-
塑料制品在我们的生活中无处不在。2017年,全球塑料产量上升至3.35亿吨[1]。最常见的塑料制品包括聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚对苯二甲酸乙二酯(PET)、聚苯乙烯(PS)等。关于海洋中塑料的研究最早发表于20世纪70年代 [2]。在2004年,Thompson等[3]首次提出微塑料的概念,并引起了广泛关注。目前的研究表明微塑料存在于海洋环境[4-5]、淡水环境[6-9]、沉积物[10-11]、土壤[12-13]以及生物体内[14-15]。微塑料在被生物摄食后可造成挤压、占位等,从而导致生物摄食效率降低、生长缓慢、受伤或死亡等 [16-17]。微塑料本身也会释放塑化剂、阻燃剂、抗氧化剂等有毒物质 [18-22] 。此外,微塑料表面还能吸附环境中的疏水性有机污染物,在被水生生物摄食后,会对生物体产生毒性效应 [23-25] 。
准确、高效的分析方法是研究微塑料的环境行为及生态毒理学效应的关键前提。欧盟海洋战略框架指令(MSFD)[26]以及美国国家海洋和大气管理局[27](NOAA)分别发布了监测海洋环境中微塑料的实验方法。然而,目前微塑料的提取和分离方法尚未标准化。
本文综述了已有研究报道的水样、土壤和沉积物、水生生物样品中微塑料的前处理方法,并针对现有方法的优缺点进行比较(表1),对进一步的研究方向进行了讨论。
-
筛分过滤法利用孔径较小的不锈钢或铜制滤网、筛网来截留微塑料,是水样中分离微塑料最常用的方法,也可用于样品密度分离上清液中微塑料的提取 [4, 28-30] 。在土壤或沉积物的预处理中,可通过较大的筛网进行预处理,减少样品体积,再进行密度分离,并通过过滤器或筛网过滤上清液,从而分离微塑料。过滤和筛分法采用的筛网孔径大小决定了分离微塑料的尺寸,文献报道的孔径范围一般在0.038 mm到4.75 mm之间[4, 28-30]。对于孔径较小的滤膜容易堵塞,一般在负压条件下进行,再通过异丙醇溶液(50%,体积分数)将滤膜上的微塑料洗脱,从而提高微塑料的分离效率 [67]。目前并没有标准化的孔径尺寸,导致不同研究结果之间难以进行比较。
-
密度分离法的原理是利用样品中微塑料与矿物质等杂质的密度差异来实现提取分离。微塑料的密度范围从0.80 g·cm−3(如硅胶)到1.60 g·cm−3(如PVC、PET)不等,而沉积物的密度通常为2.65 g·cm−3 [4]。首先向样品中加入高密度的饱和盐溶液,充分振荡、搅拌混合均匀,随后静置沉淀直至轻组分微塑料与重组分杂质分层,最后收集上层溶液中的微塑料。目前,密度分离法广泛应用于水样、土壤和沉积物中微塑料的提取。不同的盐溶液密度不同,导致提取效率各不相同。
-
NaCl作为密度分离中使用最多的盐类之一,具有价廉易得、无害等优点 [31] ,是MSFD[26]和NOAA[27]推荐使用的前处理方法。PP(密度0.8 g·cm−3)、聚酰胺(PA,密度1.13 g·cm−3)等密度较低的聚合物可通过NaCl达到分离的效果 [32]。然而,由于NaCl溶液密度(1.2 g·cm−3)的局限性,导致高密度的微塑料包括PET(密度1.37—1.45 g·cm−3)和PVC(密度1.16—1.58 g·cm−3)的提取效率较低。而PET和PVC的产量几乎占世界塑料产量的17% [1],通过NaCl溶液进行样品前处理,可能会导致环境中PET和PVC等高密度微塑料的浓度被低估。
-
碘化钠(NaI,密度1.8 g·cm−3)是一种用于分离微塑料的高密度溶液。NaI价格昂贵[33-34],研究人员通过减少样品量、回收NaI等方式来降低前处理的成本。Nuelle等[31]对样品通过NaCl分离结合空气溢流(AIO)进行预处理,使初始样品的质量降低80%,再用NaI进行密度分离。通过这两个步骤,既可以有效提取PVC、PET等高密度的微塑料,还能够减少NaI的使用量。Claessens等[34]将样品首先通过洗脱柱中向上的水流和曝气,从而减少样品量,再通过NaI进行密度分离,对PVC的提取效率大幅增加。为了研究NaI的可回收利用性,Kedzierski等[35]在10个循环使用过程后,测定了NaI的溶液密度和损失,发现NaI溶液的密度没有变化,损失为35.9%,证明通过回收NaI的方法可以大大降低前处理成本。Quinn等[36]对比了几种溶液(NaCl、NaBr、ZnBr2、NaI)对沉积物中微塑料的密度分离提取效率,发现NaCl和NaBr的回收率较低(<90%),而NaI和ZnBr2能够有效分离高密度的聚合物,可重现性高。此外,使用NaI和ZnBr2分离只需要对沉淀物进行一次洗涤,而NaCl需要3次洗涤 [36] 。
