-
近年来,随着大气污染防治措施的持续推进,国内在颗粒物治理方面已经取得显著成效[1],近地面O3污染问题却愈发突出,O3已成为夏秋季节城市空气质量超标的首要因子[2]. O3不仅影响气候变化,而且对农作物、环境和人体健康造成负面影响[3-6]. 近地面的O3主要由氮氧化物(NOx)和挥发性有机物(VOCs)二次反应生成,部分VOCs的化学性质活跃,进入大气后可能会导致光化学烟雾的产生[7-9],对大气质量环境和人类生产活动产生严重危害,因此加强重点O3污染区域的溯源分析和精准协同管控具有重要意义[10-12]. 国内对于O3源解析的研究主要集中于京津冀[13-14]、长三角[15-19]、珠三角[20-23]和成渝[24-25]等发达地区,对中部江淮地区等需要重点管控的区域研究较少.
对于城市O3的溯源分析主要是根据O3及其前体物监测数据,利用受体模型或者三维数值模型识别O3本地和区域来源,定量解析不同VOCs排放源类对O3生成潜势(OFP)的贡献值和分担率[26-28]. 其中,正定矩阵因子分析(PMF)和基于源清单的网格化三维数值模式多被尝试应用于国内外大气中VOCs或者O3的源解析方面[29-31];例如2014—2016年沈劲等学者通过嵌套网格空气质量预报模式(NAQPMS)对珠三角的O3污染来源解析显示,珠三角西南部在春夏季节期间的O3外地传输贡献约为50%,具有明显的跨省输送特征,该方法需要详细的区域源清单和气象资料,且模拟结果仍然存在较大的不确定性[32]. 实际工作中,研究者往往难以区分本地生成、外地传输(或者垂直下沉)对O3污染产生的分担贡献,而基于观测的盒子模型(OBM)利用观测资料作为约束条件模拟多种大气光化学过程,不依赖于源清单,研究结果相对真实地反映了大气中的光化学反应过程及其影响因素,可以模拟O3本地生成的主要过程和速率,是对其他模型难以区分传输贡献的良好补充. 例如,2010年陆克定等采用基于OBM模型评估珠三角区域醛类和亚硝酸对O3生成速率的重要影响[20];2020年,韩丽等基于OBM模型对成都O3污染过程进行了收支(本地生成和外界传输)分析,然而受限于OBM模型对行业污染来源解析的局限性,均不能明确具体行业来源,仅能从侧面判断O3控制区属性[31]. 因此,该文尝试基于最新化学反应机制(CB05参数反应)的OBM和PMF模型[7,32],综合分析和相互验证解析结果,希望可以有效降低来自排放源对分析结果的不确定性.
江淮地区是长三角区域污染相对较重的区域,该地区主要的大气环境问题是空气质量改善速度相对周边地区较慢,重污染天气尚未完全消除,PM2.5和PM10污染呈现减缓趋势的同时,O3污染呈现出加重趋势,总体上呈现以O3和PM2.5复合污染为主要特征的严峻污染形势,2016—2020年,地处江淮地区的安徽省呈现出O3超标天数皖北较多皖南较少、皖东较多皖南较少、皖东较多皖西较少、春夏高秋冬低的时空特征,夏秋季O3污染对空气质量达标天数的拉低作用逐步凸显,区域O3污染的溯源协同防控亟需技术支撑[33]. 但由于江淮地区缺乏详细的污染源清单等基础资料,源清单的不确定性大于国内其他发达区域. 三维模型的研究实践基础不足,采用OBM来诊断O3与前体物的关系具有较大的现实意义. 此外,目前尚未见对江淮地区采用OBM模型方法开展O3生成敏感性和污染来源研究的公开报道,现阶段基于多种分析方法的相关研究无论从研究代表性和研究时段等方面均存在不足.
