-
抗菌剂的长期滥用导致了细菌耐药性问题不断加剧,致使抗菌剂的抗菌效果降低,对人类的健康生存和长期发展造成潜在的威胁。如何缓解细菌耐药性成为了大多数研究者在治疗细菌感染和治理环境污染过程中的主要问题[1]。抗菌剂的联合治疗不仅可以增加抗菌剂的治疗效果,还可以防止和减少细菌耐药性[2]。因此,探索抗菌剂之间的联合作用效应,对提高抗菌剂的抗菌疗效并减少细菌耐药性问题具有重要意义。
常用的抗菌剂可分为无机抗菌剂和有机抗菌剂[3]。银系抗菌剂为不易产生耐药性的无机抗菌材料,具有抗菌广谱性、持久性、热稳定性好和安全性高等优势。硝酸银(AgNO3)和纳米银(AgNPs)作为两种常见的银系抗菌剂,被广泛应用于抗感染的伤口敷料、牙齿治疗、泌尿系统感染和慢性溃疡等临床治疗的多个方面[4]。如丁刚等[5]总结了硝酸银涂布治疗真菌性角膜炎的诊治经验,发现硝酸银涂布对于病变位于浅中基质层的真菌性角膜炎具有良好疗效,可缩短溃疡愈合时间,减少抗真菌药物的应用等。冯瑶等[6]研究纳米银在牙科根管应用中,发现纳米银与氢氧化钙联合作用于饥饿期的粪肠球菌生物膜呈现显著的抑菌效果。由此看出AgNO3和AgNPs在抗菌治疗中具有广泛的应用前景,可以表现出良好的抗菌效果。
有机抗菌剂通常是指以有机物为抗菌物质的抗菌剂。由于具有抗菌效果好、抗菌作用迅速等优点,有机抗菌剂被广泛应用于制造业、医疗以及水处理等多个行业[7]。抗生素是一种常见的有机抗菌剂,其主要包括β-内酰胺类、四环素类、氨基糖苷类、大环内酯类以及多肽类抗生素等,被广泛应用于农业、畜牧业和医疗卫生等多个领域,对防治感染性疾病起到重要的作用。表面活性剂是一类具有两亲性质的有机抗菌剂,通过与细菌生物膜蛋白质的强烈相互作用使细菌变性或失去功能,在医药、洗涤、农药等方面有着广泛的应用[8];唑啉类有机抗菌剂因其具有抗菌能力强、药效持久、对环境安全以及抗菌谱宽广等优良性能,在工业、农业、医药等行业中广泛使用[9]。基于有机抗菌剂广泛的应用前景,AgNO3和AgNPs和不同的有机抗菌剂联合会产生什么样的抗菌效果呢?是否可以从这些不同的有机抗菌剂中筛选出与AgNO3和AgNPs联合产生协同效应的抗菌剂,从而提高抗菌剂的联合抗菌效果呢?
