2 6.90×10−6 1.23×10−2 6.47×10−3 1.87×10−2 1.72×10−6 3.05×10−3 1.61×10−3 4.66×10−3 Cd 1.42×10−6 6.16×10−3 1.53×10−3 7.68×10−3 1.95×10−7 8.45×10−4 3.72×10−4 1.22×10−3 2.15×10−8 9.33×10−5 1.23×10−3 1.33×10−3 Cr 1.99×10−3 8.23×10−2 4.08×10−2 1.25×10−1 1.43×10−4 5.92×10−3 5.21×10−3 1.13×10−2 4.17×10−5 1.72×10−3 1.51×10−3 3.28×10−3 Ni 5.92×10−6 2.56×10−2 1.04×10−4 2.57×10−2 1.15×10−6 4.96×10−3 3.57×10−5 5.00×10−3 4.82×10−8 2.09×10−4 1.50×10−6 2.10×10−4 ΣHI 2.55×10−3 2.46 7.36×10−2 2.54 1.55×10−4 3.87×10−2 1.24×10−2 5.12×10−2 4.44×10−5 9.01×10−3 4.44×10−3 1.35×10−2 表 6 灰尘样品中重金属致癌风险指数(CR)
Table 6. Carcinogenic risk of heavy metals in indoor dust samples
重金属
MetalCJCJ BGS JS CRinhale CRingest CRdermal CRT CRinhale CRingest CRdermal CRT CRinhale CRingest CRdermal CRT As 7.16×10−10 3.10×10−6 4.61×10−6 7.71×10−6 1.82×10−10 7.88×10−7 2.08×10−6 2.87×10−6 4.52×10−11 1.96×10−7 5.17×10−7 7.13×10−7 Cd 1.30×10−9 5.37×10−6 5.32×10−8 5.42×10−6 5.20×10−10 7.36×10−7 1.30×10−8 7.50×10−7 1.38×10−10 8.13×10−8 1.43×10−9 8.29×10−8 Cr 3.42×10−7 1.76×10−5 6.99×10−6 2.50×10−5 1.37×10−7 1.27×10−6 8.93×10−7 2.30×10−6 7.15×10−9 3.69×10−7 2.60×10−7 6.35×10−7 Ni 1.46×10−8 6.34×10−5 6.28×10−7 6.40×10−5 5.85×10−9 1.23×10−5 2.16×10−7 1.25×10−5 1.19×10−10 5.16×10−7 9.08×10−9 5.25×10−7 ΣCR 3.59×10−7 8.95×10−5 1.23×10−5 1.02×10−4 1.43×10−7 1.51×10−5 3.20×10−6 1.84×10−5 7.45×10−9 1.16×10−6 7.87×10−7 1.96×10−6 -
[1] FORTI V, BALDE C P, KUEHR R, et al. The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential[M]. Bonn/Geneva/Rotterdam: United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR)-co-hosted SCYCLE Programme, International Telecommunication Union (ITU) and International Soild Waste Association (ISWA), 2020. [2] ZENG X L, GONG R Y, CHEN W Q, et al. Uncovering the recycling potential of “New” WEEE in China [J]. Environmental Science & Technology, 2016, 50(3): 1347-1358. [3] OUABO R E, ODUNDIRAN M B, SANGODOYIN A Y, et al. Ecological risk and human health implications of heavy metals contamination of surface soil in e-waste recycling sites in douala, cameroun [J]. Jounal of Health and Pollution, 2019, 9(21): 190310. doi: 10.5696/2156-9614-9.21.190310 [4] SONG Q B, LI J H. Environmental effects of heavy metals derived from the e-waste recycling activities in China: A systematic review [J]. Waste Management (New York ), 2014, 34(12): 2587-2594. doi: 10.1016/j.wasman.2014.08.012 [5] SONG Q B, LI J H. A systematic review of the human body burden of e-waste exposure in China [J]. Environmental International, 2014, 68(7): 82-93. [6] SONG Q B, LI J H. A review on human health consequences of metals exposure to e-waste in China [J]. Environmental Pollution, 2015, 196(1): 450-461. [7] 杜曼曼, 丁庆玲, 王倩, 等. 宜兴市典型道路灰尘(<150 μm)组分中重金属污染特征及风险评价[J]. 环境化学, 2020, 39(6): 1689-1698. DU M M, DING Q L, WANG Q, et al. Characteristics and risk assessment of heavy metal pollution in typical road dust(<150 μm) components in Yixing City. Environmental Chemistry, 2020, 39(6): 1689-1698.