本文选取安徽省江淮地区O3污染的典型城市(合肥、宿州、阜阳、滁州以及淮南)作为研究对象,基于最新建立的VOCs监测网络,分析区域的O3污染特征,并尝试综合PMF和OBM模型对VOCs和O3污染的溯源分析结果,探讨O3污染的区域特征和主要污染来源,希望为江淮地区及长三角区域O3和PM2.5的协同防控提供科学依据.
江淮地区城市O3污染过程的非典型特征及其前体物来源分析
Atypical characteristics of urban O3 pollution process and the source analysis of precursor pollutants in Yangtze−huaihe Region
-
摘要: 为了研究江淮地区典型城市的O3污染来源,该文对一次典型O3污染过程(2020年9月1—10日)开展了多参数的监测分析,综合多种方法分析了江淮区域的O3和挥发性有机物(VOCs)污染特征及其来源. 结果表明,江淮地区城市(合肥、宿州、阜阳、滁州和淮南)O3浓度的日变化均呈现出非典型的 “双峰”特征(日间和夜间均有污染峰值). 污染期间VOCs的污染程度由高到低分别为合肥、淮南、滁州、宿州和阜阳;其中,机动车排放源为该区域城市VOCs污染贡献最大的来源,贡献率分别高达44.1%、36.8%、37.8%、38.7%和40.5%;其次是燃烧源(18.9%—21.3%)、溶剂使用源(12.4%—21.3%)、工业源(13.0%—15.3%)和天然源(除滁州为13.9%外,其余为8.0%左右). O3生成潜势(OFP)分析表明,除OVOCs对淮南市OFP贡献较高外,其余城市中烯烃、芳香烃等组分对OFP贡献最高,OFP由高到低分别为合肥(284.9 μg·m−3)、淮南(167.7 μg·m−3)、滁州(123.8 μg·m−3)、宿州(73.9 μg·m−3)和阜阳(62.1 μg·m−3). O3的污染主要以本地生成为主,其中滁州、淮南和合肥的O3本地生成速率平均分别高达32 μg·m−3·h−1、36 μg·m−3·h−1和29 μg·m−3·h−1,比皖北城市(阜阳和宿州)高9—20 μg·m−3·h−1;O3传输过程主要表现为白天高浓度时段的对外传输和夜间的对内输入.
-
关键词:
- O3 /
- VOCs /
- OFP /
- 正定矩阵因子分析(PMF) /
- 来源分析
Abstract: A typical O3 pollution episode occurred during September 1 to 10 in 2020 in the Yangtze-Huaihe region , which was researched to reveal the source of O3. In this paper, the characteristics and sources of O3 and precursor pollutants (VOCs) were researched based on multi parameter monitoring data and analysis methods. The results showed that the daily variation feature of O3 concentration in Yangtze-Huaihe region (Hefei, Suzhou, Fuyang, Chuzhou and Huainan) presented an atypical "double peaks" structure. Meanwhile, the peak value both appeared in daytime and nighttime. During the pollution episode, the order of the VOCs concentration from high to low was Hefei, Huainan, Chuzhou, Suzhou, and Fuyang. Motor vehicle emission was the most important source of VOCs and it respectively accounted for 44.1%, 36.8%, 37.8%, 38.7% and 40.5% of VOCs concentration in the five cities. In addition, the others emission sources included combustion source (18.9%—21.3%), solvent consumption source (12.4%—21.3%), industrial source (13.0%—15.3%) and natural source (13.9% for Chuzhou and about 8% for the other four cities). The ranked of O3 formation potential (OFP) value from high to low was Hefei (284.97 μg·m−3), Huainan (167.77 μg·m−3), Chuzhou (123.87 μg·m−3), Suzhou (73.97 μg·m−3) and Fuyang (62.17 μg·m−3). The most important contributors for OFP were OVOCs in Huainan and the olefins, aromatic hydrocarbons in the other four cities. Local