-
多溴联苯醚(polybrominated diphenyl ethers, PBDEs)在20世纪70年代以后被大量地用于化工、建材、纺织和电子电器等行业,从而成为全世界用量最大的溴系阻燃剂[1-2],其主要商业产品有五溴联苯醚、八溴联苯醚和十溴联苯醚,由于其毒性特征,PBDEs已被全球各个国家和地区部分限制使用[3-4]。2004年美国部分地区和欧盟全面禁止了五溴联苯醚、八溴联苯醚的生产和使用,2009年五溴联苯醚被纳入《关于持久性有机污染物的斯德哥尔摩公约》名单当中。对于十溴联苯醚,欧盟在2012年将其列为潜在的强持久性和高生物累积性物质,对限制其生产和使用,2017 年十溴联苯醚也被列入《斯德哥尔摩公约》[5]。中国从未生产和使用过八溴联苯醚,并于2007年全面禁止五溴联苯醚的生产和使用,直到2018年,我国对十溴联苯醚的生产和使用加以限制[6]。随着PBDEs被限制和禁用,新型溴代阻燃剂(novel brominated flame retardants, NBFRs)作为替代品进入市场并陆续投入使用。全球21种NBFRs 的产量估计约为每年180000吨[7]。有研究表明,NBFRs同PBDEs一样会从阻燃产品中释放,并且会通过填埋、倾倒、焚烧和回收处理等过程释放[8],现有研究在大气、水、沉积物和生物体等环境介质中均监测到NBFRs的存在。此外NBFRs已经被证实具有直接的神经毒性和神经内分泌系统的破坏作用,对神经行为和生殖发育有不良影响[8]。目前各个国家对NBFRs生产使用并未做出限制,但是人们非常关注这些化学品可能引起的环境和人类健康问题[10]。
由于上述污染物广泛存在并对人类和环境健康构成威胁,其浓度水平在人体组织中的时间变化趋势逐渐成为人们的关注重点。已有大量研究分析了不同国家和地区人体组织中PBDEs浓度的时间趋势[2, 11-17],但是并未得出统一结论。大部分研究表明,由于各个国家已禁止生产和使用商业多溴联苯醚,PBDEs在人体组织内的浓度一直在下降[11-13]。不过有研究学者提出,尽管政府对PBDEs采取了有效的监管行动已经成功地导致某些PBDEs同族体的暴露量下降,但是PBDEs暴露的相对稳定性则表明,人类对这类传统污染物的暴露可能仍然会保持在某一个较高浓度并持续数十年[2, 11- 12]。除以上观点外,也有研究学者发现人体血清中PBDEs的浓度正在增加[16-18]。目前关于人体组织中NBFRs浓度的时间变化研究还比较少,Ma等[10]分析了2011—2015年我国潍坊市人群血清中NBFRs浓度水平,结果显示PBBz(pentabromobenzene)和PBT(pentabromotoluene)均没有明显的变化趋势。中国始终未禁用十溴联苯醚和新型溴代阻燃剂,因此本研究选择我国主要的溴系阻燃剂重要生产基地山东省潍坊市滨海经济技术开发区作为研究区域[19-20],研究当地人体血清中PBDEs和NBFRs(PBBz、PBT、HBB(hexabromobenzene)、pTBX(2,3,5,6-tetrabromo-p-xylene)、PBEB(pentabromoethylbenzene)、TBPH(di(2-ethylhexyl)tetrabromophthalate)和PBBA(pentabormobenzyl acrylate))近十年来的水平和分布的时间变化趋势,以揭示人体PBDEs和NBFRs的暴露风险。
潍坊市滨海开发区人群血清中溴代阻燃剂浓度水平的时间变化趋势
Temporal trends of concentration of brominated flame retardants in serum of population in Binhai Development District of Weifang City
-
摘要: 本研究以溴系阻燃剂生产源区潍坊市滨海开发区作为研究区域,对潍坊市人群血清中PBDEs和NBFRs的浓度水平分布及时间变化趋势进行了分析。潍坊市人群血清样本中的PBDEs浓度(100.52—795.62 ng·g−1 lw(lipid weight,脂重),2016年;85.55—913.12 ng·g−1 lw,2017年)比NBFRs的浓度(0.43—2.37 ng·g−1 lw,2016年;1.36 — 2.28 ng·g−1 lw,2017年)高出1—3个数量级,表明PBDEs仍为当地主要的溴系阻燃剂污染物。8种PBDEs同族体中,BDE-209的浓度(94.45—769.19 ng·g−1 lw,2016年;76.02—900.63 ng·g−1 lw,2017年)最高,这可能是因为十溴联苯醚产品仍在当地生产和使用,且BDE-209作为十溴联苯醚产品的主要成分被大量释放到环境中并被人体吸收。潍坊市滨海开发区人群血清中NBFRs的检出率较高,尤其是PBBz和PBT在2016年和2017年人群混合血清样本中的检出率达到100%,这表明NBFRs在人群体内普遍存在,应该引起关注。值得注意的是,潍坊市滨海开发区人群血清中PBDEs浓度在2007—2015年下降后,2015—2017年间却出现了反弹上升的趋势,而且HBB和PBEB在2014—2017年也呈现出上升的趋势,说明当地人群暴露风险也在增加。