-
大气氮磷沉降是陆地和水体生态系统重要的营养来源. 在过去几十年,随着全球社会经济的快速发展,人类活动明显改变了氮磷的“地球−化学”循环,增加了大气中氮磷含量[1],导致大气沉降超过了生态系统的临界负荷,从而造成了水体富营养化、土壤酸化等一系列的负面生态效应[2]. 大气中活性氮主要来源于化石燃料燃烧和农业活动,磷主要来源于矿物尘、生物颗粒和燃烧源[3]. 大气沉降是氮磷等营养元素“地球−化学”循环的重要途经,分为干沉降和湿沉降. 干沉降以气态和颗粒态通过空气动力和自身重力迁移到地表的形式,湿沉降是通过雨、雪、雹等形式迁移到地表的过程[4]. 其中,湿沉降中营养元素多为水溶性,迁移到生态系统中可以被直接利用而备受关注[5].
关于营养盐湿沉降特征研究较多集中在沿海海域和内陆湖泊. Xing等[6]研究了胶州湾大气湿沉降中氨氮
$({{\rm{NH}}}_{4}^{+}-{\rm{N}})$ 、硝氮$({{\rm{NO}}}_{3}^{-}-{{\rm{N}}})$ 、亚硝氮$({{\rm{NO}}}_{2}^{-}-{{\rm{N}}})$ 、可溶性有机氮(DON)、可溶性无机磷(DIP)和有机磷(DOP)的沉降特征,结果表明胶州湾大气氮磷多来源于农业活动和土壤扬尘,突发暴雨的氮磷贡献将增加海域初级生产力,影响浮游植物群落结构. 黄河三角洲滨海湿地研究结果表明,随着氮沉降水平的增加,微生物α多样性显著降低,高浓度的氮沉降虽然会增加土壤中的养分,但会降低土壤微生物的多样性,对黄河滨海湿地系统造成负面影响[7]. 武汉东湖大气氮磷沉降占入湖总量的7.28%和4.41%,春季沉降量显著偏高[8]. 此外,在云南滇池[9]、洱海[10]和阳宗海[11],以及安徽巢湖也有相似的研究[12]. 这些研究为我国大气营养盐沉降提供了宝贵的理论基础和数据. 由于氮磷等营养盐大气沉降空间差异较大,许多敏感区域还缺乏相关数据.三峡库区地处长江上游,水库蓄水造成水流变缓,水体富营养化突出. 因此,探究三峡库区大气氮磷沉降规律、负荷及其影响对于区域水环境污染控制具有重要意义. 一些研究者曾在三峡典型区域开展了氮沉降研究工作[13-14],本团队也曾报道了三峡库区湿沉降沉降中无机氮的时空变化和来源[15-16],但这些研究均缺乏亚硝态氮和磷的沉降研究. 为完善区域在营养盐沉降上的不足,本研究于2017年1月—2017年12月在三峡库区腹地3个典型区域进行了湿沉降样品收集,测定了其中氮磷形态浓度(
${{\rm{NO}}}_{3}^{-}-{{\rm{N}}}$ 、${{\rm{NH}}}_{4}^{+}-{{\rm{N}}}$ 、${{\rm{NO}}}_{2}^{-}-{{\rm{N}}}$ 、DTN、DTP),探讨了湿沉降中各形态氮磷浓度和沉降通量特征,明确了其时空变化和来源.
