Processing math: 100%

背包中短链氯化石蜡污染特征分析及其健康风险评价

陈晓玉, 王志方, 高小中, 丁腾达, 巫承洲, 鲍恋君, 李菊英. 背包中短链氯化石蜡污染特征分析及其健康风险评价[J]. 环境化学, 2022, 41(3): 893-899. doi: 10.7524/j.issn.0254-6108.2020102604
引用本文: 陈晓玉, 王志方, 高小中, 丁腾达, 巫承洲, 鲍恋君, 李菊英. 背包中短链氯化石蜡污染特征分析及其健康风险评价[J]. 环境化学, 2022, 41(3): 893-899. doi: 10.7524/j.issn.0254-6108.2020102604
CHEN Xiaoyu, WANG Zhifang, GAO Xiaozhong, DING Tengda, WU Chengzhou, BAO Lianjun, LI Juying. Pollution characteristic analysis and risk assessment of SCCPs in backpacks[J]. Environmental Chemistry, 2022, 41(3): 893-899. doi: 10.7524/j.issn.0254-6108.2020102604
Citation: CHEN Xiaoyu, WANG Zhifang, GAO Xiaozhong, DING Tengda, WU Chengzhou, BAO Lianjun, LI Juying. Pollution characteristic analysis and risk assessment of SCCPs in backpacks[J]. Environmental Chemistry, 2022, 41(3): 893-899. doi: 10.7524/j.issn.0254-6108.2020102604

背包中短链氯化石蜡污染特征分析及其健康风险评价

    通讯作者: Tel:+86-0755-26733095,E-mail:jyli@szu.edu.cn
  • 基金项目:
    国家重点研发计划项目 (2018YFF0214802)和深圳市科技计划项目(JCYJ20190808152817031)资助

Pollution characteristic analysis and risk assessment of SCCPs in backpacks

    Corresponding author: LI Juying, jyli@szu.edu.cn
  • Fund Project: the National Key Research and Development Project of China (2018YFF0214802) and the Science and Technology Planning Project of Shenzhen Municipality (JCYJ20190808152817031)
  • 摘要: 短链氯化石蜡(SCCPs)是一类含碳原子数为10—13的正构烷烃氯化衍生物,也是一类具有持久性、长距离迁移性、生物蓄积性和生物毒性的物质,对生态环境和人类健康安全存在潜在的风险。为了解市售背包中SCCPs的污染特征及健康风险,本文采用气相色谱-质谱联用法(GC-MS)测定29种常见品牌背包中SCCPs的含量,并采用健康风险评价模型初步评估背包中SCCPs对儿童和成人的健康风险。经检测,背包样品中SCCPs超标率为44.83%,检出率为86.2%。不同材质背包样本的SCCPs含量差异较大。其中,人造革为面料和聚酯纤维为里料的背包中SCCPs平均含量最低(0.06%),未超出(EU) 2015/2030指令规定的限值。风险结果表明,儿童和成人经皮肤接触吸收SCCPs的每日暴露量分别在0.78×10−3—7.70×10−3 µg·(kg·d)−1和1.70×10−3—1.68×10−2 µg·(kg·d)−1之间。不管是成人还是儿童,所有非致癌风险熵和致癌风险熵值均远远小于1,表明背包样中SCCPs对人体无明显健康风险。
  • 铬金属是我国《重金属污染综合防治“十二五”规划》重点防控的重金属之一,在自然界中铬主要以三价铬Cr(Ⅲ)和六价铬Cr(Ⅵ)的形式存在. 三价铬Cr(Ⅲ)稳定、低毒,是动植物必需的微量元素之一,但是六价铬Cr(Ⅵ)具有致癌性和致畸性,可以通过食物链蓄积放大,引起人体多器官功能衰竭、坏死[13]. 根据研究报道,铬污染在世界十大最具毒性的污染问题中排名第三,根据我国《生活饮用水卫生标准》,饮用水中Cr(Ⅵ)的最大可接受限值为0.05 mg L−1 [4]. 目前常用的修复水中铬污染的方法主要有离子交换、过滤、电化学沉淀、活性炭吸附、生物修复、膜分离等,这些传统的去除方法效果差,成本较高、复杂,修复周期长[56],而纳米零价铁(nZVI)因其独特的物理化学性质、无毒和经济性,被认为是能够有效进行Cr(Ⅵ)治理和修复的材料[78]. 纳米零价铁是一种粒径在1—100 nm的颗粒,具有比表面积大、吸附性和还原性强等特点,可用于环境中的Cr(Ⅵ)污染的治理和修复[911].

    nZVI作为一种广被研究和使用的环境纳米材料,早期研究集中在其性能及应用方面,主要进行溶液反应动力学、去除负荷、简单固相表征等研究,而对nZVI使用过程中的转化和最终归趋等科学问题尚未解决[1213]. 研究纳米零价铁颗粒在水环境中的结构性质演变将有助了解nZVI去除重金属中的效能和环境归趋[14]. 基于此,本课题组前期研究了纳米零价铁在Cr(Ⅵ)水相中的结构性能演变,发现初始的溶液pH、Cr(Ⅵ)浓度、反应时间等均对其结构性能演变产生影响[15]. 研究复杂环境条件下nZVI在Cr(Ⅵ)水相中的晶相结构演变,同时探究其对其它污染物去除效能的影响,对于预测去除重金属之后的反应产物在环境中的赋存状态、最终迁移归趋等具有重要的意义.

    本文主要研究了nZVI与不同浓度Cr(Ⅵ)(0—100 mg∙L−1)在不同环境条件下的反应特性,探究初始pH(2、3、4、5、7、9、11)、无机阴离子(Cl、CO32−、SO42−、NO3)、重金属离子(Co2+、Cd2+、Ni2+、Cu2+)共存条件下的Cr(Ⅵ)对nZVI晶相转化的影响. 采用电感耦合等离子体发射光谱仪(ICP-OES)跟踪反应中重金属离子浓度变化,X射线衍射仪(XRD)研究纳米零价铁在复杂环境条件中的晶相结构变化,扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电镜的晶格衍射条纹、选区花样衍射对反应产物结构形貌、物相进行表征. 该研究为nZVI及其产物在环境中的迁移、转化、归趋等提供实验数据和理论支撑.

    主要试剂:硼氢化钠(NaBH4,分析纯)购自美国西格玛奥德里奇有限公司,六水合氯化铁(FeCl3·6H2O,分析纯)、无水乙醇(C2H5OH,分析纯)、重铬酸钾(K2Cr2O7,优级纯)、氢氧化钠(NaOH,分析纯)、盐酸(HCl,分析纯)、微米零价铁(mZVI,分析纯)、纳米二氧化(nTiO2,分析纯)、聚合硫酸铁(PFS,分析纯)均购于中国国药控股股份有限公司.

    主要仪器:pH/ORP计(PHSJ-4A,上海仪电科学仪器股份有限公司);电子天平(MS 105DU,梅特勒-托利多集团);真空干燥箱(DZF-6020,上海精宏实验设备有限公司);蠕动泵(YZ1515x,保定兰格恒流泵有限公司);电动搅拌机(D2004W,上海司乐仪器有限公司).

    采用经典液相还原法[16]将NaBH4 (0.2 mol·L−1)逐滴加至FeCl3 (0.05 mol·L−1)溶液中制备得到nZVI,滴加完后继续搅拌20 min,整个过程均通氮气,其反应方程式为:

    stringUtils.convertMath(!{formula.content}) (1)

    新鲜制备得到的nZVI使用去离子水和无水乙醇各进行多次洗涤,之后低温(4℃)保存于无水乙醇中并测量固含量以备使用.

    纳米零价铁(nZVI)、微米零价铁(mZVI)、纳米二氧化钛(nTiO2)、聚合硫酸铁(PFS)4种材料投加到模拟电镀废水中(38.4 mg∙L−1)中反应2 h后,测定溶液中剩余铬的含量.