[8] 刘非凡, 白建峰, 顾卫华, 等. 烟曲霉f4对黑麦草修复电子废物拆解场地土壤重金属的影响 [J]. 环境工程学报, 2020, 14(7): 1886-1893. doi: 10.12030/j.cjee.201912062 LIU F F, BAI J F, GU W H, et al. Effects of aspergillus fumigatus F4 on heavy metals in soil of ryegrass remediation site of electronic waste dismantling site [J]. Journal of Environmental Engineering, 2020, 14(7): 1886-1893(in Chinese). doi: 10.12030/j.cjee.201912062
[9] MULLER G. Index of Geoaccumulation in Sediments of the Rhine River [J]. GeoJournal, 1969, 2(3): 109-118. [10] KHADEMI H, GABARRON M, ABBASPPUR A, et al. Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil [J]. Chemosphere, 2019, 217: 695-705. doi: 10.1016/j.chemosphere.2018.11.045 [11] MAURIZIO B. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil Contamination [J]. Geology & Geophysics, 2016, 5(1): 1-4. [12] 赵一先. 环境影响评价中选取上海地区土壤重金属含量背景值的合理范围[J]. 科技创新与应用, 2016, 155(7): 158-158. ZHAO Y X. A reasonable range for selecting background value of heavy metal content in Soil in Shanghai area in environmental impact assessment [J]. Science Technology Innovation and Application, 2016, 155(7): 158-158(in hinese).
[13] WILSON M, SURENDRA P, SHANEEL C, et al. First assessment of metals contamination in road dust and roadside soil of Suva City, Fiji [J]. Archives of Environmental Contamination and Toxicology, 2019, 77(2): 249-262. doi: 10.1007/s00244-019-00635-8 [14] AYENUDDIN M, ABUSAYED M J, FERDOUSHI Z, et al. Carcinogenic and non-carcinogenic human health risk from exposure to heavy metals in surface water of Padma River [J]. Research Journal of Environmental Toxicology, 2018, 12(1): 18-23. doi: 10.3923/rjet.2018.18.23 [15] USEPA. Exposure Factors Handbook[R]. EPA/600/P-95/002Fa. Washington, DC: Environmental Protection Agency, Office of Research Development, 1997. [16] 赵秀阁, 段小丽. 中国人群暴露参数手册, 成人卷[M]. 北京: 中国环境出版社, 2013. ZHAO X G, DUAN X L. Manual of exposure parameters for Chinese population, Adults[M]. Beijing: China Environmental Science Press, 2013 (in Chinese).
[17] FANG W X, YANG Y C, XU Z M. PM10 and PM2.5 and health risk assessment for heavy metals in a typical factory for cathode ray tube television recycling [J]. Environmental Science & Technology, 2013, 47(21): 12469-12476. [18] LU X W, ZHANG X L, LI L Y, et al. Assessment of metals pollution and health risk in dust from nursery schools in Xi'an, China [J]. Environmental Reserach, 2014, 128(1): 27-34. [19] YEKEEN T A, XU X J, ZHANG Y L, et al. Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China [J]. Environmental Science & Pollution Research, 2016, 23(17): 17511-17524. [20] TAN S Y, PRAVEENA S M, ABIDIN E Z, et al. A review of heavy metals in indoor dust and its human health-risk implications [J]. Reviews on Environmental Health, 2016, 31(4): 447-456. [21] 吴志远, 张丽娜, 夏天翔, 等. 基于土壤重金属及PAHs来源的人体健康风险定量评价∶以北京某工业污染场地为例 [J]. 环境科学, 2020, 41(9): 4180-4196. WU Z Y, ZHANG L N, XIA T X, et al. Quantitative assessment of human health risks based on soil heavy metals and PAHs sources: take a polluted industrial site of Beijing as an example [J]. Environmental Science, 2020, 41(9): 4180-4196(in Chinese).