Abstract: In this study, we analyzed the concentration distribution and temporal trend of PBDEs and NBFRs in serum of local residents from. Binhai Development district of Weifang City, which is the production area of brominated flame retardant. The concentrations of PBDEs (100.52—795.62 ng·g−1 lw, 2016; 85.55—913.12 ng·g−1 lw, 2017) in serum of loacal residents were 1—3 orders of magnitude higher than that of NBFRs (0.43—2.37 ng·g−1 lw, 2016; 1.36—2.28 ng·g−1 lw, 2017), indicating that PBDEs was still the main brominated flame retardant pollutants. BDE-209 showed the highest concentration (94.45— 69.19 ng·g−1 lw, 2016; 76.02—900.63 ng·g−1 lw, 2017), which may be due to the fact that decabromodiphenyl ether products was still produced and used locally, and BDE-209 as the main component of decabromodiphenyl ether products, was released into the environment in large quantities and absorbed by the human body. The detection rate of NBFRs in the serum was relatively high, especially, the detection rate of PBBz and PBT in the mixed serum in 2016 and 2017 reached 100%, which indicated that NBFRs existed widely in local residents and should be paid attention to. It should be noted that the concentrations of PBDEs in the serum of local residents decreased from 2007 to 2015, but rebounded and increased from 2015 to 2017, and HBB and PBEB also showed an increasing trend from 2014 to 2017, indicating that the health exposure risk of local population was also increasing.
-
Key words:
- human serum /
- brominated flame retardant /
- Temporal trends
-
表 1 潍坊市滨海开发区人群血清样本基本信息
Table 1. Basic information of serum samples of population in Binhai Development district, Weifang City
年份
Year年龄段
Age range平均年龄 Mean age 志愿者数量 Number of volunteers 男性 女性 男性 女性 2016 20—29 26 26 10 47 30—39 36 36 9 60 40—49 43 45 8 47 50—59 53 55 11 12 ≥60 68 67 25 27 总计 63 193 2017 20—29 26 25 28 54 30—39 34 34 43 77 40—49 44 44 80 66 50—59 54 54 40 27 ≥60 73 72 40 40 总计 231 264 表 2 2007—2017年山东省潍坊市滨海经济技术开发区人群混合血清样本中PBDEs和NBFRs的浓度水平(单位:ng·g−1 lw)
Table 2. Concentrations of PBDEs and NBFRs in mixed serum samples of the population in Binhai Development district, Weifang City from 2007 to 2017 (ng·g−1 lw)
2007年[19] 2011年[20] 2013年[25] 2014年[10] 2015年[10] 2016年 2017年 PBDE 范围
Range均值
Mean范围
Range均值
Mean范围
Range均值
Mean范围
Range均值
Mean范围
Range均值
Mean范围
Range均值
Mean范围
Range均值
MeanBDE-28 23.40—
45.9029.24 1.67—
6.894.07 1.30—
14.884.51 N.D.–
1.060.38 N.D.—
1.150.31 0.27—
1.210.72 0.37—
1.851.06 BDE-47 17.20—
33.9021.34 0.79—
2.001.47 N.D.—
7.073.02 N.D.—
0.200.05 N.D.—
1.600.19 N.D.—
0.500.26 0.64—
0.970.79 BDE-99 18.70—
37.2023.30 1.82—
3.202.23 2.42—
13.745.63 N.D.—
1.550.73 0.64–
2.661.41 0.73—
2.761.19 1.29–