    初始浓度为50、100、200 mg∙L−1 Cr(Ⅵ)溶液中,分别投加0.5、1、2 g·L−1的nZVI,搅拌、定时取样,反应完成后固液分离,固相物质保存在酒精中保存待测.

    1 g∙L−1 nZVI投加到Cr(Ⅵ)浓度分别为10、20、50、100 mg∙L−1的Cr(Ⅵ)溶液,控制溶液初始pH为2—11,搅拌速率为310 r∙min−1,反应至2、6 h时测量溶液中铬的剩余浓度,并分离出固体保存. 上述方法获得的nZVI与新鲜的nZVI用于去除浓度均为100 mg·L−1的Cd2+、Cu2+废液,控制nZVI的投加量均为1 g·L−1,分别反应1、6 h后,收集水样检测溶液中Cd2+、Cu2+含量.

    配置10 mg·L−1 Co2+、Cd2+、Ni2+、Cu2+与10、20、50、100 mg·L−1 Cr(Ⅵ)的双金属溶液及20、50、200 mg·L−1 SO42−、NO3、Cl、CO32−与20 mg·L−1 Cr(Ⅵ)的溶液,在500 mL烧杯中加入250 mL的混合溶液,投加1 g∙L−1的nZVI,控制pH为5左右,搅拌速率为310 r∙min−1,反应2 h后,取样分析.

    采用电感耦合等离子体发射光谱仪(ICP-OES,Agilent 720ES)对水样中重金属含量进行测量. 将固体样品使用真空干燥箱(DZF-6020, 上海精宏实验设备有限公司)烘干后,采用扫描电子显微镜(SEM,TM3000,日本日立高新公司)、透射显微镜(TEM,EM-2100F,日本岛津公司)进行形貌结构分析.

    X射线衍射仪(XRD, Bruker D8 Advance)对纳米零价铁的晶相结构进行分析,采用Cu Kα射线,LiF单色仪,测试电流在40 kV和40 mA条件下进行,扫描角度(2θ)为10°到90°,扫描速度10(°)·min−1.

    为了比较不同水处理材料的去除效能,研究了nZVI、mZVI、nTiO2、PFS对于Cr(Ⅵ)的去除效率. 水处理材料的投加量分别为1、4、10 g·L−1,从图1a可以看出,nZVI具有比其他材料更高的去除效率,分别为88.0%、95.8%、98.4%,而mZVI对铬的去除率仅在10%—15%之间,其它两种材料去除效率更低. 因此nZVI是良好的重金属Cr(Ⅵ)的去除材料.

    图 1  不同因素对铬去除效果的影响
    Figure 1.  Effects of different factors on chromium removal
    (a)不同材料: nZVI、mZVI、nTiO2、PFS); 材料投加量: 1、4、10 g·L−1; 铬初始浓度为38.4 mg·L−1; (b) nZVI投加量: 0.5、1、2 g·L−1; (c) Cr(Ⅵ)的初始浓度50、100、200 mg·L−1; (d) 溶液初始pH: 2—11
    (a) different material: nZVI、mZVI、nTiO2、PFS; dosage of materials: 1、4、10 g·L−1; Initial chromium concentration: 38.4 mg·L−1; (b) dosage of nZVI: 0.5、1、2 g·L−1; (c) initial concentration of Cr(Ⅵ): 50、100、200 mg·L−1 ; (d) Initial pH of solution: 2—11

    改变nZVI投加量对铬去除效率的研究表明(图1b),当投加量为2 g·L−1,反应10 min,溶液中的Cr(Ⅵ)完全去除,而投加量为1 g·L−1的nZVI完全去除Cr(Ⅵ)需要20 min,0.5 g·L−1的nZVI在20 min对Cr(Ⅵ)的去除率达到80%以上. 选择1 g·L−1 nZVI为投加量进行后续实验.

    探究不同的Cr(Ⅵ)初始浓度对其去除效果的影响,Cr(Ⅵ)的初始浓度分别为50、100、200 mg·L−1,如图1c. 铬的初始浓度为50、100 mg·L−1时,在200 min时nZVI对铬的去除率接近100%,而铬初始浓度为200 mg·L−1时,去除效率只能达到60%左右. 铬的初始浓度越低,反应速率越快,去除效率越高. 这可能是由于纳米零价铁修复铬的过程一般在铁表面进行,主要以吸附还原为主,暴露在表面的nZVI被氧化成Fe2+和Fe3+,再进一步发生水解反应形成钝化膜,铬浓度较低时,形成的钝化膜不足以覆盖整个铁表面,反而形成原电池促进电子转移,当铬浓度较高时,铁表面形成的钝化层,阻止了nZVI与Cr6+之间的电子传递,导致反应速率降低[17].

    图1d探究了溶液初始pH(2、3、4、5、7、9、11)对铬去除效果的影响,1 g·L−1 nZVI在pH=2下与100 mg·L−1 Cr(Ⅵ)液反应2 h,对Cr(Ⅵ)的去除率为57.9%,在pH=5时去除率为18.5%,故随着pH值逐渐变大,对铬的去除率逐渐下降. 这可能是因为在酸性条件下,有利于Fe(0)的溶解,nZVI具有更强的释放电子能力,电子易与Cr(Ⅵ)结合生成Cr(Ⅲ);在碱性条件下,nZVI表面的Fe2+/Fe3+易与OH形成铁的氢氧化物阻止反应进行. 当Cr(Ⅵ)液的浓度为20、50 mg·L−1,pH在2—5之间时,nZVI对铬的去除效率没有明显变化,而pH>5时,去除效率开始明显下降,故本研究选择在pH=5进行相关实验研究.

    图2为不同溶液初始pH的条件下nZVI与20 mg·L−1 Cr反应2 h后固体产物的XRD谱图. 当pH<5时,只能观察到γ-FeOOH的衍射峰. 当pH=5时,可以观察到γ-FeOOH和Fe(0)的衍射峰,铁氧化有所减缓. 随着pH逐渐升高,Fe(0)的峰开始出现. 在pH>7时,只能观察到Fe(0)的峰,表明酸性Cr溶液促进nZVI的腐蚀,主要腐蚀产物为γ-FeOOH[18].

    图 2  nZVI在不同初始pH(2—11)的Cr (20 mg∙L−1)液中反应2 h的XRD图(L: γ-FeOOH)
    Figure 2.  XRD patterns of nZVI in Cr (20 mg∙L−1) solution at different initial pH(2—11) for 2 h

    在20 mg·L−1的铬液中nZVI反应2 h后样品的TEM图如图3. 从图3可以看出,不同的pH下,结构形貌表现出较大的差异:新鲜nZVI呈链球状,而不同pH条件下氧化后产物出现片状和针状结构. pH=3时,Cr-nZVI中有少量链球状结构存在. 随着pH升高,不规则的链球状结构逐渐增多,球型结构由边界模糊逐渐变得分明,根据文献知悉成分是铁氧化物和CrxFe1-x(OH)3 [1920]. 根据XRD分析(图2),pH>7时,与Cr(Ⅵ)反应后Cr-nZVI主要是Fe(0)的形式.