近几年,对于银系抗菌剂与有机抗菌剂的联合研究报道逐渐增多。如Xu等[10]对AgNO3与抗生素万古霉素、利福平、庆大霉素和左氧氟沙星分别进行抗菌性能测试,发现其联合治疗的抗菌活性均得到了提高。Deng等[11]探讨了AgNPs分别与氨苄青霉素、青霉素、依诺沙星、卡那霉素、新霉素和四环素对耐多药菌伤寒沙门氏菌的联合抗菌作用,依诺沙星、卡那霉素、新霉素和四环素在与AgNPs联合时对沙门氏菌表现出协同作用,而氨苄西林和青霉素则没有。由此可以看出,银系抗菌剂和有机抗菌剂的联合抗菌治疗效果会由于有机抗菌剂的结构及单一作用机制的不同而不同。此外,当化合物之间以不同比例混合时会呈现不同的联合作用方式。如仇爱锋等[12]在研究克百威、镉和铜对费氏弧菌的联合毒性效应中,发现克百威和镉的二元混合体系在以毒性单位为1∶1和1∶2的混合下联合毒性作用部分呈现相加效应,而在2∶1混合时产生协同效应。因此,有必要开展银系抗菌剂与不同有机抗菌剂在不同毒性比混合下的联合效应研究,以进一步提高抗菌剂在细菌感染治疗中的抗菌效果,并为评估它们在进入环境后可能产生的联合暴露风险给予参考依据。
大肠杆菌是生物体内最常见的细菌之一,由于它具有分裂增殖能力强、发育周期短以及结构简单等特点,已作为一种重要的模式生物在现代生命科学研究领域起着重要的作用。因此,本文以大肠杆菌(Escherichia coli)为模式生物,通过联合毒性实验,测定AgNO3和AgNPs分别与抗生素、表面活性剂和唑啉类杀菌剂等有机抗菌剂的联合毒性效应,并对它们的联合毒性作用机制进行了初步的讨论,以期在未来为银系抗菌剂与有机抗菌剂联合用药以及环境联合暴露风险评价提供参考。
银系抗菌剂与有机抗菌剂对大肠杆菌的联合毒性效应
A study on the combined toxicities of silver antibacterial agents and organic antibacterial agents against Escherichia coli
-
摘要: 抗菌剂的长期滥用导致细菌耐药性问题不断加剧,这对人类的健康生存和长期发展构成巨大威胁。银系抗菌剂作为不易产生耐药性的无机抗菌材料,可以将其与有机抗菌剂联合使用以提高抗菌效果,从而达到减少抗菌剂滥用的目的。但由于有机抗菌剂的结构及单一作用机制不同,使得银系抗菌剂与其联合后会产生不同的抗菌效果,因此有必要研究银系抗菌剂与不同的有机抗菌剂的联合毒性效应。本文以大肠杆菌为模式生物,硝酸银(AgNO3)和纳米银(AgNPs)作为常见的银类抗菌剂,测定了AgNO3、AgNPs与8种有机抗菌剂(多肽类、表面活性剂类、糖肽类、β-内酰胺类、唑啉类、氨基糖苷类、四环素类和大环内酯类)在1∶1、1∶5和5∶1毒性比混合下的联合毒性。结果表明,AgNO3和AgNPs在单一毒性实验和混合毒性中主要通过释放Ag+来发挥其对大肠杆菌的毒性作用。此外,8种有机抗菌剂中仅有氨基糖苷类抗生素与银系抗菌剂在所有毒性比的联合作用下均呈现协同效应。为了进一步验证这一协同作用的普遍性,测定了AgNO3和AgNPs与另外5种氨基糖苷类抗生素在1∶1、1∶5和5∶1毒性比联合的毒性效应。结果显示AgNO3和AgNPs与大部分氨基糖苷类抗生素的联合毒性作用呈现协同效应。基于银系抗菌剂与氨基糖苷类抗生素的毒性作用机理,推测这两者的协同抗菌效应可能是由于银系抗菌剂作用的蛋白酶与氨基糖苷类抗生素作用的核糖体具有通路一致性,它们联合作用协同破坏了蛋白质合成与代谢的整个过程。本研究可以为今后抗菌剂的联合用药和探索更多的抗菌剂联合协同治疗方案提供参考和新思路,并为多种抗菌剂在环境中联合暴露的风险评价提供参考。Abstract: The abuse of antibiotics has caused increasingly serious bacterial resistance, which poses a great threat to human health and long-term development. Silver antimicrobial is a kind of inorganic antibacterial material and is not easy to induce drug resistance, which is suggested to be used together with organic antibacterial agents to improve the antibacterial effect and reduce the use of antibiotics. However, due to the different structures and single action mechanisms of organic antibacterial agents, their combined use with silver antimicrobials may trigger different antibacterial effects. Therefore, it is necessary to explore the combined toxic effects between silver antimicrobials and different organic antibacterial agents. In this paper, Escherichia coli (E.coli) was used as the model organism, while silver nitrate (AgNO3) and nano silver (AgNPs) were chosen as the test silver antimicrobials. The combined toxicity of 2 silver antimicrobials (AgNO3, and