2.221.71 BDE-100 11.90—
23.6014.74 0.94—
1.211.08 N.D.—
5.132.48 N.D.–
0.210.04 N.D.—
1.460.23 N.D.—
0.770.33 0.57—
1.180.92 BDE-153 25.70—
51.5032.64 3.91—
25.8111.23 2.13—
9.786.09 0.47—
3.791.33 0.47—
7.753.04 1.04—
16.664.81 1.91—
6.174.41 BDE-154 33.70—
67.0041.73 0.28—
0.720.51 N.D.—
1.300.26 N.D. N.D. N.D.—
0.380.05 N.D. N.D. 0.38—
1.130.77 BDE-183 37.60—
74.5046.77 1.38—
8.862.87 N.D.—
6.983.24 N.D. N.D. N.D.—
4.450.69 N.D.—
6.731.22 N.D.—
3.081.68 BDE-209 105.70—
1640.40440.04 62.03—
738.08219.98 30.83—
225.8191.31 22.71—
63.4738.50 3.33—
125.8725.72 94.45—
769.19216.23 76.02—
900.63361.67 a ∑7PBDE 168.20—
333.60209.76 13.45—
40.3823.46 13.54—
41.1525.24 0.80—
5.622.65 1.20—
15.585.91 2.48—
26.428.54 6.21—
14.2311.34 b ∑8PBDE 304.20—
1827.70649.80 79.73—
778.46243.44 44.37—
256.52116.55 24.88—
65.9641.15 8.68–
128.9831.64 100.52—
795.62224.77 85.55—
913.12373.01 PBBz c— c— 1.10—
21.004.90 3.50—
10.006.30 1.27—
2.171.57 1.88—
3.212.26 0.23—
0.780.38 0.21—
0.410.29 PBT c— c— 0.89—
2.301.40 2.00—
5.703.80 0.50—
0.770.62 0.84—
1.391.05 0.20—
0.970.44 0.28—
0.640.42 PBEB c— c— c/ c— 0.70—
4.302.00 N.D. N.D. N.D. N.D. N.D. N.D. 0.11—
0.300.20 HBB c— c— c— c— 0.40—
4.201.10 N.D.—
0.430.04 N.D. —
0.910.16 N.D.—
0.710.37 0.60—
1.310.90 a∑7PBDEs:除BDE-209外其余7种检测的PBDEs的浓度总和;a∑7PBDEs, The total concentrations of the other 7 PBDEs except for
BDE-209.
b∑8PBDEs:8种PBDEs的浓度总和;b∑8PBDEs, The total concentration of 8 PBDEs.
c/:代表所在年份未检测该种物质;c/, The substance was not detected in the same year.
N.D. :未检出. N.D. , Not detected. -
[1] 王亚韡, 蔡亚岐, 江桂斌. 斯德哥尔摩公约新增持久性有机污染物的一些研究进展 [J]. 中国科学:化学, 2010, 40(2): 99-123. WANG Y H, CAI Y Q, JIANG G B. Research progress of new persistent organic pollutants in Stockholm Convention [J]. Science China Chemistry, 2010, 40(2): 99-123(in Chinese).
[2] ZOTA A R, LINDERHOLM L, PARK J S, et al. Temporal comparison of PBDEs, OH-PBDEs, PCBs, and OH-PCBs in the serum of second trimester pregnant women recruited from San Francisco General Hospital, California [J]. Environmental Science & Technology, 2013, 47(20): 11776-11184. [3] United Nations Environment Programme-Stockholm convention [BJ/OL]. Available at: http://www.pops.int/. [4] 《关于持久性有机污染物的斯德哥尔摩公约》修正案 [BJ/OL]. Available at: http://www.china-pops.org/gyjc/gyjs/201010/t20101028_14678.htm. Amendments to the Stockholm Convention on persistent organic pollutants. [BJ/OL]. Available at: http://www.china-pops.org/gyjc/gyjs/201010/t20101028_14678.htm(in Chinese).