    图 3  nZVI在不同初始pH的铬溶液(20 mg∙L−1)中氧化2 h的TEM图
    Figure 3.  TEM images of nZVI oxidized for 2 h in chromium solution (20 mg∙L−1) at different initial pH
    (a) pH=2, (b) pH=3, (c) pH=4, (d) pH=5, (e) pH=7, (f) pH=9, (g) pH=11, (h) 新鲜nZVI
    (a) pH=2, (b) pH=3, (c) pH=4, (d) pH=5, (e) pH=7, (f) pH=9, (g) pH=11, (h) fresh nZVI

    nZVI的等电位点为8.2,当溶液pH小于7时,nZVI表面带正电荷[8],有利于吸附带有负电荷的Cr(Ⅵ);此外H+可以促进HCrO4和CrO42−还原为Cr3+,且pH较低时,铁腐蚀会产生大量H+和Fe2+,可进一步促进Cr(Ⅵ)还原[2122],如反应方程式(2—7). 当溶液由酸性变为碱性时,nZVI会在铁的表面生成铁氧化物或铁络合物,阻止电子传递,导致铁氧化速率下降[23].

    stringUtils.convertMath(!{formula.content}) (2)
    stringUtils.convertMath(!{formula.content}) (3)
    stringUtils.convertMath(!{formula.content}) (4)
    stringUtils.convertMath(!{formula.content}) (5)
    stringUtils.convertMath(!{formula.content}) (6)
    stringUtils.convertMath(!{formula.content}) (7)

    为探究溶液中共存重金属对nZVI反应后晶相演变的影响,实验选取Co2+、Cd2+、Ni2+、Cu2+等4种重金属离子,研究nZVI在双金属(铬:20 mg·L−1,重金属:10 mg·L−1)体系中反应2 h的固体产物的晶相演变,XRD如图4a. 可以看出nZVI在单一铬金属中反应2 h后(pH=5),能够观察到Fe(0)和γ-FeOOH的衍射峰. 当含铬溶液中含有Cd、Co金属时,nZVI完全转化为纤铁矿;而Cr溶液中共存Ni和Cu金属时,nZVI晶相逐渐中转化为纤铁矿和针铁矿混合物. 同时,在含Cu2+的溶液中,能够观察到氧化亚铜晶相物质存在. nZVI在含铬-重金属溶液中反应2 h后表面形貌如图5所示,在未添加其它4种重金属离子时,与铬反应后固相产物主要呈球状、片状、针状结构,添加重金属后,固相产物链球状结构明显减少,片状和针状结构显著增多,重金属的存在对nZVI自身结构演变有巨大影响.

    图 4  (a) pH=5时nZVI在铬(20 mg∙L−1)与重金属(10 mg∙L−1)混合液中反应2 h的XRD(L: γ-FeOOH, G: α-FeOOH), (b) 重金属与纳米零价铁反应机制
    Figure 4.  (a) XRD patterns of nZVI in chromium (20 mg∙L−1) mixed with heavy metal (10 mg∙L−1) for 2 h (pH=5) (L: γ-FeOOH, G: α-FeOOH), (b) Mechanisms of nZVI reactions with heavy metal
    图 5  pH=5时nZVI在铬(20 mg∙L−1)与重金属(10 mg∙L−1)混合液中氧化2 h的SEM图
    Figure 5.  SEM images of nZVI oxidized for 2 h in chromium solution (20 mg∙L−1) mixed with heavy metal (10 mg∙L−1) (pH=5), (a) Cd, (b) Co, (c) Cu, (d) Ni, (e) only Cr, (f) fresh nZVI
    (a) Cd, (b) Co, (c) Cu, (d) Ni, (e) 只含Cr, (f) 新鲜nZVI

    纳米零价铁具有类金属或类配体的配位性质,这与溶液的化学性质有关. 当溶液pH低于纳米零价铁的等电点(pHzpc=8.2)时[8],铁表面带正电荷,会吸引配体(如磷酸盐),当溶液pH高于纳米零价铁的等电点时,铁表面带负电荷,能与阳离子(如金属离子)形成表面络合物. 从经典的电化学来看,铁可以作为电子供体或还原剂,还原和沉淀活性较低的金属离子,铁表面结构也随之发生变化. Fe(Ⅱ) (−0.44 V)的标准电势低于镉Cd(Ⅱ) (−0.40 V)、Co(Ⅱ) (−0.28 V)、Cu(Ⅱ) (+0.34 V)、Ni(Ⅱ) (−0.24 V),因此这些重金属很容易被nZVI还原,如图4 b,nZVI与重金属之间形成了原电池腐蚀,nZVI表面氧化层能促进重金属吸附到nZVI表面,铁作为阳极,发生氧化反应失去电子,表面被腐蚀,重金属氧化还原电位较高,作为阴极,发生还原反应得到电子,最终形成铁氢氧化物沉淀或者重金属-铁络合物,铁晶相结构发生改变.

    Cr-nZVI在不同重金属离子中的晶相转化与其氧化还原电位有关,不同重金属促进nZVI晶相转化的原理有差异. 由于Cu(Ⅱ) (+0.34 V)的标准还原电位远高于Fe(Ⅱ) (-0.44 V),在酸性条件下,能与铁形成原电池,铁作为正极发生强烈腐蚀,结构发生改变. 由于铜离子比较少,从而使得氧化亚铜的生成. nZVI与铜离子反应,会将铜离子还原成Cu和Cu2O [2425],反应方程式如下:

    stringUtils.convertMath(!{formula.content}) (8)
    stringUtils.convertMath(!{formula.content}) (9)

    图4,加入铜离子后nZVI反应产物由γ-FeOOH、α-FeOOH、Cu2O和混合相,由于针铁矿的热稳定性更高,γ-FeOOH可能在Fe2+的作用下转化为α-FeOOH[19, 26].

    由于Ni(Ⅱ) (-0.24 V)的标准还原电位略高于Fe(Ⅱ) (-0.44 V),因此nZVI对Ni(Ⅱ)的去除主要是通过还原和吸附的方式实现. 在反应初始阶段,Ni(Ⅱ)通过物理吸附被吸引到铁表面,通过化学吸附强烈结合,与nZVI表面的OH形成微溶物,通过不断消耗nZVI氧化形成的OH,促进nZVI表面腐蚀转化为铁(氢)氧化物,金属离子逐渐还原为金属镍[27],反应方程式如下:

    stringUtils.convertMath(!{formula.content}) (10)
    stringUtils.convertMath(!{formula.content}) (11)
    stringUtils.convertMath(!{formula.content}) (12)

    Co((Ⅱ) (-0.28 V)的标准还原电位略高于Fe(Ⅱ) (-0.44 V),反应机制和Ni(Ⅱ)相似. 由于Cd(Ⅱ) (-0.40 V)的氧化还原电位与Fe(Ⅱ) (-0.44 V)接近,去除Cd的反应机制不涉及还原反应,主要通过吸附或形成表面配合物去除. Cd(Ⅱ)吸附到nZVI表面,与nZVI氧化产生的OH形成Cd(OH)2沉淀,促进nZVI不断腐蚀氧化形成铁(氢)氧化物[2829].

    天然水体中往往存在Cl、CO32−、SO42−、NO3等离子,研究共存阴离子的影响对于nZVI应用于天然水体中铬污染修复具有重要意义. 本实验研究nZVI在浓度为(10、20、50、100 mg·L−1) Cr(Ⅵ)溶液中,同时共存阴离子浓度分别为20、50、200 mg·L−1,反应2 h的固相演变. nZVI在铬(10 mg∙L−1)与阴离子(50、200 mg∙L−1)反应2 h后物相图如图6a、b所示,4种阴离子对nZVI的晶相转化均有抑制作用,可以观察到Fe(0)和其它铁(氢)氧化物的衍射峰,其中CO32−抑制作用最明显,只能观察到Fe(0)的衍射峰. 4种阴离子起钝化作用,可能是形成的铁氧化物在沉降到nZVI时,会带入吸附的阴离子,从而阻塞了nZVI的还原位点,降低了nZVI的反应活性[30].