-
氯化锌(ZnCl2,密度1.6—1.7 g·cm−3)也可用于微塑料的提取和分离,通常与密度分离装置相结合使用 [32, 37-39] ,微塑料的回收率很高,而且使用成本不高。Coppock等[40]比较了NaCl、NaI和ZnCl2溶液进行样品前处理的成本和提取效率,发现ZnCl2是最有效、最便宜的方法。但是,该物质具有很大的危害性和腐蚀性。因此,在使用ZnCl2进行样品前处理时,需谨慎处置并回收利用。
-
饱和甲酸钾(K(HCOO))溶液的密度为1.6 g·cm−3,具有稳定性高、成本相对较低、粘度低、可通过过滤重复使用等特点,也被用于密度分离中[41-42]。二水钨酸钠(Na2WO4 ·2H2O)和聚钨酸钠(3 Na2WO4 ·9 WO3 2 H2O)在溶液中的密度都能达到1.4 g·cm−3,因此也可用于微塑料的密度分离[43-44]。但是,聚钨酸钠的价格相对昂贵,相比之下,一些研究者更推荐使用二水钨酸钠。
-
Crichton等[45]利用微塑料的亲脂性,建立了一种简单的油提取方法,从固体样品中提取微塑料。干燥的样品与水和菜籽油充分混匀,静置至油、水、矿物质完全分离,微塑料与油结合进入油层,经过转移过滤后提取微塑料,再用乙醇去除表面油脂。在不同环境样品(沉积物和海水)中,使用该油提取微塑料(纤维和碎片)的回收率达到92%—97%。近期,Mani等[46]的研究测试了蓖麻油对4种复杂环境基质中微塑料的分离效率,包括河流和海洋悬浮表面固体、海洋沙滩沉积物和农业土壤。加标回收试验中,该方法对几种微塑料的平均回收率为99%。Karlsson等[47]在盐饱和溶液中加入一滴橄榄油,促进收集上清液中的塑料颗粒,回收率从64%提高到82%。目前关于油提取的研究较少,在微塑料分离后还需洗涤剂清洗,似乎具有一定的局限性,但可以通过油与饱和溶液相结合,来提高微塑料回收率。油提取方法简单、安全、廉价、耗时短,是一种很有前景的方法,亟需进一步验证和优化。
-
基于密度分离的浮选装置通常与密度分离液(如ZnCl2)结合使用,主要是通过气体或液体作为流动相,产生上升流带动样品上浮,在上浮的过程中使微塑料从沉积物中分离出来。Imhof等[32]研发了塑料沉积物分离器(MPSS,图1),配有过滤器支架的可移动样品室可将微塑料颗粒直接转移到过滤器上,从而将样品与ZnCl2密度浮选液分离,提取沉积物中的微塑料。然而,Zobkov和Esiukova[48]对MPSS装置进行了评估,发现原始塑料的回收率与Imhof等报道相似,但老化塑料的回收率却低得多,仅为13%—39%。 此外,ZnCl2具有危险性和腐蚀性,pH值低,可能与沉积物中的成分(尤其是碳酸盐)反应,从而导致起泡,严重阻碍分离过程,该MPSS装置还需进一步的测试及优化。Coppock等[40]设计了便携式的沉积物中微塑料分离装置(图2),由PVC管、PVC球阀以及磁力搅拌棒组成,与MPSS原理相似,以ZnCl2作为密度浮选液在浮选过程中分离微塑料,回收率高达92%—98%。然而该方法中PVC管的磨损可能会污染样品,从而影响环境中PVC微塑料的测定。
-
样品中的有机质可能会对微塑料的测定产生干扰,因此需要在前处理过程中尽可能去除有机质,同时不影响微塑料聚合物的结构及形貌 [65,68] 。目前的研究中通常采用酸消解、碱消解、氧化消解以及酶消解等方法对样品进行预处理。
-
酸消解可以去除样品中的有机质,常用的酸包括 HCl[49]、HNO3 [49]、及混合酸[69]。文献报道HCl不能破坏所有的有机质,因此消解效率不高[50-52]。HNO3被广泛用于酸性消解。然而,HNO3可能会留下油性残留物或组织碎片,导致聚合物的损失或变色[34,53-54]。此外,一些聚合物(如尼龙、PET)容易在高温和高浓度下被酸腐蚀,因此需要选择合适的浓度和温度,从而在合理的反应时间内有效去除样品中的有机质。Naidoo等[55]研究发现HNO3(55%)加热至80 ℃可使鱼组织的消化速度提高26倍。然而,当消解液加热至60℃以上时,可能会造成微塑料的损失,需格外小心[56]。总的来说,酸消解法可能会破坏样品中的聚合物,导致环境样品中的微塑料含量被低估,因此需要首先优化实验中酸的浓度及温度,并谨慎使用。