[5] AZNAR-ALEMANY, òSCAR, YANG X, et al. Preliminary study of long-range transport of halogenated flame retardants using Antarctic marine mammals [J]. Science of the Total Environment, 2018, 650: 1889-1897. [6] BOER J, STAPLETON H M. Toward fire safety without chemical risk. [J]. Science, 2019, 364(6437): 231-232. doi: 10.1126/science.aax2054 [7] ZUIDERVEEN E A R, SLOOTWEG J C, BOER J D. Novel brominated flame retardants - A review of their occurrence in indoor air, dust, consumer goods and food [J]. Chemosphere, 2020, 255: 126816. doi: 10.1016/j.chemosphere.2020.126816 [8] MCGRATH T J, BALL A S, CLARKE B O. Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles [J]. Environmental Pollution, 2017, 230: 741-757. doi: 10.1016/j.envpol.2017.07.009 [9] DONG L Y, WANG S T, QU J Z, et al. New understanding of novel brominated flame retardants (NBFRs): Neuro(endocrine) toxicity [J]. Ecotoxicology and Environmental Safety, 2021,208: 111570. doi: 10.1016/j.ecoenv.2020.111570 [10] MA Y L, LI P, JIN J, et al. Current halogenated flame retardant concentrations in serum from residents of Shandong Province, China, and temporal changes in the concentrations [J]. Environmental Research, 2017, 155: 116-122. doi: 10.1016/j.envres.2017.02.010 [11] KIM J, SON M H, SHIN E S, et al. Occurrence of dechlorane compounds and polybrominated diphenyl ethers (PBDEs) in the Korean general population [J]. Environmental Pollution, 2016, 212: 330-336. doi: 10.1016/j.envpol.2016.01.085 [12] KIM J, KANG J H, CHOI S D, et al. Levels of polybrominated diphenyl ethers in the Korean metropolitan population are declining: A trend from 2001 to 2013 [J]. Environmental Toxicology and Chemistry, 2018, 37(9): 2323-2330. doi: 10.1002/etc.4222 [13] 董梦洁, 李兴红. 我国典型电子垃圾循环地区人体血清中多溴联苯醚浓度与特征的时间变化趋势 [J]. 环境化学, 2020, 39(6): 1504-1512. doi: 10.7524/j.issn.0254-6108.2019041801 DONG M J, LI X H. Temporal changes in the profiles and concentrations of polybrominated diphenyl ethers in human serum collected from a typical e-waste recycling area in China [J]. Environmental Chemistry, 2020, 39(6): 1504-1512(in Chinese). doi: 10.7524/j.issn.0254-6108.2019041801
[14] HARRAD S, DIAMOND M. New Directions: Exposure to polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs): Current and future scenarios [J]. Atmospheric Environment, 2006, 40(6): 1187-1188. doi: 10.1016/j.atmosenv.2005.10.006 [15] PARRY E, ZOTA A R, PARK J S, et al. Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs): A six-year temporal trend in Northern California pregnant women [J]. Chemosphere, 2018, 195: 777-783. doi: 10.1016/j.chemosphere.2017.12.065 [16] HURLEY S, GOLDBERG D, NELSON D O, et al. Temporal Evaluation of Polybrominated Diphenyl Ether (PBDE) Serum Levels in Middle-Aged and Older California Women, 2011-2015 [J]. Environmental Science & Technology, 2017, 51(8): 4697-4704. [17] SCHECTER A, COLACINO J, SJODIN A, et al. Partitioning of polybrominated diphenyl ethers (PBDEs) in serum and milk from the same mothers [J]. Chemosphere, 2010, 78(10): 1279-1284. doi: 10.1016/j.chemosphere.2009.12.016 [18] SJODIN A, JONES R S, CAUDILL S P, et al. Polybrominated diphenyl ethers, polychlorinated biphenyls, and persistent pesticides in serum from the national health and nutrition examination survey: 2003—2008 [J]. Environmental Science & Technology, 2014, 48(1): 753-760. [19] LI Y, NIU S, HAI R, et al. Concentrations and distribution of polybrominated diphenyl ethers (PBDEs) in soils and plants from a Deca-BDE manufacturing factory in China [J]. Environmental Science and Pollution Research, 2014, 22(2): 1133-1143. [20] JIN J, WANG Y, YANG C, et al. Polybrominated