AgNPs) and 8 organic antibacterial agents (Polypeptide, Surfactant, β-lactam, Glycopeptide, Azoline fungicide, Tetracycline, Macrolide, Aminoglycoside) were determined as the toxicity ratios setting at 1∶1, 1∶5 and 5∶1. The results indicated that the toxic effects of AgNO3 and AgNPs in single and combined toxicity are mainly derived from the release of Ag+. Among the 8 organic antibacterial agents, only aminoglycoside exhibited synergistic effect with silver antimicrobials at all toxicity ratios. To further verify the universality of this synergism, the combined toxicity of silver antimicrobials and five other aminoglycosides were tested as the toxicity ratios setting at 1∶1, 1∶5 and 5∶1, which all showed the synergism in these mixtures. Based on the toxic mechanisms of silver antimicrobials and aminoglycoside, it was speculated that the synergistic effects of silver antimicrobials and aminoglycosides might result from that the target of silver antimicrobials (protease) and the target of aminoglycoside (ribosome) lie in the same signaling pathway, and thus their combined use synergistically destroyed the whole process of protein synthesis and metabolism. This study can provide a reference and new insights for the future combined use of antibacterial agents and the exploration of collaborative treatment programs among more antibacterial agents. Furthermore, this study may benefit the risk assessment for the combined exposure of antibacterial agents in the environment.
-
表 1 试剂的理化参数和单一毒性数据
Table 1. The physicochemical parameters and the single toxicity data of the reagents
类别
Class序号
No.名称及简称
Name and abbreviationCAS 结构式
Structural formula相对分子质量/ (g·mol−1)
Relative molecular
mass−lgEC50/
(mol·L−1)银系抗菌剂
Silver antibacterial agents1 硝酸银
AgNO37761-88-8 — 169.87 4.51 2 纳米银
AgNPs(5 nm)7440-22-4 — 107.87 4.78 多肽类抗生素
Polypeptide antibiotic3 硫酸多粘菌素B
Polymyxin B sulfate PMX1405-20-5 1301.56 6.59 表面活性剂
Surfactant4 十二烷基三甲溴化铵
Dodecyl trimethyl ammonium bromide DTAB1119-94-4 308.34 3.88 β-内酰胺类抗生素
β-lactam antibiotic5 青霉素V钾
Phenoxymethylpenicillin potassium PVP132-98-9 388.48 3.74 糖肽类抗生素
Glycopeptide antibiotic6 盐酸万古霉素
Vancomycin hydrochloride VA1404-93-9 1485.71 3.95 唑啉类杀菌剂
Azoline fungicide7 甲基异噻唑啉酮
Methylisothiazolinone MIT2682-20-4 115.15 4.60 四环素类抗生素
Tetracycline antibiotic8 盐酸四环素
Tetracycline hydrochloride TC64-75-5 480.90 6.25 大环内酯类抗生素
Macrolide antibiotic9 红霉素
Erythromycin ERY114-07-8 733.93 4.86 氨基糖苷类抗生素
Aminoglycoside antibiotics10 硫酸庆大霉素
Gentamycin sulfate GEN1405-41-0 1506.80 6.26 11 硫酸链霉素