generation was main method for O3 pollution. O3 local generation rate was 32, 36, 29 μg·m−3·h−1 respectively for Chuzhou, Huainan and Hefei, which was obviously higher than it in the cities in the north of Anhui province with the value during 9 μg·m−3·h−1 to 20 μg·m−3·h−1. The transmission characteristics of O3 represented external transmission during high concentration period in the daytime and internal transmission at night.-
Key words:
- O3 /
- VOCs /
- OFP /
- positive definite matrix factor analysis(PMF) /
- source analysis
-
表 1 污染期间合肥、宿州、阜阳、滁州和淮南TVOCs浓度与国内其他城市对比
Table 1. Comparison of TVOCs concentrations in Hefei, Suzhou, Fuyang, Chuzhou and Huainan during the pollution period with other cities in China
城市
City观测时间
Observation timeTVOCs平均值/
(μg·m−3)
Average value标准偏差/
(μg·m−3)
Standard deviation最大值/
(μg·m−3)
Maximum value最小值/
(μg·m−3)
Minimum value合肥 2020年9月 112 63 288 30 宿州 2020年9月 40 28 159 11 阜阳 2020年9月 30 14 93 12 滁州 2020年9月 43 23 93 8 淮南 2020年9月 58 23 131 5 石家庄[30] 2017年1月—2018年1月 137.2 64.6 316.9 29.0 天津[39] 2019年1—12月 48.9 — 69.9 34.6 邯郸[40] 2017年10月 102.2 45.8 358.4 49.1 注:“—”表示参考文献中没有相关数据. 表 2 高值时段的VOCs物种
Table 2. VOCs species in high−value periods
观测时段
Observation time城市
City高值物种
High concentration species潜在排放源
Potential emission source3—6日 合肥 正戊烷、异戊烷、丙烷、甲苯、乙烷 交通移动源 宿州 丙酮、丙烷、乙烷、正丁烷、2-丁酮 交通移动源、化工、溶剂使用、光化学生成 阜阳 丙烷、乙烷、乙醛、异戊烷、乙烯 交通移动源、光化学生成、工业源 滁州 1-戊烯、正丁烷、丙烷、乙炔、异丁烷 交通移动源、油气行业、工业源 淮南 丙酮、乙酸乙酯、乙烷、顺-2-丁烯、乙醛 溶剂使用、油气行业、光化学生成、移动源 9日 合肥 正戊烷、环戊烷、丙烷、异戊烷、乙烷 交通移动源、溶剂使用 宿州 丙酮、丙烷、乙烷、正丁烷、三氯甲烷 交通移动源、有机化工、光化学生成 阜阳 丙烷、异戊烷、乙烷、正戊烷、乙醛 交通移动源、光化学生成 滁州 1-戊烯、丙烷、甲苯、正丁烷、乙炔 交通移动源、油气行业、工业源 淮南 丙酮、氯乙烯、二氯甲烷、乙炔、乙烷 有机化工、光化学生成、移动源 表 3 9月1—10日5个城市O3污染的控制属性
Table 3. Control properties of O3 pollution from September 1th to 10th in the cities
城市
City日期
DateO3污染控制属性
Control properties of O3 pollution合肥 6日、9日 VOCs控制区 1—5日、7—8日、10日 NOx和VOCs控制区 宿州 6日、9日 VOCs控制区 1—5日、7—8日、10日 NOx和VOCs控制区 阜阳 1—10日 VOCs控制区 滁州 1—10日 NOx和VOCs协同控制区 淮南 6日、7日、9日 VOCs控制区 1—5日、8日、10日 NOx和VOCs协同控制区 -
[1] 赵辉, 郑有飞, 李硕, 等. 我国近地层O3污染及其风险评估研究进展 [J]. 环境化学, 2019, 38(12): 2709-2718. doi: 10.7524/j.issn.0254−6108.2019011701 ZHAO H, ZHENG Y F, LI S, et al. Research progress on ground−level O3 pollution and its risk assessment in China [J]. Environmental Chemistry, 2019, 38(12): 2709-2718(in Chinese). doi: 10.7524/j.issn.0254−6108.2019011701