三峡库区腹地大气氮磷营养盐湿沉降特征
Characteristics of atmospheric nitrogen and phosphorus in wet deposition in the hinterland of the Three Gorges Reservoir area
-
摘要: 为探明三峡库区大气营养盐湿沉降特征,在三峡库区腹地设置城区(万州)、郊区(晒经村)和农区(野塘溪)的3个功能区采样点,于2017年1月—12月同步采集湿沉降样品并测定氨氮(NH4+-N)、硝氮(NO3−-N)、亚硝氮(NO2−-N)、可溶性总氮(DTN)和可溶性总磷(DTP)的浓度,分析氮磷营养盐沉降的时空分布、组成特征及其影响因素. 三峡库区腹地大气湿沉降中DTN、DTP年均浓度分别为1.09 mg·L −1、3.36 μg·L−1,其中在DTN中NH4+-N占比最高(62.4%),NO2−-N最低(1.0%). 与国内其他研究区域相比,三峡库区腹地氮磷浓度均处于较低水平. 区域氮磷浓度均呈现冬季高、夏季低的趋势,且浓度水平均为城区>郊区>农区. 万州城区大气氮磷主要来源于化石燃料燃烧以及城市交通排放,郊区和农区则主要受生物质燃烧和施肥的影响. 三峡库区腹地DTN沉降通量为16.56 kg·hm −2·a −1,其季节分布特征基本为春、夏、秋三季相当,冬季最少;磷沉降通量为50 g·hm −2·a −1,表现为秋季最高,冬季最低. 四川盆地东部是三峡库区腹地氮磷营养盐的潜在源区之一.Abstract: In order to investigate the characteristics of atmospheric nutrients in wet deposition in the Three Gorges Reservoir area (TGRA), one-year precipitation samples (from January to December 2017) were collected simultaneously at three functional sampling sites, including urban area (Wanzhou), suburban area (Shaijingcun), and agricultural area (Yetangxi) in the hinterland of the TGRA, and their concentrations of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), nitrite nitrogen (NO2--N), dissolved total nitrogen (DTN), and dissolved total phosphorus (DTP) were determined. The spatiotemporal distribution, composition characteristics and influencing factors of regional nitrogen and phosphorus in wet deposition were analyzed as well. The average annual concentrations of DTN and DTP were 1.09 mg·L-1 and 3.36 μg·L-1, respectively. The concentration of NH4+-N accounted for the highest proportion of DTN (62.4%), while that of NO2--N was the lowest (1.0%). Compared with other regions in China, the concentration of nitrogen and phosphorus in the hinterland of the TGRA was at a relatively low level. Both nitrogen and phosphorus showed a temporal trend of higher levels in winter and lower levels in summer, and a spatial distribution from high to low levels of urban > suburban > agricultural areas. The atmospheric nitrogen and phosphorus were mainly from the combustion of fossil fuels and traffic emissions in urban area, whereas they were mainly affected by biomass combustion and fertilization in suburban and agricultural areas. The DTN flux of wet deposition was 16.56 kg·hm-2·a-1, of which the fluxes in spring, summer and autumn were comparable, while the lowest flux appeared in winter. The TDP flux was 50 g·hm-2·a-1, with the highest in autumn and the lowest in winter. The eastern part of the Sichuan Basin was one of the potential sources of both nitrogen and phosphorus in the hinterland of the TGRA.
-
表 1 湿沉降中氮磷浓度统计
Table 1. Statistics of nitrogen and phosphorus concentration in wet deposition
营养盐
Nutrients算术平均
Arithmetic mean加权平均
Weighted average标准差
Standard deviation变异系数
Coefficient of variation最小值