Streptomycin sulfate STR3810-74-0 1457.38 5.94 12 硫酸新霉素
Neomycin sulfate NEO1405-10-3 712.72 6.25 13 妥布霉素
Tobramycin TM32986-56-4 467.51 6.36 氨基糖苷类抗生素
Aminoglycoside antibiotics14 硫酸卡那霉素
Kanamycin sulfate KAN70560-51-9 582.58 5.71 15 异帕米星
Isepamicin ISE58152-03-7 569.60 5.93 表 2 硝酸银、纳米银分别和抗菌剂的二元联合毒性数据
Table 2. Data on the combined toxicity of AgNO3, AgNPs with antibacterial agents respectively
分类 B A∶B A∶AgNO3 A∶AgNPs(5 nm) −lgEC50
mixTU 联合效应 −lgEC50
mixTU 联合效应 多肽类抗生素 PMX 1∶1 4.81 0.99 相加 4.99 1.21 拮抗 1∶5 5.30 0.93 相加 5.47 1.13 相加 多肽类抗生素 PMX 5∶1 4.56 1.06 相加 4.80 1.13 相加 表面活性剂 DTAB 1∶1 4.19 0.80 相加 4.25 0.76 协同 1∶5 3.99 0.90 相加 3.99 0.91 相加 5∶1 4.40 0.83 相加 4.52 0.85 相加 β-内酰胺类抗生素 PVP 1∶1 3.90 1.17 相加 3.93 1.17 相加 1∶5 3.80 1.02 相加 3.84 0.94 相加 5∶1 4.27 0.96 相加 4.38 0.94 相加 糖肽类抗生素 VA 1∶1 4.26 0.76 协同 4.35 0.69 协同 1∶5 4.17 0.68 协同 4.18 0.68 协同 5∶1 4.44 0.82 相加 4.62 0.74 协同 唑啉类杀菌剂 MIT 1∶1 4.61 0.88 相加 4.68 1.01 相加 1∶5 4.56 1.05 相加 4.60 1.07 相加 5∶1 4.53 0.99 相加 4.78 0.93 相加 氨基糖苷类抗生素 GEN 1∶1 5.24 0.37 协同 5.44 0.42 协同 1∶5 5.49 0.58 协同 5.68 0.65 协同 5∶1 5.03 0.36 协同 5.14 0.52 协同 四环素类抗生素 TC 1∶1 4.86 0.88 相加 5.27 0.62 协同 1∶5 5.49 0.58 协同 5.82 0.47 协同 5∶1 4.61 0.94 相加 4.95 0.81 相加 大环内酯类抗生素 ERY 1∶1 4.77 0.76 协同 4.95 0.74 协同 1∶5 4.86 0.82 相加 5.15 0.50 协同 5∶1 4.54 1.02 相加 4.81 0.95 相加 表 3 硝酸银、纳米银分别和氨基糖苷类抗生素的联合毒性数据
Table 3. Data on the combined toxicity of AgNO3、AgNPs with aminoglycoside antibiotics respectively
B∶氨基糖苷类抗生素 A∶B
毒性比A∶AgNO3 A∶AgNPs(5 nm) −lgEC50
mixTU 联合效应 −lgEC50
mixTU 联合效应 STR 1∶1 5.36 0.27 协同 5.44 0.41 协同 1∶5 5.34 0.75 协同 5.55 0.75 协同 5∶1 5.14 0.28 协同 5.19 0.46 协同 NEO 1∶1 5.45 0.23 协同 5.55 0.33 协同 1∶5 5.48 0.60 协同 5.60 0.77 协同 5∶1 5.18 0.25 协同 5.42 0.27 协同 TM 1∶1 5.36 0.28 协同 5.67 0.25 协同 1∶5 5.54 0.52 协同 5.72 0.61 协同 5∶1 5.13 0.29 协同 5.67 0.16 协同 KAN 1∶1 5.35 0.28 协同 5.72 0.20 协同 1∶5 5.40 0.59 协同 5.55 0.64 协同 5∶1 5.18 0.25 协同 5.47 0.24 协同 ISE 1∶1 4.81 0.97 相加 5.16 0.78 协同 1∶5 5.08 1.37 拮抗 5.43 0.99 相加 5∶1 4.61 0.94 相加 4.88 0.93 相加 -
[1] NORDMANN P, NAAS T, FORTINEAU N, et al. Superbugs in the coming new decade; multidrug resistance and prospects for treatment of Staphylococcus aureus, Enterococcus spp. and Pseudomonas aeruginosa in 2010 [J]. Current Opinion in Microbiology, 2007, 10(5): 436-440. doi: 10.1016/j.mib.2007.07.004 [2] 陈志芳, 赵斌. 抗菌药物联合用药与单药治疗的对比及临床决策 [J]. 中华医院感染学杂志, 2010, 20(15): 2353-2355. CHEN Z F, ZHAO B. Comparison and clinical decision of antibiotic combination therapy and single drug therapy [J]. Chinese Journal of Nosocomiology, 2010, 20(15): 2353-2355(in Chinese).