    图 6  pH=5时nZVI在铬与阴离子混合液中反应2 h的XRD
    Figure 6.  XRD patterns of nZVI reacting in a mixture of chromium and anion for 2 h (pH=5)
    (a) Cr: 10 mg∙L−1, 阴离子: 50 mg∙L−1, (b) Cr: 10 mg∙L−1, 阴离子: 200 mg∙L−1, (c) Cr: 20 mg∙L−1, 阴离子: 20 mg∙L−1, (d) Cr: 20 mg∙L−1, 阴离子: 50 mg∙L−1, (e) Cr: 50 mg∙L−1, 阴离子: 50 mg∙L−1, (f) Cr: 0、10、20、50、100 mg∙L−1 (L: γ-FeOOH, M: γ-Fe2O3/Fe3O4
    (a) Cr: 10 mg∙L−1, anion: 50 mg∙L−1, (b) Cr: 10 mg∙L−1, anion: 200 mg∙L−1, (c) Cr: 20 mg∙L−1, anion: 20 mg∙L−1, (d) Cr: 20 mg∙L−1, anion: 50 mg∙L−1, (e) Cr: 50 mg∙L−1, anion: 50 mg∙L−1, (f) Cr: 0,10,20,50,100 mg∙L−1 (L: γ-FeOOH, M: γ-Fe2O3/Fe3O4

    铬(20 mg∙L−1)与阴离子(20 mg∙L−1)反应2 h时(图6c),除CO32−外,其它3种离子的加入都在一定程度上促进Fe(0)转化为γ-FeOOH和γ-Fe2O3/Fe3O4,Fe(0)衍射峰减弱,能明显地观察到γ-FeOOH和 γ-Fe2O3/Fe3O4的衍射峰. 加入SO42−反应2 h后碱性增强,SO42−的存在可能破坏保护nZVI表面氧化膜,置换nZVI表面的OH,与铁离子形成单配位基和双配位基复合物,从而加速铁的腐蚀[3132]. NO3存在下的溶液反应后pH为6.85,呈弱酸性,NO3能被纳米零价铁还原(E0(NO3/NO2)=0.01 V),从而促进纳米零价铁的腐蚀,并对表面起到一定的剥蚀作用[33]. 当阴离子为50 mg∙L−1时(图6d),共存离子为Cl和CO32−时,只发现Fe(0)的电子衍射峰,由于阴离子不存在的条件下产生γ-FeOOH衍射峰,说明此时共存Cl和CO32−对nZVI的氧化有明显抑制作用,Cl对nZVI晶相转化的影响与浓度有关,低浓度促进nZVI 腐蚀,高浓度起钝化作用.

    当Cr≥50 mg∙L−1时,只能观察到Fe(0)的衍射峰,高浓度Cr抑制nZVI发生晶相转化,如图6e、f,根据Huang等研究,Cr(Ⅵ)浓度较低时(≤20 mg∙L−1),nZVI腐蚀速率加快,Cr(Ⅵ)浓度较高(Cr≥50 mg∙L−1)时,零价铁表面形成CrxFe1-xOOH或CrxFe1-x(OH)3钝化层,抑制nZVI腐蚀,因此铬浓度较高(Cr≥50 mg∙L−1)时,4种阴离子对nZVI的腐蚀及晶相转化作用不明显[34].

    用透射电镜对nZVI在含有200 mg∙L−1 CO32−和Cl的铬液(Cr: 10 mg∙L−1)反应2 h前后的固相产物进行了详细研究,如图7. 新鲜的纳米零价铁(图7a)呈链球状,核壳结构明显,纳米零价铁在不含阴离子的铬液(10 mg∙L−1)反应2 h后的形貌如图7b所示,呈链球状、片状和针状结构,结合图6a XRD,主要为Fe(0)和γ-FeOOH和γ-Fe2O3/Fe3O4. 在Cl存在下反应后固体的低分辨率透射电镜图谱中观察到片层状结构(图7c),高分辨率的电子显微镜显示了晶格条纹间距为0.2501、0.2467、0.2059 nm(图7d),分别对应于Fe2O3的(110)面、γ-FeOOH的(130)面、Fe(110)面. 对在Cl存在下反应后的固体进行选区电子衍射(图7e),可以观察到γ-FeOOH(040)晶面、Fe2O3(121)和(113)面、Fe(200)晶面、Fe3O4(554)晶面.

    图 7  pH=5时nZVI在铬(10 mg∙L−1)与阴离子(200 mg∙L−1)的混合液中氧化2 h的TEM图
    Figure 7.  TEM images of nZVI oxidized for 2 h in chromium solution (10 mg∙L−1) mixed with anion (200 mg∙L−1) (pH=5)
    (a) 仅有Cr, (b) 新鲜nZVI, (c) Cl存在下的nZVI低分辨率TEM图, (d) Cl存在下nZVI的高分辨率TEM图, (e) Cl存在下nZVI的TEM选区衍射图, (f) CO32−存在下的nZVI低分辨率TEM图, (g) CO32−存在下nZVI的高分辨率TEM图, (h) CO32−存在下nZVI的TEM选区衍射图
    (a) only Cr, (b) fresh nZVI, (c) Low resolution TEM images (Cl), (d) High resolution TEM images (Cl), (e) TEM-SEAD images (Cl), (f) Low resolution TEM images (CO32−), (g) High resolution TEM images (CO32−), (h) TEM-SEAD images (CO32−

    结合图6a、b,Cl能够抑制Fe(0)转化为铁氧化物. 当铬浓度为20 mg∙L−1时,Cl为20 mg∙L−1时能促进Fe(0)转化为γ-FeOOH和γ-Fe2O3/Fe3O4,Cl促进nZVI发生腐蚀而发生晶相转化,通常有两个原因,一是Cl能够击穿nZVI表面氧化膜,促进内部铁提供电子能力,进一步发生腐蚀[35];二是Cl能促进铁的局部腐蚀,形成不规则的坑形,而铁表面的坑形提供了新的反应位点,促进nZVI氧化[36]. 而当铬浓度为20 mg∙L−1时,Cl为50 mg∙L−1时能抑制Fe(0)转化为其它铁(氢)氧化物,如图6d,这可能是Cl竞争性结合nZVI的表面位点,抑制nZVI发生氧化[37]. 因此Cl对nZVI的腐蚀作用及晶相转化与浓度有关.

    在CO32−存在下反应后固体的低分辨透射电镜图谱中观察到链球状结构(图7f),在高分辨率的图谱中观察到明显的核壳结构,选区电子衍射(图7e)可以观察到Fe(110)晶面,说明此时nZVI的晶体结构仍未发生转化,CO32−对nZVI的氧化有很强的抑制作用. 加入CO32−后,反应2 h后测得溶液pH达到9.6,这可能是CO32−使溶液pH升高,OH与Fe2+/Fe3+形成了铁的氢氧化物附着在nZVI表面,形成钝化膜,CO32−也会在铁氧化物表面形成竞争吸附位点,抑制nZVI发生腐蚀[38]. 有关共存阴离子对于晶相结构转化的影响机理将在以后的工作中进一步的阐明.

    (1) nZVI的投加量、铬的初始浓度、溶液初始pH对铬的去除效率有较大影响. 随着nZVI投加量的提高,对铬的去除率也提高;随着铬初始浓度的增加和溶液初始pH的增加,对铬的去除率逐渐下降. 对于不同去除重金属的材料(nZVI、mZVI、nTiO2、PFS),nZVI是最佳去铬的实验材料.

    (2) pH对nZVI的结构演变影响很大. 不同pH条件下,nZVI氧化程度不同,酸性越强,对铬的去除率越高但nZVI的腐蚀程度也较大,主要转化为铁的氧化物和氢氧化物.

    (3) 共存重金属离子影响Cr-nZVI的结构演变. 4种重金属离子(Co2+、Cd2+、Ni2+、Cu2+)均能够加速nZVI腐蚀,在铬浓度为20 mg∙L−1时,加入Co2+和Cd2+,Fe(0)转化为γ-FeOOH,加入Ni2+、Cu2+后,产生新的α-FeOOH.