[2] 李如梅, 武媛媛, 彭林, 等. 朔州市夏季环境空气中VOCs的污染特征及来源解析 [J]. 环境化学, 2017, 36(5): 984-993. doi: 10.7524/j.issn.0254−6108.2017.05.2016111603 LI R M, WU Y Y, PENG L, et al. Characteristics and sources apportionment of ambient volatile organic compounds(VOCs) in summer in Shuozhou [J]. Environmental Chemistry, 2017, 36(5): 984-993(in Chinese). doi: 10.7524/j.issn.0254−6108.2017.05.2016111603
[3] 张亮林, 潘竟虎. 中国PM2.5人口暴露风险时空格局 [J]. 中国环境科学, 2020, 40(1): 1-12. doi: 10.3969/j.issn.1000−6923.2020.01.001 ZHANG L L, PAN J H. Spatial-temporal pattern of population exposure risk to PM2.5 in China [J]. China Environmental Science, 2020, 40(1): 1-12(in Chinese). doi: 10.3969/j.issn.1000−6923.2020.01.001
[4] DI Q, WANG Y, ZANOBETTI A. Air pollution and mortality in the medicare population [J]. New England Journal of Medicine, 2017, 376(26): 1498-2522. [5] HU H, HA S D, XU X H. Ozone and hypertensive disorders of pregnancy in Florida: Identifying critical windows of exposure [J]. Environmental Research, 2017, 153: 120-125. doi: 10.1016/j.envres.2016.12.002 [6] 洪莹莹, 翁佳烽, 谭浩波, 等. 珠江三角洲秋季典型O3污染的气象条件及贡献量化 [J]. 中国环境科学, 2021, 41(1): 1-10. doi: 10.3969/j.issn.1000−6923.2021.01.001 HONG Y Y, WENG J F, TAN H B, et al. Meteorological conditions and contribution quantification of typical ozone pollution during autumn in Pearl River Delta [J]. China Environmental Science, 2021, 41(1): 1-10(in Chinese). doi: 10.3969/j.issn.1000−6923.2021.01.001
[7] CARDELINO C A, CHAMEIDES W L. An observation-based model for analyzing ozone precursor relationships in the urban atmosphere [J]. Journal of the Air & Waste Management Association, 1995, 45(3): 161-180. [8] UTEMBE S R, WATSON L A, SHALLCROSS D E, et al. A common representative intermediates (CRI) mechanism for VOC degradation. part 3: development of a secondary organic aerosol module [J]. Atmospheric Environment, 2009, 43(12): 1982-1990. doi: 10.1016/j.atmosenv.2009.01.008 [9] ZHANG X M, WANG D, LIU Y, et al. Characteristics and ozone formation potential of volatile organic compounds in emissions from a typical Chinese coking plant [J]. Journal of Environmental Sciences, 2020, 95: 183-189. doi: 10.1016/j.jes.2020.03.018 [10] DU Z J, MO J H, ZHANG Y P. Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China [J]. Environment International, 2014, 73: 33-45. doi: 10.1016/j.envint.2014.06.014 [11] 郭云, 蒋玉丹, 黄炳昭, 等. 我国大气PM2.5及O3导致健康效益现状分析及未来10年预测 [J]. 环境科学研究, 2021, 34(4): 1023-1032. GUO Y, JIANG Y D, HUANG B Z, et al. Health impact of PM2.5 and O3 and forecasts for next 10 years in China [J]. Research of Environmental Sciences, 2021, 34(4): 1023-1032(in Chinese).