[3] 常建国. 新型有机抗菌剂及抗菌高分子材料的合成、制备及表征[D]. 长春: 长春理工大学, 2016. CHANG J G. Synthesis, preparation and characterization of novel organic antimicrobial agents and antimicrobial polymeric materials[D], Changchun: Changchun University of Science and Technology, 2016 (in Chinese). .
[4] 刘艺楠, 孙昊宇, 沈洪艳, 等. 新型抗菌剂——群体感应抑制剂与传统抗菌剂对大肠杆菌的联合毒性效应 [J]. 环境化学, 2020, 39(4): 941-949. doi: 10.7524/j.issn.0254-6108.2019040104 LIU Y N, SUN H Y, SHEN H Y, et al. A study on the combined toxicities of a new antimicrobials-quorum sensing inhibitors and traditional antimicrobials against Escherichia coli [J]. Environmental Chemistry, 2020, 39(4): 941-949(in Chinese). doi: 10.7524/j.issn.0254-6108.2019040104
[5] 丁刚, 高芯, 位宁, 等. 硝酸银涂布治疗真菌性角膜炎的经验 [J]. 中华眼外伤职业眼病杂志, 2020, 42(8): 624-627. doi: 10.3760/cma.j.cn116022-20191210-00406 DING G, GAO X, WEI N, et al. Experience of local infriction of silver nitrate for the treatment of fungal keratitis [J]. Chinese Journal of Ocular Trauma and Occupational Eye Disease, 2020, 42(8): 624-627(in Chinese). doi: 10.3760/cma.j.cn116022-20191210-00406
[6] 冯瑶, 薛钢, 董波. 纳米银在牙科根管应用中对粪肠球菌抑制效果评价 [J]. 黑龙江医药科学, 2019, 42(2): 212-214. doi: 10.3969/j.issn.1008-0104.2019.02.102 FENG Y, XUE G, DONG B. Evaluation of the inhibitory effect of silver nanoparticles on enterococcus faecalis in dental root canal application [J]. Heilongjiang Medicine and Pharmacy, 2019, 42(2): 212-214(in Chinese). doi: 10.3969/j.issn.1008-0104.2019.02.102
[7] 刘利, 龙必强, 周亮, 等. 抗菌材料研究进展 [J]. 科技视界, 2017(7): 220. doi: 10.3969/j.issn.2095-2457.2017.07.173 LIU L, LONG B Q, ZHOU L, et al. Research progress of antibacterial materials [J]. Science Technology Vision, 2017(7): 220(in Chinese). doi: 10.3969/j.issn.2095-2457.2017.07.173
[8] 刘慧. 壳聚糖及其表面活性剂复合物的抗菌性与抗菌机理的研究[D]. 武汉: 武汉大学, 2004. LIU H. Antimicrobial activity and mechanism of chitosan and its combinations with surfactants[D]. Wuhan : Wuhan University, 2004 (in Chinese).
[9] 付旭锋, 李圆圆, 苏红巧, 等. 异噻唑啉酮类杀菌剂对黑斑蛙胚胎和蝌蚪的急性毒性 [J]. 生态毒理学报, 2014, 9(6): 1097-1103. FU X F, LI Y Y, SU H Q, et al. Acute toxicity of isothiazolinone biocides to pelophylax nigromaculatus embryos and tadpoles [J]. Asian Journal of Ecotoxicology, 2014, 9(6): 1097-1103(in Chinese).