diphenyl ethers in the serum and breast milk of the resident population from production area, China [J]. Environ International, 2009, 35(7): 1048-1052. doi: 10.1016/j.envint.2009.05.006 [21] HE S J, LI M Y, JIN J, et al. Determination of new halogenated flame retardants in human serum by gel permeation chromatography-gas chromatography-mass spectrometry [J]. Chinese Journal of Analytical Chemistry, 2012, 40(10): 1519-1523. doi: 10.1016/S1872-2040(11)60578-1 [22] LIANG S, XU F, TANG W, et al. Brominated flame retardants in the hair and serum samples from an e-waste recycling area in southeastern China: the possibility of using hair for biomonitoring [J]. Environ Sci Pollut Res Int, 2016, 23(15): 14889-14897. doi: 10.1007/s11356-016-6491-x [23] THURESSON K, HOGLUND P, HAGMAR L, et al. Apparent half-lives of hepta- to decabrominated diphenyl ethers in human serum as determined in occupationally exposed workers [J]. Environ Health Perspect, 2006, 114(2): 176-181. doi: 10.1289/ehp.8350 [24] WANG Y, XU M, JIN J, et al. Concentrations and relationships between classes of persistent halogenated organic compounds in pooled human serum samples and air from Laizhou Bay, China [J]. Science of the Total Environment, 2014, 482: 276-282. [25] 林沐. 潍坊市和烟台市人群血清中持久性有机卤代化合物浓度及变化趋势研究[D]. 北京: 中央民族大学, 2019. LIN M. Study on the concentration and trend of persistent organic halogenated compounds in serum of people in Weifang and Yantai. [D]. Beijing: Minzu University of China, 2019(in Chinese).
[26] 李鹏. 典型地区普通人群血清中持久性有机阻燃剂的暴露水平及途径研究 [D]. 北京: 中央民族大学, 2016. LI P. Study on exposure level and route of persistent organic flame retardants in serum of general population in typical areas [D]. Beijing: Minzu University of China, 2016(in Chinese).
[27] BRAMWEL L, HARRAD S, ABDALLAH M A, et al. Predictors of human PBDE body burdens for a UK cohort [J]. Chemosphere, 2017, 189: 186-197. doi: 10.1016/j.chemosphere.2017.08.062 [28] KIERKEGAARD A, BALK L, TJARNLUND U, et al. Dietary uptake and biological effects of decabrodomiphenyl ether in rainbow trout. [J]. Environmental Science & Technology, 1999, 33(10): 1612-1612. [29] FENG C, XU Y, ZHA J, et al. Metabolic pathways of decabromodiphenyl ether (BDE209) in rainbow trout (Oncorhynchus mykiss) via intraperitoneal injection [J]. Environ Toxicol Pharmacol, 2015, 39(2): 536-544. doi: 10.1016/j.etap.2015.01.006 [30] CEQUIER E, MARCE R M, BECHER G, et al. Comparing human exposure to emerging and legacy flame retardants from the indoor environment and diet with concentrations measured in serum [J]. Environment International, 2015, 74: 54-59. doi: 10.1016/j.envint.2014.10.003 [31] GAO L, LI J, WU Y D, et al. Determination of novel brominated flame retardants and polybrominated diphenyl ethers in serum using gas chromatography-mass spectrometry with two simplified sample preparation procedures [J]. Analytical and Bioanalytical Chemistry, 2016, 408(27): 7835-7844. doi: 10.1007/s00216-016-9887-z [32] COVACI A, HARRAD S, ABDALLAH MAE, et al. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour [J]. Environment International, 2011, 37(2): 532-556. doi: 10.1016/j.envint.2010.11.007 [33] ARP H P, MOSKELAND T, ANDERSSON P L, et al. Presence and partitioning properties of the flame retardants pentabromotoluene, pentabromoethylbenzene and hexabromobenzene near suspected source zones in Norway [J]. J Environ Monit, 2011, 13(3): 505-513. doi: 10.1039/C0EM00258E [34] GRAMATICA P, CASSANI S, SANGION A. Are some "safer alternatives" hazardous as PBTs? The case study of new flame retardants [J]. Journal of Hazardous Materials, 2016, 306: 237-246. doi: 10.1016/j.jhazmat.2015.12.017