Minimum中位数
Median最大值
MaximumNO3−−N/(mg·L−1) 0.49 0.24 0.56 1.14 0.06 0.28 2.61 NH4+−N/(mg·L−1) 1.05 0.68 0.78 0.74 0.24 0.78 3.60 NO2−−N/(μg·L−1) 13.46 11.14 7.31 0.54 4.90 11.95 37.10 DON/(mg·L−1) 0.22 0.16 0.20 0.90 0.08 0.17 1.01 DTN/(mg·L−1) 1.78 1.09 1.51 0.85 0.55 1.24 7.25 DTP/(μg·L−1) 4.89 3.36 6.37 1.30 0.10 2.45 31.80 表 2 国内典型区域湿沉降氮磷浓度
Table 2. Wet deposition concentrations of nitrogen and phosphorus in typical regions in China
地点
Sites采样点类型
Type of sampling site监测时间Monitoring time /${{\rm{NO}}}_{3}^{-}-{{\rm{N}}}$
(mg·L−1) /${{\rm{NH}}}_{4}^{+}-{{\rm{N}}}$
(mg·L−1) /${{\rm{NO}}}_{2}^{-}-{{\rm{N}}}$
(μg·L−1)DON/
(mg·L−1)DTN/
(mg·L−1)DTP/
(μg·L−1)文献Reference 戴云山国家
自然保护区林区(保护区) 2015.3.27—
2015.10.090.24 0.44 — 0.31 0.99 — [20] 黑龙江凉水国家
自然保护区林区(保护区) 2015.5—2015.10 0.41 0.68 9.00 0.45 1.54 — [21] 滇池 水域 2014.1—2014.12 — — — 0.22 1.36 130.00 [9] 太湖 水域 2009.8—2010.7 — — — — 3.17 77.00 [22] 2017.8—2018.7 — — — — 3.16 56.00 大河口水库 水域 2014.3—2016.2 0.15 0.20 25.00 — 0.50 80.00 [23] 盐亭县 农区 2008—2013 1.05 1.48 — 0.02 2.55 [24] 秣陵县 农区 2010.3—2012.2 1.03 1.26 — — — 117.50 [25] 长沙县 农区 2010.9—2011.8 0.40 0.68 − 0.13 1.21 — [26] 南京郊区 郊区 2005.6—2006.5 2.77 1.74 210 5.36 10.08 — [27] 西宁近郊 郊区 2014.1—2015.12 1.8 2.2 — — — — [28] 杭嘉湖地区 城区 2013.9—2014.8 — — — — 2.60 20.00 [29] 林芝市 城区 2017.3—2017.10 0.13 0.22 — 0.39 0.74 108.80 [30] 三峡库区腹地 城区 2017.1—2017.12 0.26 0.76 13.80 0.19 1.22 3.50 本研究 郊区 2017.1—2017.12 0.26 0.66 12.20 0.14 1.07 3.30 农区 2017.1—2017.12 0.19 0.64 7.50 0.14 0.97 3.40 混合 2017.1—2017.12 0.24 0.68 11.14 0.16 1.09 3.36 表 3 轨迹中氮磷平均浓度
Table 3. Average concentrations of nitrogen and phosphorus in the clusters of trajectories
地点Sites Cluster 占比/%Percentage /(mg·L−1)${{\rm{NO}}}_{3}^{-}-{{\rm{N}}}$ /(mg·L−1)${{\rm{NH}}}_{4}^{+}-{{\rm{N}}}$ DON/(mg·L−1) DTP/(μg·L−1) 万州(WZ) 1 31.0 0.47 1.11 0.27 3.69 2 13.8 0.74 1.54 0.36 5.86 3 11.7 0.61 1.31 0.31 4.63 4 3.5 0.44 1.10 0.25 2.72 5 34.5 0.54 1.20 0.29 5.05 6 5.5 0.97 1.87 0.40 5.34 晒经村(SJC) 1 51.7 0.46 0.90 0.17 4.96 2 13.8 0.58 1.00 0.21 5.92 3 11.7 0.49 0.93 0.19 5.15 4 13.1 0.46 0.93 0.14 3.95 5 4.8 0.4 0.92 0.11 2.46 6 4.8 0.29 0.56 0.14 1.31 野塘溪(YTX) 1 26.9 0.35 0.89 0.16 3.62 2 13.8 0.36 0.91 0.15 4.04 3 11.7 0.34 0.88 0.15 3.63 4 3.5 0.72 1.56 0.15 1.42 5 38.6 0.35 0.97 0.17 5.94 6 5.5 0.38 1.03 0.18 6.85 -
[1] DECINA S M, TEMPLER P H, HUTYRA L R. Atmospheric inputs of nitrogen, carbon, and phosphorus across an urban area: Unaccounted fluxes and canopy influences [J]. Earth's Future, 2018, 6(2): 134-148. doi: 10.1002/2017EF000653 [2] BARON J S, DRISCOLL C T, STODDARD J L, et al. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes [J]. BioScience, 2011, 61(8): 602-613. doi: 10.1525/bio.2011.61.8.6 [3] MAHOWALD N, JICKELLS T D, BAKER A R, et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts [J]. Global Biogeochemical Cycles, 2008, 22(4): GB003240. doi: 10.1029/2008gb003240 [4] ZHANG L Y, TIAN M, PENG C, et al. Nitrogen wet deposition in the Three Gorges Reservoir area: Characteristics, fluxes, and contributions to the aquatic environment [J]. Science of the Total Environment, 2020, 738: 140309. doi: 10.1016/j.scitotenv.2020.140309 [5] DU E Z. A database of annual atmospheric acid and nutrient deposition to China's forests [J]. Scientific Data, 2018, 5: 180223. doi: 10.1038/sdata.2018.223 [6] XING J W, SONG J M, YUAN H M, et al. Fluxes, seasonal patterns and sources of various nutrient species (nitrogen, phosphorus and silicon) in atmospheric wet deposition and their ecological effects on Jiaozhou Bay, North China [J]. Science of the Total Environment, 2017, 576: 617-627. doi: 10.1016/j.scitotenv.2016.10.134 [7] 张智渊. 太湖大气湿沉降氮、磷营养盐特征及其对浮游植物的影响[D]. 北京: 中国环境科学研究院, 2018. ZHANG Z Y. Atmospheric wet deposition characteristics of nitrogen and phosphorus nutrients in Taihu lake and its influence on phytoplankton[D]. Beijing: Chinese Academy of Environmental Sciences, 2018(in Chinese).
[8] 彭秋桐, 李中强, 邓绪伟, 等. 城市湖泊氮磷沉降输入量及影响因子: 以武汉东湖为例 [J]. 环境科学学报, 2019, 39(8): 2635-2643. PENG Q T, LI Z Q, DENG X W, et al. Nitrogen and phosphorus deposition in urban lakes and its impact factors: A case study of East Lake in Wuhan [J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2635-2643(in Chinese).
[9] 任加国, 贾海斌, 焦立新, 等. 滇池大气沉降氮磷形态特征及其入湖负荷贡献 [J]. 环境科学, 2019, 40(2): 582-589. REN J G, JIA H B, JIAO L X, et al. The characteristics of atmospheric deposition of nitrogen and phosphorus in Dianchi Lake and its contribution to the lake load [J]. Environmental Science, 2019, 40(2): 582-589(in Chinese).
[10] 高蓉, 韩焕豪, 崔远来, 等. 降雨量对洱海流域稻季氮磷湿沉降通量及浓度的影响 [J]. 农业工程学报, 2018, 34(22): 191-198. doi: 10.11975/j.issn.1002−6819.2018.22.024 GAO R, HAN H H, CUI Y L, et al. Effects of rainfall on wet deposition flux and concentration of nitrogen and phosphorus in rice season in Erhai Lake Basin [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 191-198(in Chinese). doi: 10.11975/j.issn.1002−6819.2018.22.024
[11] 余功友, 杨常亮, 刘楷, 等. 云南阳宗海大气氮、磷沉降特征 [J]. 湖泊科学, 2017, 29(5): 1134-1142. doi: 10.18307/2017.0511 YU G Y, YANG C L, LIU K, et al. Atmospheric deposition of nitrogen and phosphorous in Lake Yangzonghai, Yunnan Province [J]. Journal of Lake Sciences, 2017, 29(5): 1134-1142(in Chinese). doi: 10.18307/2017.0511
[12] 魏东霞, 李璇, 赵禹恒, 等. 合肥科学岛大气氮磷沉降及对巢湖影响的分析 [J]. 合肥工业大学学报(自然科学版), 2018, 41(9): 1259-1266. WEI D X, LI X, ZHAO Y H, et al. Analyses of atmospheric nitrogen and phosphorus deposition at Hefei Science Island and its impact on Chaohu Lake [J]. Journal of Hefei University of Technology (Natural Science), 2018, 41(9): 1259-1266(in Chinese).