[10] XU N, CHENG H, XU J W, et al. Silver-loaded nanotubular structures enhanced bactericidal efficiency of antibiotics with synergistic effect in vitro and in vivo[J]. Int J Nanomedicine, 2017, 12: 731-743. [11] DENG H, MCSHAN D, ZHANG Y, et al. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics [J]. Environmental Science & Technology, 2016, 50(16): 8840-8848. [12] 仇爱锋, 王玉涛, 张树秋, 等. 克百威、镉和铜对费氏弧菌的联合毒性效应[J]. 农业环境科学学报, 2017, 36(5): 869-875. QIU AI F, WANG Y T, ZHANG S Q, et al. Joint toxic effects of carbofuran, Cd and Cu to Vibrio fischeri[J]. Journal of Agro-Environment Science, 2017, 36(5): 869-875 (Chinese).
[13] BRODERIUS S J, KAHL M D, HOGLUND M D. Use of joint toxic response to define the primary mode of toxic action for diverse industrial organic chemicals [J]. Environmental Toxicology & Chemistry, 1995, 14(9): 1591-1605. [14] SLAWSON R M, LEE H, TREVORS J T. Bacterial interactions with silve [J]. Biology of Metals, 1990, 3(3-4): 151-154. doi: 10.1007/BF01140573 [15] JUNG W K, KOO H C, KIM K W, et al. Antibacterial activity and mechanism of action of the silver ion in staphylococcus aureus and escherichia coli [J]. Applied and Environmental Microbiology, 2008, 74(7): 2171-2178. doi: 10.1128/AEM.02001-07 [16] MCSHAN D, RAY P C, YU H. Molecular toxicity mechanism of nanosilver [J]. Journal of Food and Drug Analysis, 2014, 22(1): 116-127. doi: 10.1016/j.jfda.2014.01.010 [17] VAZQUEZ-MUÑOZ R, BORREGO B, JUÁREZ-MORENO K, et al. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? [J]. Toxicology Letters, 2017, 276: 11-20. doi: 10.1016/j.toxlet.2017.05.007 [18] 赵清风, 陈介南, 张林, 等. AgNO3对大肠杆菌和金黄色葡萄球菌的抗菌作用及机制 [J]. 生物加工过程, 2011, 9(3): 52-56. doi: 10.3969/j.issn.1672-3678.2011.03.011 ZHAO Q F, CHEN J N, ZHANG L, et al. Antimicrobial activity and mechanism of silver nitrate on Escherichia coli and Staphylococcus aureus [J]. Chinese Journal of Bioprocess Engineering, 2011, 9(3): 52-56(in Chinese). doi: 10.3969/j.issn.1672-3678.2011.03.011
[19] VELKOV T, THOMPSON P E, NATION R L, et al. Structure−activity relationships of polymyxin antibiotics [J]. Journal of Medicinal Chemistry, 2010, 53(5): 1898-1916. doi: 10.1021/jm900999h [20] CLAUSELL A, GARCIA-SUBIRATS M, PUJOL M, et al. Gram-negative outer and inner membrane models: Insertion of cyclic cationic lipopeptides [J]. Journal of Physical Chemistry B, 2007, 111(3): 551-563. doi: 10.1021/jp064757+ [21] 刘珏玲, 杨伟峰, 王毅. 细菌生物膜与表面活性剂抗菌的研究进展 [J]. 中国病原生物学杂志, 2016, 11(9): 858-860. LIU J L, YANG W F, WANG Y. Advance in the study of biofilmsand and the effect of surfactants on biofilm removal [J]. Journal of Pathogen Biology, 2016, 11(9): 858-860(in Chinese).