[12] DU Z J, MO J H, ZHANG Y P, et al. Benzene, toluene and xylenes in newly renovated homes and associated health risk in Guangzhou, China [J]. Building and Environment, 2014, 72: 75-81. doi: 10.1016/j.buildenv.2013.10.013 [13] WEI W, CHENG S Y, LI G H, et al. Characteristics of ozone and ozone precursors (VOCs and NOx) around a petroleum refinery in Beijing, China [J]. Journal of Environmental Sciences, 2014, 26(2): 332-342. doi: 10.1016/S1001-0742(13)60412-X [14] WANG G, CHENG S Y, WEI W, et al. Characteristics and source apportionment of VOCs in the suburban area of Beijing, China [J]. Atmospheric Pollution Research, 2016, 7(4): 711-724. doi: 10.1016/j.apr.2016.03.006 [15] ZHU J, WANG S S, WANG H L, et al. Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China [J]. Atmospheric Chemistry and Physics, 2020, 20(3): 1217-1232. doi: 10.5194/acp-20-1217-2020 [16] MO Z W, SHAO M, LU S H, et al. Characterization of non-methane hydrocarbons and their sources in an industrialized coastal city, Yangtze River Delta, China [J]. Science of the Total Environment, 2017, 593/594: 641-653. doi: 10.1016/j.scitotenv.2017.03.123 [17] 叶听听, 江飞, 易福金, 等. 长三角地区春季臭氧污染特征及其对冬小麦产量的影响 [J]. 环境科学研究, 2017, 30(7): 991-1000. YE T T, JIANG F, YI F J, et al. Characteristics of ozone pollution and its impact on winter wheat yield in the Yangtze River Delta in spring [J]. Research of Environmental Sciences, 2017, 30(7): 991-1000(in Chinese).
[18] TIE X X, GENG F H, PENG L, et al. Measurement and modeling of O3 variability in Shanghai, China: Application of the WRF-Chem model [J]. Atmospheric Environment, 2009, 43(28): 4289-4302. doi: 10.1016/j.atmosenv.2009.06.008 [19] HUANG C F, CHEN C H, LI L, et al. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China [J]. Atmospheric Chemistry and Physics, 2011, 11(9): 4105-4120. doi: 10.5194/acp-11-4105-2011 [20] 陆克定, 张远航, 苏杭, 等. 珠江三角洲夏季臭氧区域污染及其控制因素分析 [J]. 中国科学:化学, 2010, 40(4): 407-420. doi: 10.1360/zb2010−40−4−407 LU K D, ZHANG Y H, SU H, et al. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time [J]. Scientia Sinica (Chimica), 2010, 40(4): 407-420(in Chinese). doi: 10.1360/zb2010−40−4−407
[21] ZHANG Y L, WANG X M, ZHANG Z, et al. Sources of C2-C4 alkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region [J]. Science of the Total Environment, 2015, 502: 236-245. doi: 10.1016/j.scitotenv.2014.09.024 [22] 颜敏, 尹魁浩, 梁永贤, 等. 深圳市夏季臭氧污染研究 [J]. 环境科学研究, 2012, 25(4): 411-418. YAN M, YIN K H, LIANG Y X, et al. Ozone pollution in summer in Shenzhen city [J]. Research of Environmental Sciences, 2012, 25(4): 411-418(in Chinese).
[23] ZOU Y, DENG X J, ZHU D, et al. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China [J]. Atmospheric Chemistry and Physics, 2015, 15(12): 6625-6636. doi: 10.5194/acp−15−6625−2015 [24] DENG Y Y, LI J, LI Y Q, et al. Characteristics of volatile organic compounds, NO2, and effects on ozone formation at a site with high ozone level in Chengdu [J]. Journal of Environmental Sciences, 2019, 75: 334-345. doi: 10.1016/j.jes.2018.05.004 [25] 徐晨曦, 陈军辉, 韩丽, 等. 成都市2017年夏季大气VOCs污染特征、臭氧生成潜势及来源分析 [J]. 环境科学研究, 2019, 32(4): 619-626. XU C X, CHEN J H, HAN L, et al. Analyses of pollution characteristics, ozone formation potential and sources of VOCs atmosphere in Chengdu city in summer 2017 [J]. Research of Environmental Sciences, 2019, 32(4): 619-626(in Chinese).