    (4) nZVI的晶相演变同时受到Cr离子的浓度和阴离子的浓度的影响. Cr浓度为10 mg∙L−1时,4种阴离子抑制nZVI氧化,Cr浓度为20 mg∙L−1时,共存的SO42−、NO3促进Fe(0)转化为γ-FeOOH和γ-Fe2O3/Fe3O4,CO32−抑制nZVI发生氧化,低浓度(20 mg∙L−1)的Cl促进nZVI氧化,高浓度(200 mg∙L−1)Cl抑制nZVI氧化为γ-FeOOH和γ-Fe2O3、Fe3O4. CO32−对nZVI的腐蚀有极强的抑制作用,高浓度的Cr抑制nZVI发生晶相转化.

  • 图 1  背包样品总离子流色谱图

    Figure 1.  TIC chromatogram of schoolbag samples

    表 1  人体健康风险评估参数值

    Table 1.  Parameters used for human risk assessment modelling

    参数名称Parameter单位Unit参考值Value参考文献Ref.
    AFg·m−22.00(儿童)、7.00(成人)[10]
    ABS0.14[11]
    SAm20.0089(儿童)、0.0161(成人)[14]
    BWkg15(儿童)、58.6(成人)[14]
    上下学/通勤时间h0.45(儿童)、0.60(成人)[15-16]
    RfDμg·(kg·d)−111(致癌)、100(非致癌)[13]
    参数名称Parameter单位Unit参考值Value参考文献Ref.
    AFg·m−22.00(儿童)、7.00(成人)[10]
    ABS0.14[11]
    SAm20.0089(儿童)、0.0161(成人)[14]
    BWkg15(儿童)、58.6(成人)[14]
    上下学/通勤时间h0.45(儿童)、0.60(成人)[15-16]
    RfDμg·(kg·d)−111(致癌)、100(非致癌)[13]
    下载: 导出CSV

    表 2  背包样品中SCCPs含量

    Table 2.  Concentrations of SCCPs in schoolbag samples

    编号 No.浓度/(mg·kg−1) ConcentrationSCCPs含量/‰ Mass ratio是否超标 Over proof or not
    121652.17
    2nd
    332633.26
    437793.78
    54110.41
    6710.07
    7nd
    8nd
    9890.09
    1030173.012
    1199099.91
    J176917.69
    J220612.06
    J34500.45
    J42870.29
    J52750.28
    J63670.37
    J710501.05
    J88340.83
    J916481.65
    J1014,83314.83
    J1197329.73
    J1213451.35
    J1315051.51
    J149800.98
    J152980.30
    J1610,76810.77
    J179,8009.80
    J18nd
      1) nd,低于检出限。nd,below limit of detection.
    编号 No.浓度/(mg·kg−1) ConcentrationSCCPs含量/‰ Mass ratio是否超标 Over proof or not
    121652.17
    2nd
    332633.26
    437793.78
    54110.41
    6710.07
    7nd
    8nd
    9890.09
    1030173.012
    1199099.91
    J176917.69
    J220612.06
    J34500.45
    J42870.29
    J52750.28
    J63670.37
    J710501.05
    J88340.83
    J916481.65
    J1014,83314.83
    J1197329.73
    J1213451.35
    J1315051.51
    J149800.98
    J152980.30
    J1610,76810.77
    J179,8009.80
    J18nd
      1) nd,低于检出限。nd,below limit of detection.
    下载: 导出CSV

    表 3  18个背包样品基本信息

    Table 3.  Basic information of schoolbag samples

    编号No.材质 MaterialSCCPs含量/‰ Mass ratio
    J1面料:尼龙 里料:聚酯纤维7.69
    J2面料:聚酯纤维 里料:聚酯纤维2.06
    J3面料:聚酯纤维+EVA 里料:聚酯纤维0.45
    J4面料:尼龙 里料:聚酯纤维0.29
    J5面料:聚酯纤维 里料:聚酯纤维0.28
    J6面料:PU合成革 里料:聚酯纤维0.37
    J7面料:聚酯纤维+EVA+PU 里料:聚酯纤维1.05
    J8面料:人造革 里料:聚酯纤维0.83
    J9面料:聚酯纤维 里料:聚酯纤维1.65
    J10面料:聚酯纤维+PU/EVA 里料:聚酯纤维14.83
    J11面料:聚酯纤维+EVA 里料:聚酯纤维9.73
    J12面料:聚酯纤维 里料:聚酯纤维1.35
    J13面料:聚酯纤维 里料:聚酯纤维1.51
    J14面料:聚酯纤维+PU/EVA 里料:聚酯纤维0.98
    J15面料:聚酯纤维+PU/EVA 里料:聚酯纤维0.30
    J16面料:聚酯纤维 里料:聚酯纤维10.77
    J17面料:聚酯纤维+PU/EVA 里料:聚酯纤维9.80
    J18面料:尼龙 里料:聚酯纤维-
    编号No.材质 MaterialSCCPs含量/‰ Mass ratio
    J1面料:尼龙 里料:聚酯纤维7.69
    J2面料:聚酯纤维 里料:聚酯纤维2.06
    J3面料:聚酯纤维+EVA 里料:聚酯纤维0.45
    J4面料:尼龙 里料:聚酯纤维0.29
    J5面料:聚酯纤维 里料:聚酯纤维0.28
    J6面料:PU合成革 里料:聚酯纤维0.37
    J7面料:聚酯纤维+EVA+PU 里料:聚酯纤维1.05
    J8面料:人造革 里料:聚酯纤维0.83
    J9面料:聚酯纤维 里料:聚酯纤维1.65
    J10面料:聚酯纤维+PU/EVA 里料:聚酯纤维14.83
    J11面料:聚酯纤维+EVA 里料:聚酯纤维9.73
    J12面料:聚酯纤维 里料:聚酯纤维1.35
    J13面料:聚酯纤维 里料:聚酯纤维1.51
    J14面料:聚酯纤维+PU/EVA 里料:聚酯纤维0.98
    J15面料:聚酯纤维+PU/EVA 里料:聚酯纤维0.30
    J16面料:聚酯纤维 里料:聚酯纤维10.77
    J17面料:聚酯纤维+PU/EVA 里料:聚酯纤维9.80
    J18面料:尼龙 里料:聚酯纤维-
    下载: 导出CSV

    表 4  不同材质中SCCPs平均含量

    Table 4.  The mean concentrations of SCCPs in different materials

    材质 Material样本编号 Sample IDSCCPs平均含量/% Average mass ratio
    面料:尼龙 里料:聚酯纤维J1、J4、J180.40
    面料:聚酯纤维 里料:聚酯纤维J2 、J5 、J9、 J12 、J13 、J160.26
    面料:聚酯纤维+EVA/PU 里料:聚酯纤维J3、 J7 、J10 、J11、J14 、J15 、J170.53
    面料:人造革 里料:聚酯纤维J6、J80.06
    材质 Material样本编号 Sample IDSCCPs平均含量/% Average mass ratio
    面料:尼龙 里料:聚酯纤维J1、J4、J180.40
    面料:聚酯纤维 里料:聚酯纤维J2 、J5 、J9、 J12 、J13 、J160.26
    面料:聚酯纤维+EVA/PU 里料:聚酯纤维J3、 J7 、J10 、J11、J14 、J15 、J170.53
    面料:人造革 里料:聚酯纤维J6、J80.06
    下载: 导出CSV

    表 5  本研究中背包样品的健康风险评价结果

    Table 5.  Results of health risk assessment of schoolbag samples used in this study

    人群People数据类型Data type暴露量/(μg·(kg·d)−1)Exposure非致癌风险熵Non-neoplastic HQ致癌风险熵Neoplastic HQ
    最大值7.70×10−37.7×10−57.0×10−4
    儿童中位数0.78×10−37.8×10−67.1×10−5
    平均值1.55×10−31.6×10−51.4×10−4
    最大值1.68×10−21.7×10−41.5×10−3
    成人中位数1.70×10−31.7×10−51.5×10−4
    平均值3.43×10−33.4×10−53.1×10−4
    人群People数据类型Data type暴露量/(μg·(kg·d)−1)Exposure非致癌风险熵Non-neoplastic HQ致癌风险熵Neoplastic HQ
    最大值7.70×10−37.7×10−57.0×10−4
    儿童中位数0.78×10−37.8×10−67.1×10−5
    平均值1.55×10−31.6×10−51.4×10−4
    最大值1.68×10−21.7×10−41.5×10−3
    成人中位数1.70×10−31.7×10−51.5×10−4
    平均值3.43×10−33.4×10−53.1×10−4
    下载: 导出CSV
  • [1] 朱志保, 周琴, 赵远. 短链氯化石蜡的研究进展 [J]. 化工进展, 2015, 34(8): 3165-3172,3187.