[22] 于海军. β-内酰胺类抗生素作用机制及头孢菌素发展 [J]. 石家庄职业技术学院学报, 2009, 21(2): 12-16. doi: 10.3969/j.issn.1009-4873.2009.02.005 YU H J. The mechanism of β-lactam antibiotics and the development of cephalosporins [J]. Journal of Shijiazhuang Vocational Technology Institute, 2009, 21(2): 12-16(in Chinese). doi: 10.3969/j.issn.1009-4873.2009.02.005
[23] KING D T, SOBHANIFAR S, STRYNADKA N C J. The mechanisms of resistance to β-lactam antibiotics//GOTTE M, BERGHUIS A, MATLASHEWSKI G, et al. Handbook of Antimicrobial Resistance[M]. New York: Springer New York, 2014: 1-22. [24] 胡兴戎. 糖肽类抗生素的作用机制及肠球菌的糖肽耐药机制 [J]. 国外医药(抗生素分册), 2001(3): 116-121. HU X G. The mechanism of action of glycopeptide antibiotics and the mechanism of glycopeptide resistance in enterococcus [J]. World Notes on Antibiotics, 2001(3): 116-121(in Chinese).
[25] 丁晓京. 新型二甲基异噻唑啉酮MIT杀菌剂 [J]. 日用化学品科学, 2004(5): 40-41. doi: 10.3969/j.issn.1006-7264.2004.05.015 DING X J. A new fungicide of dimethyl isothiazolinone MIT [J]. Detergent & Cosmetics, 2004(5): 40-41(in Chinese). doi: 10.3969/j.issn.1006-7264.2004.05.015
[26] FOURMY D, YOSHIZAWA S, PUGLISI J D. Structural origins of gentamicin antibiotic action [J]. The EMBO Journal, 1998, 17(22): 6437-6448. doi: 10.1093/emboj/17.22.6437 [27] SCHNAPPINGER D, HILLEN W. Tetracyclines: Antibiotic action, uptake, and resistance mechanisms [J]. Archives of microbiology, 1996, 165(6): 359-369. doi: 10.1007/s002030050339 [28] CHOPRA I, HAWKEY P M, HINTON M. Tetracyclines, molecular and clinical aspects [J]. The Journal of Antimicrobial Chemotherapy, 1992, 29(3): 245-277. doi: 10.1093/jac/29.3.245 [29] CHAMPNEY W S, MILLER M. Inhibition of 50S ribosomal subunit assembly in haemophilus influenzae cells by azithromycin and erythromycin [J]. Current Microbiology, 2002, 44(6): 418-424. doi: 10.1007/s00284-001-0016-6 [30] 郭磊艳, 赵旦, 桂嘉烯, 等. 核糖体的组成、结构、功能和检测 [J]. 科技通报, 2020, 36(5): 1-12. GUO L Y, ZHAO D, GUI J X, et al. Composition, structure, function and detection of ribosome [J]. Bulletin of Science and Technology, 2020, 36(5): 1-12(in Chinese).
[31] HERISSE M, DUVERGER Y, MARTIN-VERSTRARTA I, et al. Silver potentiates aminoglycoside toxicity by enhancing their uptake [J]. Molecular Microbiology, 2017, 105(1): 115-126. doi: 10.1111/mmi.13687 [32] LUKACIK P, BARNARD T J, KELLER P W, et al. Structural engineering of a phage lysin that targets Gram-negative pathogens [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(25): 9857-9862. doi: 10.1073/pnas.1203472109 [33] 曾庆军. 抗生素在生态环境中的污染转归以及应对措施[J]. 湖南畜牧兽医, 2017(5): 49-52. ZENG Q J. The pollution and transformation of antibiotics in ecological environment and the response measures [J]. Hunan Journal of Animal Science & Veterinary Medicine, 2017(5): 49-52 (Chinese).
[34] 殷光权, 赵扬, 戴前梅. 我国水体中抗生素的污染现状、危害及防治建议[J]. 安徽卫生职业技术学院学报, 2017, 16(5): 6-8. YIN G Q, ZHAO Y, DAI Q M. Pollution Status, hazard and control suggestions of antibiotics in water of China (Summary) [J]. Journal of Anhui Health Vocational & Technical College, 2017, 16(5): 6-8 (Chinese).