-
利用NaOH或KOH等进行碱消解,可以水解化学键,使蛋白质变性从而消解水生生物组织[57]。使用KOH或NaOH[52]在60 ℃过夜[51]或60 ℃消解24 h[54],是有效的消解处理方法之一。KOH对有机质的去除和塑料的回收具有良好的效果[53,56]。Foekema等[58]研究了KOH溶液对北海鱼样品的消解,发现在2—3周后,有机质完全被破坏。但也有一些研究表明,碱消解会破坏或使塑料变色[54,56,59,60],留下油性残留物和骨质碎片[51,54],或在塑料表面重新沉积残留物,对样品的光谱信号产生干扰 [61]。
-
过氧化氢(H2O2,30%—35%)作为氧化剂,可有效消解有机质,并且对聚合物几乎没有降解作用[31,50,59]。消解温度是H2O2消解效率的关键因素。例如Cole等[52]报道,在室温下用H2O2 (35%)消解7 d,仅降解25%的有机质;而Avio等[62]报道用H2O2(15%)在50 ℃过夜,可有效去除有机质。除了通过H2O2进行氧化消解外,NOAA推荐采用H2O2(30%)与0.05 mol·L-1的硫酸亚铁溶液( Fenton试剂)在75 ℃下加热消解样品。Hurley等[63]研究了不同消解方法对富含有机质的污泥和土壤样品中8种常见微塑料的提取效率差异,包括H2O2、Fenton试剂氧化消解法,以及NaOH、KOH碱消解法。结果表明,H2O2(80.2%—108%)和Fenton试剂(86.9%—106%)对土壤及污泥中有机质的去除效率均优于NaOH(60.9%—68.6%)和KOH(34.5%—56.8%)。结合提取效率、对微塑料性质的影响以及对光谱信号的影响等多个因素的比较,最终发现Fenton试剂(40 ℃以下,pH值接近3)既能有效去除土壤和污泥中的有机组分,又不会破坏微塑料中的聚合物,具备高效、成本低以及消解快速等优点。
-
酶消解法包括使用纤维素酶、脂肪酶、甲壳素酶和蛋白酶等去除有机质和减少部分生物组织[52,64]。与化学消解不同,酶消解的危害性较小,并且不易对微塑料造成损害[51]。对于0.2 g的少量样品,Cole等[52]应用蛋白酶进行酶消解,97%的有机质被降解。然而,这种酶的成本较高,更适用于少量样品的消解[63]。酶消解的另一个缺点是处理样品耗时长,并且每种酶都需要最佳温度和pH值[70]。此外,根据样品的基质不同,有些有机质不能完全消化,需要后续处理去除未消解的碎片。如Karlsson等[47]使用了酶消解法结合H2O2进行再处理,才能够有效破坏所有有机质。
-
Felsing等[65]利用塑料颗粒的静电行为达到样品中微塑料提取分离的目的。将样品加入静电金属-塑料分离器,在去除99%的原始样品量的同时,对几种常见微塑料的回收率高达近100%。近期的研究报道了一种磁性提取方法,利用微塑料与Fe纳米颗粒疏水性结合,进而达到磁性提取的目的[66]。该方法对于海水、淡水和沉积物中几种常见微塑料的回收率为78%—93%,可用于密度分离或消解处理后样品中微塑料的进一步提取或饮用水等基质简单的样品前处理。然而对于土壤或沉积物中存在的亲脂性物质可能会导致非特异性结合,从而降低该方法的有效性。此外,Fe纳米颗粒可能会干扰微塑料的后续分析,尽管通过超声处理可以从微塑料表面去除Fe纳米颗粒,但可能会同时破坏微塑料,还需进一步深入研究。
-
环境样品和水生生物样品中微塑料的提取和分离方法并不统一,如何能够在去除样品杂质、不破坏微塑料性质的同时,保证微塑料回收率,是前处理的关键。几种提取分析方法并非独立,实验中应根据不同基质的样品,来选取最佳的前处理方法。针对水样、土壤和沉积物等样品,可使用Fenton试剂消解结合密度分离法,来提取分离微塑料。而处理生物样品时,则可使用KOH进行消解并结合密度分离法,去除杂质。未来的研究应从以下几个方面着手:
(1)结合每种方法的优势,选择更适合的方法组合,来达到最佳的提取和分离效果。比如首先通过静电分离或密度浮选装置等来大大降低样品量,再使用碘化钠等价格昂贵的密度分离浮选液,对微塑料进行进一步的提取和分离。
(2)对于文献最新报道的如油提取、磁提取、密度浮选装置等分离方法进行进一步的验证及优化。
(3)对多种提取和分离方法的一致性和准确性进行比较研究。通过开展不同介质中前处理方法比较研究和效果评价,从而筛选出最佳的预处理方法。进而分别建立水样、土壤和沉积物、生物样品等不同介质中微塑料的预处理标准方法,为深入研究微塑料的环境行为及生态毒理学效应奠定基础。