[26] 缑亚峰, 余欢, 王成, 等. PM2.5化学组成观测设计对PMF源解析结果影响综述 [J]. 环境化学, 2020, 39(7): 1744-1753. doi: 10.7524/j.issn.0254−6108.2020020301 GOU Y F, YU H, WANG C, et al. Review: Influence of PM2.5 composition measurement design on source apportionment using positive matrix factorization (PMF) [J]. Environmental Chemistry, 2020, 39(7): 1744-1753(in Chinese). doi: 10.7524/j.issn.0254−6108.2020020301
[27] LI J, HAO Y F, SIMAYI M, et al. Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals [J]. Atmospheric Chemistry and Physics, 2019, 19(9): 5905-5921. doi: 10.5194/acp−19−5905−2019 [28] 齐安安, 周小平, 雷春妮, 等. 兰州市功能区环境空气中挥发性有机物关键活性组分与来源解析 [J]. 环境化学, 2020, 39(11): 3083-3093. doi: 10.7524/j.issn.0254−6108.2019080402 QI A A, ZHOU X P, LEI C N, et al. Key active components and sources of volatile organic compounds in ambient air of Lanzhou City [J]. Environmental Chemistry, 2020, 39(11): 3083-3093(in Chinese). doi: 10.7524/j.issn.0254−6108.2019080402
[29] 李颖慧, 李如梅, 胡冬梅, 等. 太原市不同功能区环境空气中挥发性有机物特征与来源解析 [J]. 环境化学, 2020, 39(4): 920-930. doi: 10.7524/j.issn.0254−6108.2019110804 LI Y H, LI R M, HU D M, et al. Characteristics and source apportionment of ambient volatile organic compounds of different functional areas in Taiyuan City [J]. Environmental Chemistry, 2020, 39(4): 920-930(in Chinese). doi: 10.7524/j.issn.0254−6108.2019110804
[30] 王帅, 崔建升, 冯亚平, 等. 石家庄市挥发性有机物和臭氧的污染特征及源解析 [J]. 环境科学, 2020, 41(12): 5325-5335. WANG S, CUI J S, FENG Y P, et al. Characteristics and source apportionment of VOCs and O3 in Shijiazhuang [J]. Environmental Science, 2020, 41(12): 5325-5335(in Chinese).
[31] 韩丽, 陈军辉, 姜涛, 等. 基于观测模型的成都市臭氧污染敏感性研究 [J]. 环境科学学报, 2020, 40(11): 4092-4104. HAN L, CHEN J H, JIANG T, et al. Sensitivity analysis of atmospheric ozone formation to its precursors in Chengdu with an observation based model [J]. Acta Scientiae Circumstantiae, 2020, 40(11): 4092-4104(in Chinese).
[32] 沈劲, 黄晓波, 汪宇, 等. 广东省臭氧污染特征及其来源解析研究 [J]. 环境科学学报, 2017, 37(12): 4449-4457. SHEN J, HUANG X B, WANG Y, et al. Study on ozone pollution characteristics and source apportionment in Guangdong Province [J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4449-4457(in Chinese).
[33] 石春娥, 杨关盈, 张浩, 等. 安徽省臭氧污染特征及其气象成因 [J]. 三峡生态环境监测, 2020, 5(3): 71-84. SHI C E, YANG G Y, ZHANG H, et al. Characteristics and meteorological causes of ozone pollution in Anhui Province [J]. Ecology and Environmental Monitoring of Three Gorges, 2020, 5(3): 71-84(in Chinese).
[34] 赵旭辉, 董昊, 季冕, 等. 合肥市O3污染时空变化特征及影响因素分析 [J]. 环境科学学报, 2018, 38(2): 649-660. ZHAO X H, DONG H, JI M, et al. Analysis on the spatial-temporal distribution characteristics of O3 and its influencing factors in Hefei City [J]. Acta Scientiae Circumstantiae, 2018, 38(2): 649-660(in Chinese).