    ZHU Z B, ZHOU Q, ZHAO Y. Research progress of short chain chlorinated paraffins [J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3165-3172,3187(in Chinese).

    [2] 杨立新, 刘印平, 王丽英, 等. 短链氯化石蜡毒性效应及检测技术研究进展 [J]. 食品安全质量检测学报, 2015, 6(10): 3795-3803.

    YANG L X, LIU Y P, WANG L Y, et al. Research advances on toxic effect and detection technology of short chain chlorinated paraffins [J]. Journal of Food Safety & Quality, 2015, 6(10): 3795-3803(in Chinese).

    [3] LIU L H, LI Y F, COELHAN M, et al. Relative developmental toxicity of short-chain chlorinated paraffins in Zebrafish (Danio rerio) embryos [J]. Environmental Pollution, 2016, 219: 1122-1130. doi: 10.1016/j.envpol.2016.09.016
    [4] 李勋, 刘钰晨, 陈敏杰, 等. 短链氯化石蜡急性暴露对SD雄性大鼠的组织病理学影响 [J]. 江汉大学学报(自然科学版), 2013, 41(5): 20-25.

    LI X, LIU Y C, CHEN M J, et al. Influence on rats' histopathology under exposing of short chain chlorinated paraffins [J]. Journal of Jianghan University (Natural Science Edition), 2013, 41(5): 20-25(in Chinese).

    [5] 林伟. 塑料供水管道中短链氯化石蜡检测技术研究 [J]. 塑料工业, 2016, 44(9): 103-105,111. doi: 10.3969/j.issn.1005-5770.2016.09.025

    LIN W. Study on the detection techniques of short chain chlorinated paraffins in plastic water supply pipe [J]. China Plastics Industry, 2016, 44(9): 103-105,111(in Chinese). doi: 10.3969/j.issn.1005-5770.2016.09.025

    [6] 李玉娟. 短链氯化石蜡于不同合成材料运动场地中的检出研究 [J]. 化工管理, 2017(21): 45. doi: 10.3969/j.issn.1008-4800.2017.21.041

    LI Y J. Study on the detection of short-chain chlorinated paraffin in different synthetic material sports grounds [J]. Chemical Enterprise Management, 2017(21): 45(in Chinese). doi: 10.3969/j.issn.1008-4800.2017.21.041

    [7] 于智睿, 陈振玲, 李晶, 等. 塑料玩具中短链氯化石蜡含量检测 [J]. 中国塑料, 2019, 33(8): 95-100.

    YU Z R, CHEN Z L, LI J, et al. Determination of short chain-chlorinated paraffin in plastic toys [J]. China Plastics, 2019, 33(8): 95-100(in Chinese).

    [8] THOMAS G O, FARRAR D, BRAEKEVELT E, et al. Short and medium chain length chlorinated paraffins in UK human milk fat [J]. Environment International, 2006, 32(1): 34-40. doi: 10.1016/j.envint.2005.04.006
    [9] RETH M, ZENCAK Z, OEHME M. New quantification procedure for the analysis of chlorinated paraffins using electron capture negative ionization mass spectrometry [J]. Journal of Chromatography A, 2005, 1081(2): 225-231. doi: 10.1016/j.chroma.2005.05.061
    [10] WANG P W, ZHAO N, CUI Y, et al. Short-chain chlorinated paraffin (SCCP) pollution from a CP production plant in China: Dispersion, congener patterns and health risk assessment [J]. Chemosphere, 2018, 211: 456-464. doi: 10.1016/j.chemosphere.2018.07.136
    [11] WANG Y L, HU J X, LIN W, et al. Health risk assessment of migrant workers' exposure to polychlorinated biphenyls in air and dust in an e-waste recycling area in China: Indication for a new wealth gap in environmental rights [J]. Environment International, 2016, 87: 33-41. doi: 10.1016/j.envint.2015.11.009
    [12] LIU L H, MA W L, LIU L Y, et al. Occurrence, sources and human exposure assessment of SCCPs in indoor dust of northeast China [J]. Environmental Pollution, 2017, 225: 232-243. doi: 10.1016/j.envpol.2017.03.008
    [13] IPCS (International Programme on Chemical Safety), 1996. Chlorinated paraffins. World Health Organization, Geneva, 181 pp. (Environmental Health Criteria 181).
    [14] 李如忠, 周爱佳, 童芳, 等. 合肥市城区地表灰尘重金属分布特征及环境健康风险评价 [J]. 环境科学, 2011, 32(9): 2661-2668.

    LI R Z, ZHOU A J, TONG F, et al. Distribution of metals in urban dusts of Hefei and health risk assessment [J]. Environmental Science, 2011, 32(9): 2661-2668(in Chinese).

    [15] 刘爱玲, 李艳平, 崔朝辉, 等. 我国中小学生学习日平均活动时间分析 [J]. 中国学校卫生, 2006, 27(6): 473-475. doi: 10.3969/j.issn.1000-9817.2006.06.013

    LIU A L, LI Y P, CUI Z H, et al. Analysis on average time of physical activity in a school day among Chinese students [J]. Chinese Journal of School Health, 2006, 27(6): 473-475(in Chinese). doi: 10.3969/j.issn.1000-9817.2006.06.013

    [16] 住房和城乡建设部. 2020年度全国主要城市通勤监测报告 [R]. 2020.

    Ministry of Housing and Urban-Rural Development. Commuting Monitoring Report of Major Cities in China in 2020 [R]. 2020 (in Chinese).

    [17] 田恺, 于智睿, 于燕燕. 儿童玩具中短链氯化石蜡检测研究进展 [J]. 离子交换与吸附, 2016, 32(2): 185-192.

    TIAN K, YU Z R, YU Y Y. Research progress of detection of short-chain chlorinated PARAFFINS(SCCPs) in plastic toys [J]. Ion Exchange and Adsorption, 2016, 32(2): 185-192(in Chinese).