[22] LEUNG A O W, DUZGOREN-AYDIN N S, CHEUNG K C, et al. Heavy metals concentrations of Surface dust from e-waste recycling and its human health implications in southeast China [J]. Environmental Science & Technology, 2008, 42(7): 2674-2680. [23] WU Y, LI Y, KANG D, et al. Tetrabromobisphenol A and heavy metal exposure via dust ingestion in an e-waste recycling region in Southeast China [J]. Science of the Total Environment, 2016, 541: 356-364. doi: 10.1016/j.scitotenv.2015.09.038 [24] DENG J J, GUO J, ZHOU X Y, et al. Hazardous substances in indoor dust emitted from waste TV recycling facility [J]. Environmental Science and Pollution Research, 2014, 21(12): 7656-7667. doi: 10.1007/s11356-014-2662-9 [25] OECD. Technical guidance for the environmentally sound management of specific waste streams: Used and scrap personal computers[R]. Paris: Organisation for Economic Cooperation and Development, 2003. [26] VERSTRAETEN S V, AIMO L, OTEIZA P I. Aluminium and lead: Molecular mechanisms of brain toxicity [J]. Archives of Toxicology, 2008, 82(11): 789-802. doi: 10.1007/s00204-008-0345-3 [27] 李晓燕, 汪浪, 张舒婷. 城市室内灰尘重金属水平、影响因素及健康风险: 以贵阳市为例[J]. 环境科学, 2016, 37(8): 2889-2896. LI X Y, WANG L, ZHANG S T. Heavy metal levels, influencing factors and health risks in urban indoor dust: A case study of Guiyang[J], Environmental Sciences, 2016, 37(8): 2889-2896.
[28] 曹治国, 余刚, 吕香英, 等. 北京市典型室内外灰尘中重金属的粒径和季节变异特征及人体暴露评估 [J]. 环境科学, 2016, 37(4): 1272-1278. CAO Z G, YU G, LU X Y, et al. The characteristics of particle size and seasonal variation of heavy metals in typical indoor and outdoor dust in Beijing and the evaluation of human exposure [J]. Environmental Sciences, 2016, 37(4): 1272-1278(in Chinese).
[29] 蔡云梅, 黄涵书, 任露陆, 等. 珠三角某高校室内灰尘重金属含量水平、来源及其健康风险评价 [J]. 环境科学, 2017, 38(9): 3620-3627. CAI Y M, HUANG H S, REN L L, et al. The level, source and health risk assessment of heavy metal content in indoor dust of a university in The Pearl River Delta [J]. Environmental Sciences, 2017, 38(9): 3620-3627(in Chinese).
[30] 白建峰, 李洋, 王鹏程, 等. 新建电子废弃物拆解厂附近土壤重金属污染评价及其来源分析 [J]. 安全与环境学报, 2016, 16(1): 333-336. BAI J F, LI Y, WANG P C, et al. Evaluation and source analysis of soil heavy metal pollution near the newly-built e-waste dismantling plant [J]. Journal of Safety and Environment, 2016, 16(1): 333-336(in Chinese).
[31] TZORAKI O, ZKERI E, LASITHIOTAKIS M, et al. Trace metals' contamination in water and soils in the vicinity of a small–medium waste electrical and electronic equipment recycling plant [J]. Environmental Progress & Sustainable Energy, 2020, 39(3): e13343. [32] 王芳, 王娟, 韩苗苗, 等. 大学校园室内PM2.5重金属污染特征及其健康风险评价 [J]. 东南大学学报(自然科学版), 2018, 48(5): 955-960. doi: 10.3969/j.issn.1001-0505.2018.05.026 WANG F, WANG J, HAN M M, et al. Characteristics of indoor PM2.5 heavy metal pollution and its health risk assessment in university campus [J]. Journal of Southeast University (Natural Science edition), 2018, 48(5): 955-960(in Chinese). doi: 10.3969/j.issn.1001-0505.2018.05.026
[33] XU F, LIU Y C, WANG J X, et al. Characterization of heavy metals and brominated flame retardants in the indoor and outdoor dust of e-waste workshops: Implication for on-site human exposure [J]. Environmental Science & Pollution Research International, 2015, 22(7): 5469-5680. [34] PRAGG C, MOHAMMED F K. Distribution and health risk assessment of heavy metals in road dust from an industrial estate in Trinidad, West Indies [J]. International Journal of Environmental Health Reserach, 2020, 30(3): 336-343. doi: 10.1080/09603123.2019.1609657 [35] XUE M Q, YANG Y C, RUAN J J, et al. Assessment of noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line for recycling waste printed circuit boards [J]. Environmental Science & Technology, 2012, 46(1): 494-499. [36] 曹红梅, 赵留元, 穆熙, 等. 西北某电子垃圾拆解厂室内外重金属污染特征及暴露风险 [J]. 环境科学, 2019, 40(3): 1101-1110. CAO H M, ZHAO L Y, MU X, et al. Pollution characteristics and occupational exposure risk of heavy metals in indoor and outdoor ambient particles at a scaled electronic waste dismantling plant, Northwest China [J]. Environmental Science, 2019, 40(3): 1101-1110(in Chinese).