[13] 袁玲, 周鑫斌, 辜夕容, 等. 重庆典型地区大气湿沉降氮的时空变化 [J]. 生态学报, 2009, 29(11): 6095-6101. doi: 10.3321/j.issn:1000−0933.2009.11.042 YUAN L, ZHOU X B, GU X R, et al. Variation in wet deposition of nitrogen from atmosphere in typical areas of Chongqing [J]. Acta Ecologica Sinica, 2009, 29(11): 6095-6101(in Chinese). doi: 10.3321/j.issn:1000−0933.2009.11.042
[14] LIU L, ZHANG X Y, LU X H. The composition, seasonal variation, and potential sources of the atmospheric wet sulfur (S) and nitrogen (N) deposition in the southwest of China [J]. Environmental Science and Pollution Research, 2016, 23(7): 6363-6375. doi: 10.1007/s11356−015−5844−1 [15] LENG Q M, CUI J, ZHOU F W, et al. Wet-only deposition of atmospheric inorganic nitrogen and associated isotopic characteristics in a typical mountain area, southwestern China [J]. Science of the Total Environment, 2018, 616/617: 55-63. doi: 10.1016/j.scitotenv.2017.10.240 [16] WANG H B, SHI G M, TIAN M, et al. Wet deposition and sources of inorganic nitrogen in the Three Gorges Reservoir Region, China [J]. Environmental Pollution, 2018, 233: 520-528. doi: 10.1016/j.envpol.2017.10.085 [17] 胡春阳, 樊曙先, 王小龙, 等. 庐山2016年冬季三级分档雾水化学特征 [J]. 气象学报, 2019, 77(4): 745-757. doi: 10.11676/qxxb2019.034 HU C Y, FAN S X, WANG X L, et al. The chemical characteristics of fog water in three grades of Lushan in the winter of 2016 [J]. Acta Meteorologica Sinica, 2019, 77(4): 745-757(in Chinese). doi: 10.11676/qxxb2019.034
[18] 石春娥, 姚叶青, 张平, 等. 合肥市PM10输送轨迹分类研究 [J]. 高原气象, 2008, 27(6): 1383-1391. SHI C E, YAO Y Q, ZHANG P, et al. Transport trajectory classifying of PM10 in Hefei [J]. Plateau Meteorology, 2008, 27(6): 1383-1391(in Chinese).
[19] LUCEY D, HADJIISKI L, HOPKE P K, et al. Identification of sources of pollutants in precipitation measured at the mid−Atlantic US Coast using potential source contribution function (PSCF) [J]. Atmospheric Environment, 2001, 35(23): 3979-3986. doi: 10.1016/S1352−2310(01)00185−6 [20] 袁磊, 李文周, 陈文伟, 等. 戴云山国家级自然保护区大气氮沉降特点 [J]. 环境科学, 2016, 37(11): 4142-4146. YUAN L, LI W Z, CHEN W W, et al. Characteristics of nitrogen deposition in Daiyun mountain national nature reserve [J]. Environmental Science, 2016, 37(11): 4142-4146(in Chinese).
[21] 宋蕾, 田鹏, 张金波, 等. 黑龙江凉水国家级自然保护区大气氮沉降特征 [J]. 环境科学, 2018, 39(10): 4490-4496. SONG L, TIAN P, ZHANG J B, et al. Characteristics of nitrogen deposition in Heilongjiang Liangshui national nature reserve [J]. Environmental Science, 2018, 39(10): 4490-4496(in Chinese).
[22] 牛勇, 牛远, 王琳杰, 等. 2009−2018年太湖大气湿沉降氮磷特征对比研究 [J]. 环境科学研究, 2020, 33(1): 122-129. NIU Y, NIU Y, WANG L J, et al. Comparative study on nitrogen and phosphorus characteristics of atmospheric wet deposition in lake Taihu from 2009 to 2018 [J]. Research of Environmental Sciences, 2020, 33(1): 122-129(in Chinese).
[23] 张晓晶, 卢俊平, 马太玲, 等. 大气氮磷湿沉降特征及对沙源区水库水环境的影响 [J]. 生态环境学报, 2017, 26(12): 2093-2101. ZHANG X J, LU J P, MA T L, et al. Wet deposition of atmospheric nitrogen and phosphorus and its impact on water environment of reservoir in sand source area [J]. Ecology and Environmental Sciences, 2017, 26(12): 2093-2101(in Chinese).