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.9 %DOWNLOAD: 4.9 %HTML全文: 89.1 %HTML全文: 89.1 %摘要: 6.0 %摘要: 6.0 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 95.9 %其他: 95.9 %XX: 2.2 %XX: 2.2 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.8 %北京: 0.8 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.1 %唐山: 0.1 %广州: 0.4 %广州: 0.4 %滨州: 0.1 %滨州: 0.1 %漯河: 0.1 %漯河: 0.1 %潍坊: 0.1 %潍坊: 0.1 %石家庄: 0.1 %石家庄: 0.1 %银川: 0.1 %银川: 0.1 %其他XX内网IP北京哈尔滨唐山广州滨州漯河潍坊石家庄银川Highcharts.com
图( 1) 表( 5)
计量
  • 文章访问数:  3645
  • HTML全文浏览数:  3645
  • PDF下载数:  80
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-04-16
  • 录用日期:  2022-01-13
  • 刊出日期:  2022-03-27
陈晓玉, 王志方, 高小中, 丁腾达, 巫承洲, 鲍恋君, 李菊英. 背包中短链氯化石蜡污染特征分析及其健康风险评价[J]. 环境化学, 2022, 41(3): 893-899. doi: 10.7524/j.issn.0254-6108.2020102604
引用本文: 陈晓玉, 王志方, 高小中, 丁腾达, 巫承洲, 鲍恋君, 李菊英. 背包中短链氯化石蜡污染特征分析及其健康风险评价[J]. 环境化学, 2022, 41(3): 893-899. doi: 10.7524/j.issn.0254-6108.2020102604
CHEN Xiaoyu, WANG Zhifang, GAO Xiaozhong, DING Tengda, WU Chengzhou, BAO Lianjun, LI Juying. Pollution characteristic analysis and risk assessment of SCCPs in backpacks[J]. Environmental Chemistry, 2022, 41(3): 893-899. doi: 10.7524/j.issn.0254-6108.2020102604
Citation: CHEN Xiaoyu, WANG Zhifang, GAO Xiaozhong, DING Tengda, WU Chengzhou, BAO Lianjun, LI Juying. Pollution characteristic analysis and risk assessment of SCCPs in backpacks[J]. Environmental Chemistry, 2022, 41(3): 893-899. doi: 10.7524/j.issn.0254-6108.2020102604

背包中短链氯化石蜡污染特征分析及其健康风险评价

    通讯作者: Tel:+86-0755-26733095,E-mail:jyli@szu.edu.cn
  • 1. 深圳大学化学与环境工程学院,深圳,518060
  • 2. 暨南大学环境学院,广州,511443
基金项目:
国家重点研发计划项目 (2018YFF0214802)和深圳市科技计划项目(JCYJ20190808152817031)资助

摘要: 短链氯化石蜡(SCCPs)是一类含碳原子数为10—13的正构烷烃氯化衍生物,也是一类具有持久性、长距离迁移性、生物蓄积性和生物毒性的物质,对生态环境和人类健康安全存在潜在的风险。为了解市售背包中SCCPs的污染特征及健康风险,本文采用气相色谱-质谱联用法(GC-MS)测定29种常见品牌背包中SCCPs的含量,并采用健康风险评价模型初步评估背包中SCCPs对儿童和成人的健康风险。经检测,背包样品中SCCPs超标率为44.83%,检出率为86.2%。不同材质背包样本的SCCPs含量差异较大。其中,人造革为面料和聚酯纤维为里料的背包中SCCPs平均含量最低(0.06%),未超出(EU) 2015/2030指令规定的限值。风险结果表明,儿童和成人经皮肤接触吸收SCCPs的每日暴露量分别在0.78×10−3—7.70×10−3 µg·(kg·d)−1和1.70×10−3—1.68×10−2 µg·(kg·d)−1之间。不管是成人还是儿童,所有非致癌风险熵和致癌风险熵值均远远小于1,表明背包样中SCCPs对人体无明显健康风险。

English Abstract

  • 短链氯化石蜡(short chain chlorinated paraffins,简称SCCPs)是一类含碳原子数为10—13的正构烷烃氯化衍生物,其分子式为CxH(2x-y+2)Cly(其中x=10—13,y=1—13),氯化程度范围为16%—78%。由于SCCPs具有挥发性低、阻燃性好、电绝缘性好及价格低廉等性能,常作为金属加工润滑剂、密封剂、阻燃剂、塑料添加剂等广泛应用于电缆电线、塑料、橡胶等生产。据统计,SCCPs在美洲和欧洲的年总产量为7.5—11.3千吨。而我国作为世界上最大的氯化石蜡生产国和出口国, 2009年氯化石蜡的产量已达100万吨,其中就包含大量的SCCP[1]。毒理学研究表明,SCCPs是一类具有持久性、远距离迁移性、生物蓄积性和生物毒性的物质,对生态环境和人类健康安全存在潜在的风险[2]。例如,SCCPs对啮齿动物、水生生物、鸟类等具有一定的毒性,会使其肝肾等器官发生病变,甚至导致某些生物的卵和胚胎发生畸形或死亡。Liu等[3]将斑马鱼胚胎暴露于SCCPs溶液培养一段时间后发现,斑马鱼胚胎出现存活率下降、发育异常、畸形等症状,且C10-SCCPs毒性高于C12-SCCPs。李勋等[4]将SD雄性小鼠暴露于两种SCCPs含量不同的氯化石蜡产品中,经口连续灌胃暴露14 d后,两种氯化石蜡都对大鼠具有一定的毒性,其肝脏、肾脏、肺部均出现明显损伤,且病变程度与暴露剂量有一定的剂量效应关系。目前,SCCPs已被《关于持久性有机污染物的斯德哥尔摩公约》列为持久性有机污染物(persistent organic pollutants,POPs)中新增的一类化合物,欧盟、美国、加拿大等陆续颁布有关条例,对SCCPs生产和使用进行限制或禁止。

    目前,国内外关于SCCPs在日常消费品和人体样品的赋存特征已开展了一定研究,而相关的人体健康风险研究较少。有关研究表明,SCCPs已在儿童玩具、瑜伽垫、塑胶跑道、塑料供水管道甚至人体乳液中被广泛检出[5-8]。SCCPs常作为增塑剂、阻燃剂等功能助剂应用于纺织品生产,导致其在纺织产品中大量残留,进而通过皮肤接触等途径进入人体,并在体内蓄积,长期接触可能会对人体健康造成威胁。例如,儿童背包在生产过程中常加入SCCPs作为表面处理剂,而背包中SCCPs污染特征及其健康暴露风险尚未明晰。因此,了解目前背包中SCCPs的污染特征并研究及其对人体的健康风险有利于了解SCCPs这类新兴污染物在环境中的迁移规律和潜在风险。我国作为制造业大国,如背包类消费品具有巨大的生产量和消费量,研究其中如氯化石蜡类新兴污染物的暴露风险有利于促进制造行业的长期健康发展。 本研究采用气相色谱质谱联用法(GC-MS)测定不同背包样品中SCCPs含量,了解SCCPs污染与产品特性等因素之间的关系,并采用风险评估模型定量分析背包中SCCPs含量分别对成人和儿童的健康风险,研究结果可为我国制定SCCPs的相关标准和健康风险管理提供基础数据。

    • 正己烷和二氯甲烷(Fisher Chemical)均为色谱级。SCCPs混标:氯含量分别为51.5%,55.5%,63%,100 ng·μL−1(Dr. Ehrenstorfer,德国),13C10-反式氯丹由美国CIL公司购买获得。仪器内标为六氯苯(AccuStandard,美国)。

    • 所有背包样品均从网络渠道购买。使用干净的剪刀剪取适量的背包外皮,剪碎成约5 mm ×5 mm的小块,使用冷冻研磨机研磨成粉末,置于干燥箱中保存。

    • 往干净的玻璃离心管中加入100 ng 13C10-反式氯丹作为内标。将样品与10 mL正己烷/二氯甲烷(1∶1,VV)涡旋振荡1 min,超声提取20 min,然后以7000 r·min−1离心10 min,将上清液转移至新的玻璃离心管中,再重复提取2次,合并上清液。氮吹至近干,1 mL环己烷定容,进样前加入100 ng六氯苯作为进样内标。

      本研究采用气相色谱联用仪(GC-MS,THERMO ISQ)进行SCCPs定性和定量分析,色谱柱为DB-5HT(15 m × 0.25 mm × 0.1 μm,固定相为5%苯基,95%二甲基聚硅氧烷)。进样口温度为280 ℃,进样模式为不分流进样,进样量1 μL;色谱升温程序为:初始温度100 ℃,保持1 min,然后以60 ℃·min−1程序升温至300 ℃,保持9 min。反应气为甲烷,流速为2.0 mL·min−1。离子源温度为160 ℃,扫描方式为SCAN(范围220—500 amu)。