[35] 伏志强, 戴春皓, 王章玮, 等. 长沙市夏季大气臭氧生成对前体物的敏感性分析 [J]. 环境化学, 2019, 38(3): 531-538. doi: 10.7524/j.issn.0254−6108.2018042503 FU Z Q, DAI C H, WANG Z W, et al. Sensitivity analysis of atmospheric ozone formation to its precursors in summer of Changsha [J]. Environmental Chemistry, 2019, 38(3): 531-538(in Chinese). doi: 10.7524/j.issn.0254−6108.2018042503
[36] CARTER W P L. Development of a condensed SAPRC−07 chemical mechanism [J]. Atmospheric Environment, 2010, 44(40): 5336-5345. doi: 10.1016/j.atmosenv.2010.01.024 [37] BUZCU B, FRASER M P. Source identification and apportionment of volatile organic compounds in Houston, TX [J]. Atmospheric Environment, 2006, 40(13): 2385-2400. doi: 10.1016/j.atmosenv.2005.12.020 [38] TAN Z F, LU K D, JIANG M Q, et al. Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3−VOC−NOx sensitivity [J]. Science of the Total Environment, 2018, 636: 775-786. doi: 10.1016/j.scitotenv.2018.04.286 [39] 高璟赟, 肖致美, 徐虹, 等. 2019年天津市挥发性有机物污染特征及来源 [J]. 环境科学, 2021, 42(1): 55-64. GAO J Y, XIAO Z M, XU H, et al. Characterization and source apportionment of atmospheric VOCs in Tianjin in 2019 [J]. Environmental Science, 2021, 42(1): 55-64(in Chinese).
[40] 王雨, 王丽涛, 杨光, 等. 邯郸市秋季大气挥发性有机物污染特征 [J]. 环境科学研究, 2019, 32(7): 1134-1142. WANG Y, WANG L T, YANG G, et al. Characteristics of volatile organic compounds in autumn in Handan city, China [J]. Research of Environmental Sciences, 2019, 32(7): 1134-1142(in Chinese).
[41] WANG T, XUE L K, BRIMBLECOMBE P, et al. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects [J]. Science of the Total Environment, 2017, 575: 1582-1596. doi: 10.1016/j.scitotenv.2016.10.081 [42] 王新富, 高良敏, 周晓芳, 等. 基于因子分析的安徽省大气污染特征及综合评价研究 [J]. 安徽理工大学学报(自然科学版), 2020, 40(1): 64-71. WANG X F, GAO L M, ZHOU X F, et al. Study on characteristics and comprehensive evaluation of air pollution in Anhui Province based on factor analysis [J]. Journal of Anhui University of Science and Technology (Natural Science), 2020, 40(1): 64-71(in Chinese).
[43] LIU Y, SHAO M, FU L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part I [J]. Atmospheric Environment, 2008, 42(25): 6247-6260. doi: 10.1016/j.atmosenv.2008.01.070 [44] 张洲. 中国大气非甲烷碳氢化合物时空分布特征初步研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2016. ZHANG Z. Spatiotemporal patterns of ambient non-methane hydrocarbons in China[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2016:201(in Chinese).
[45] BARLETTA B, MEINARDI S, ROWLAND F S, et al. Volatile organic compounds in 43 Chinese cities [J]. Atmospheric Environment, 2005, 39(32): 5979-5990. doi: 10.1016/j.atmosenv.2005.06.029 [46] 王鸣, 陈文泰, 陆思华, 等. 我国典型城市环境大气挥发性有机物特征比值 [J]. 环境科学, 2018, 39(10): 4393-4399. WANG M, CHEN W T, LU S H, et al. Ratios of volatile organic compounds in ambient air of various cities of China [J]. Environmental Science, 2018, 39(10): 4393-4399(in Chinese).
[47] MO Z W, SHAO M, LU S H, et al. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China [J]. Science of the Total Environment, 2015, 533: 422-431. doi: 10.1016/j.scitotenv.2015.06.089 [48] AN J L, ZHU B, WANG H L, et al. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China [J]. Atmospheric Environment, 2014, 97: 206-214. doi: 10.1016/j.atmosenv.2014.08.021