[24] KUANG F H, LIU X J, ZHU B, et al. Wet and dry nitrogen deposition in the central Sichuan Basin of China [J]. Atmospheric Environment, 2016, 143: 39-50. doi: 10.1016/j.atmosenv.2016.08.032 [25] SUN L Y, LIU Y L, WANG J Y, et al. Atmospheric nitrogen and phosphorus deposition at three sites in Nanjing, China, and possible links to nitrogen deposition sources [J]. CLEAN - Soil, Air, Water, 2014, 42(11): 1650-1659. doi: 10.1002/clen.201300692 [26] SHEN J L, LI Y, LIU X J, et al. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China [J]. Atmospheric Environment, 2013, 67: 415-424. doi: 10.1016/j.atmosenv.2012.10.068 [27] 邓君俊, 王体健, 李树, 等. 南京郊区大气氮化物浓度和氮沉降通量的研究 [J]. 气象科学, 2009, 29(1): 25-30. doi: 10.3969/j.issn.1009−0827.2009.01.004 DENG J J, WANG T J, LI S, et al. Study on atmospheric nitrogen oxidant and deposition flux in suburban of Nanjing [J]. Scientia Meteorologica Sinica, 2009, 29(1): 25-30(in Chinese). doi: 10.3969/j.issn.1009−0827.2009.01.004
[28] 许稳, 金鑫, 罗少辉, 等. 西宁近郊大气氮干湿沉降研究 [J]. 环境科学, 2017, 38(4): 1279-1288. XU W, JIN X, LUO S H, et al. Research on atmospheric nitrogen deposition in the suburbs of Xining [J]. Environmental Science, 2017, 38(4): 1279-1288(in Chinese).
[29] 王江飞, 周柯锦, 汪小泉, 等. 杭嘉湖地区大气氮、磷沉降特征研究 [J]. 中国环境科学, 2015, 35(9): 2754-2763. doi: 10.3969/j.issn.1000−6923.2015.09.030 WANG J F, ZHOU K J, WANG X Q, et al. Research on atmospheric nitrogen and phosphorus deposition characteristics in Hangjiahu area [J]. China Environmental Science, 2015, 35(9): 2754-2763(in Chinese). doi: 10.3969/j.issn.1000−6923.2015.09.030
[30] WANG W, LIU X J, XU J, et al. Imbalanced nitrogen and phosphorus deposition in the urban and forest environments in southeast Tibet [J]. Atmospheric Pollution Research, 2018, 9(4): 774-782. doi: 10.1016/j.apr.2018.02.002 [31] 王燕, 刘宁锴, 王骏飞. 太湖流域氮磷等大气沉降研究 [J]. 环境科学与管理, 2015, 40(5): 103-105. WANG Y, LIU N K, WANG J F. Study on atmospheric deposition of nitrogen and phosphorus in Taihu lake [J]. Environmental Science and Management, 2015, 40(5): 103-105(in Chinese).
[32] ZHANG X, LIN C Y, ZHOU X L, et al. Concentrations, fluxes, and potential sources of nitrogen and phosphorus species in atmospheric wet deposition of the Lake Qinghai Watershed, China [J]. Science of the Total Environment, 2019, 682: 523-531. doi: 10.1016/j.scitotenv.2019.05.224 [33] 刘冬碧, 张小勇, 巴瑞先, 等. 鄂西北丹江口库区大气氮沉降 [J]. 生态学报, 2015, 35(10): 3419-3427. LIU D B, ZHANG X Y, BA R X, et al. Atmospheric nitrogen deposition in Danjiangkou Reservoir area of Northwest Hubei [J]. Acta Ecologica Sinica, 2015, 35(10): 3419-3427(in Chinese).