      本研究根据Reth的方法建立计算氯含量与响应因子的线性关系,实现SCCPs定量计算[9]。首先利用3种实际氯含量不同的SCCPs标准品按一定比例配制出9个实际氯含量不同的标准溶液。进样后根据公式(1)(2)计算出标准溶液总响应因子和实测氯含量:

      由实测氯含量和总响应因子绘制标准曲线。本研究中配制标准溶液的实际氯含量为51.5%—63.0%,通过仪器分析得到计算氯含量为58.34%—63.10%。

      实际样品中SCCPs进样后首先根据公式(2)得到计算氯含量,代入标准曲线后得到样品的总响应因子,根据公式(1)计算SCCPs的浓度。本方法线性相关系数(r2)为0.9757,检出限为5 mg·L−1,实际样品回收率在61.48%—157.96%之间。

    • 实验中用到的所有玻璃仪器在使用前均经过7X洗液浸泡12h,洗净后用去离子水淋洗3次,在400 oC下烘烤4 h,冷却至室温备用。每 7个样品设置1个空白样,获取仪器检测状态。本研究分析过程严格按照美国国家环保局(USEPA)的QA/QC控制样监控:方法空白、加标空白、基质加标、基质加标平行样等,并用回收率指示物监测样品的制备和基质的影响。本研究回收率指示物为13C10-反式氯丹,其回收率在69.7%—131.9%之间。化合物的定量结果经回收率校正。

    • 人体可通过呼吸吸入、皮肤接触、口腔摄入等途径接触环境中的SCCPs[10]。在背包使用过程中SCCPs主要通过皮肤接触进入人体,因此暴露途径主要为皮肤暴露。本论文借鉴前人SCCP皮肤暴露研究采用以下公式初步计算儿童和成人每日皮肤接触暴露量[10]

      式中,Ederm为经皮肤接触吸收的每日暴露量[μg·(kg·d)−1]; C为样品中SCCPs的含量(μg·g−1);SA为中国儿童和成人的皮肤接触表面积(m2);AF为皮肤黏附因子(g·m−2);ABS为吸附因子,通常取0.14,无单位[11]Et为每日暴露时间的百分比(t/24 h,%);BW为中国儿童和成人的体重(平均体重,kg)。由于人体与背包接触和使用背包的行为具有较大不确定性,因此接触表面积和暴露时间也可能不同。本研究中的生态风险评价基于有限的资料和调研,SA采用人体与背包接触可能性最大的手掌面积计算(约为人体表面积的1%);儿童每日使用背包时间估算为平均每日上下学时间,成人每日使用时间估算为平均每日通勤时间;使用背包的皮肤暴露时间为接触频次乘以接触时间,粗略定义接触频次约为每小时10次,每次接触时长约为1 min。

      目前可用于SCCPs的毒理数据有限,并且人体健康风险研究也较少,根据现有资料,使用以下模型计算SCCPs的健康风险[12]

      式中,HQ为危害商,表征污染物的致癌和非致癌风险;DEDt为污染物的每日总暴露量[μg·(kg·d)−1],在本研究中即Ederm;RfD为污染物的参考剂量[μg·(kg·d)−1],由于美国环保署目前没有给出SCCPs的RfD,本研究采用国际化学品安全方案(IPCS)建议的非致肿瘤效应日耐受剂量100 μg·(kg·d)−1和慢性致肿瘤效应日耐受剂量11 μg·(kg·d)−1 [13]。若HQ ≤ 1,风险较小或可忽略;若HQ > 1,存在致癌或非致癌风险。各暴露参数的参考值见表1

    • 图1为背包样品中SCCPs的总离子流色谱图。本试验采用分析方法线性相关系数(R2)为0.9757,检出限为5 mg·L−1,样品回收率在61.48%—157.96%之间。该方法可应用于样品中短链氯化石蜡的定性和定量分析,能满足测试分析要求。

    • 表2列出了背包样品中SCCPs的含量。在29个样品中,SCCPs检出率为86.2%,最高检出质量百分比为14.83‰。欧盟委员会(EU) 2015/2030指令规定,允许生产、投放市场和使用含有SCCPs质量分数低于0.15%的物质或制剂[17]。在所有样品中,有13个样品SCCPs含量超过0.15%,其余样品均未超标,总超标率为44.83%。背包中SCCPs的含量与生产原料、工艺水平等有关。背包中SCCPs含量超标可能与厂家生产技术较落后,增塑剂、表面处理剂使用不合理等有关。因此,有关部门应该加强监管,不定时地进行抽检,对产品不合格的厂家提出整改,以降低背包中SCCPs的含量,从而降低其对人体健康的风险。

    • 在29个背包样品中,仅有18个样品提供了材质等信息,详见表3。由表3可知,18个样品里料均采用聚酯纤维,面料有尼龙、聚酯纤维、合成革等不同材质。其中里料为聚酯纤维,面料为聚酯纤维+PU/EVA的样品SCCPs的检出浓度最高为14.83‰,里料和面料均为聚酯纤维的背包样品J5检出浓度最低,仅为0.28‰。为进一步研究不同材质对SCCPs含量和检出浓度的影响,本论文根据背包面料进行了分类,详见表4表4同时给出了不同面料材质背包检出SCCPs平均含量。由表4可知,材质为“人造革+聚酯纤维”的SCCPs平均含量最低,为0.06%,而采用其他材质的背包样品中SCCPs平均含量均较高,均超过欧盟委员会(EU) 2015/2030指令规定的允许浓度(即0.15%),这说明采用里料为聚酯纤维,面料为人造革的背包样品SCCPs的使用风险可能更低。

    • 本研究选择背包样本中SCCPs的最大浓度、中位数浓度和平均浓度进行计算,结果粗略估计儿童和成人SCCPs每日的最高暴露剂量、中位剂量和平均暴露剂量。背包样品中SCCPs的最大浓度、中位数浓度和平均浓度为14833、1505、2987 µg·g−1,其健康风险评价见表5。儿童和成人经皮肤接触吸收SCCPs的每日暴露量分别在0.78×10−3—7.70×10−3 µg·(kg·d)−1和1.70×10−3—1.68×10−2 µg·(kg·d)−1之间。计算的非致癌风险熵和致癌风险熵结果都远远小于1,表明一般情况下背包中的SCCPs在本研究中的暴露途径下并不具有明显危害或致癌风险。

    • (1)本研究采用气相色谱质谱法测定背包样品中SCCPs的含量,样品总离子流色谱图与标准样品相似,线性方程为Y=1.34×106X-7.7×105,相关系数(R2)为0.9757,检出限为5 mg·L−1,实际样品回收率在61.48%—157.96%之间,可应用于样品中短链氯化石蜡的定性和定量分析,能满足测试分析要求。

      (2)在所检29个背包样品中,SCCPs的检出率为86.2%,超标率为44.83%。这说明目前背包行业存在部分厂家的生产技术不合格等现象,有关部门应加强监管。不同材质的背包样品SCCPs的含量不同,其中,面料为人造革,里料为聚酯纤维的背包样品的SCCPs平均含量最低,未超过欧盟委员会(EU) 2015/2030指令规定的0.15%。其余材质的背包样品SCCPs平均含量均较高,均超过0.15%。

      (3)儿童和成人经皮肤接触吸收SCCPs的每日暴露量分别在0.78×10−3—7.70×10−3 µg·(kg·d)−1和1.70×10−3—1.68×10−2 µg·(kg·d)−1之间,所有非致癌风险熵和致癌风险熵均小于1,说明背包样品中的SCCPs对成人和儿童的非致癌风险较小或可忽略。

    参考文献 (17)

返回顶部

目录

/

返回文章
返回