[34] 乔雪, 江丽君, 唐亚, 等. 九寨沟大气氮、磷和硫沉降的通量及水环境意义 [J]. 山地学报, 2014, 32(5): 633-640. QIAO X, JIANG L J, TANG Y, et al. The fluxes and possible aquatic impacts of atmospheric nitrogen, sulfur and phosphorous deposition in Jiuzhaigou [J]. Mountain Research, 2014, 32(5): 633-640(in Chinese).
[35] 樊敏玲, 王雪梅, 王茜, 等. 珠江口横门大气氮、磷干湿沉降的初步研究 [J]. 热带海洋学报, 2010, 29(1): 51-56. doi: 10.3969/j.issn.1009−5470.2010.01.008 FAN M L, WANG X M, WANG Q, et al. Atmospheric deposition of nitrogen and phosphorus into the Hengmen of Pearl River Estuary [J]. Journal of Tropical Oceanography, 2010, 29(1): 51-56(in Chinese). doi: 10.3969/j.issn.1009−5470.2010.01.008
[36] 韩丽君, 朱玉梅, 刘素美, 等. 黄海千里岩岛大气湿沉降营养盐的研究 [J]. 中国环境科学, 2013, 33(7): 1174-1184. HAN L J, ZHU Y M, LIU S M, et al. Nutrients of atmospheric wet deposition from the Qianliyan Island of the Yellow Sea [J]. China Environmental Science, 2013, 33(7): 1174-1184(in Chinese).
[37] AVILA A, ALARCÓN M. Relationship between precipitation chemistry and meteorological situations at a rural site in NE Spain [J]. Atmospheric Environment, 1999, 33(11): 1663-1677. doi: 10.1016/S1352−2310(98)00341−0 [38] 王茜, 王雪梅, 钟流举, 等. 珠江口无机氮湿沉降规律及大气输送的研究 [J]. 环境科学学报, 2009, 29(6): 1156-1163. doi: 10.3321/j.issn:0253−2468.2009.06.005 WANG Q, WANG X M, ZHONG L J, et al. Wet deposition of inorganic nitrogen and atmospheric transport at the estuary of the Pearl River [J]. Acta Scientiae Circumstantiae, 2009, 29(6): 1156-1163(in Chinese). doi: 10.3321/j.issn:0253−2468.2009.06.005
[39] 郑丹楠, 王雪松, 谢绍东, 等. 2010年中国大气氮沉降特征分析 [J]. 中国环境科学, 2014, 34(5): 1089-1097. ZHENG D N, WANG X S, XIE S D, et al. Simulation of atmospheric nitrogen deposition in China in 2010 [J]. China Environmental Science, 2014, 34(5): 1089-1097(in Chinese).
[40] 宋玉芝, 秦伯强, 杨龙元, 等. 大气湿沉降向太湖水生生态系统输送氮的初步估算 [J]. 湖泊科学, 2005, 17(3): 226-230. doi: 10.3321/j.issn:1003−5427.2005.03.006 SONG Y Z, QIN B Q, YANG L Y, et al. Primary estimation of atmospheric wet deposition of nitrogen to aquatic ecosystem of lake Taihu [J]. Journal of Lake Science, 2005, 17(3): 226-230(in Chinese). doi: 10.3321/j.issn:1003−5427.2005.03.006
[41] 谢迎新, 张淑利, 赵旭, 等. 长江三角洲地区雨水中NH4+−N/NO3−−N和δ15NH4+值的变化 [J]. 应用生态学报, 2008, 19(9): 2035-2041. XIE Y X, ZHANG S L, ZHAO X, et al. Seasonal variation patterns of NH4+−N/NO3−−N ratio and δ15NH4+ value in rainwater in Yangtze River Delta [J]. Chinese Journal of Applied Ecology, 2008, 19(9): 2035-2041(in Chinese).
[42] 王楠, 马淼, 石金辉, 等. 夏季青岛大气气溶胶中不同形态磷的浓度、来源及沉降通量 [J]. 环境科学, 2018, 39(9): 4034-4041. WANG N, MA M, SHI J H, et al. Concentrations, sources, and dry deposition fluxes of different forms of phosphorus in Qingdao aerosols in summer [J]. Environmental Science, 2018, 39(9): 4034-4041(in Chinese).