微塑料的提取分离方法研究进展
Research progress on the extraction and separation methods of microplastics
-
摘要: 微塑料作为海洋环境和陆生生态系统中的新型污染物,引起了广泛关注。然而目前微塑料的分析方法尚未标准化,不同研究结果间可比性较低。如何准确、高效地提取分离样品中的微塑料,是探究微塑料的环境行为及生态毒理学效应的关键前提。本文系统地综述了环境样品和水生生物样品中微塑料的前处理分析方法,包括筛分过滤法、密度分离法、消解法以及文献报道的其他方法,并对不同方法的优缺点及研究趋势进行了讨论和分析。结合不同前处理方法的优势,开展多种方法组合、比较等研究有利于微塑料分析方法的标准化。Abstract: Microplastic as an emerging pollutant in the marine environment and terrestrial ecosystems has attracted widespread attention. However, the analysis methods of microplastics have not been standardized at present, which hampered the comparability between different research results. How to accurately and efficiently extract microplastics in samples is a crucial prerequisite for exploring the environmental behavior and ecotoxicological effects of microplastics. The pretreatment analysis methods of microplastics in environmental samples and aquatic biological samples were systematically reviewed in this paper, including sieve filtration method, density separation method, digestion method and other methods reported in the literature. Besides, the advantages and disadvantages of different methods and research trends were discussed. Combining the advantages of different pretreatment methods, carrying out studies with various method combinations and comparisons is conducive to the standardization of microplastic analysis methods.
-
Key words:
- microplastics /
- extraction and separation /
- flotation /
- density separation /
- digestion
-
实验室危险废物是指在生产、研究、开发、教学和环境检测 (监测) 活动中,化学和生物实验室产生的废物,包括无机废液、有机废液,废弃化学试剂,及含有或直接沾染危险废物的实验室检测样品、废弃包装物、废弃容器、清洗杂物和过滤介质等[1]。实验室产生的废液等若随意处理会造成下水道的腐蚀或影响人体健康,甚至会引发爆炸、火灾等安全事故[2],生物实验室废物产生的包装物、容器和吸附介质等还可能沾染有害微生物,如具有感染性的病原微生物等,若不妥善处理,可能导致严重的健康问题[3]。
近年来,我国科技实力伴随经济发展同步壮大,在科技活动主体的研发活动投入持续增加,研发经费规模持续扩大。2021年研究与试验发展 (R&D) 经费达2.79×1012 元,为2000年的31倍,2001-2021年年均增幅达到18.1%。同时,2018-2021年间,我国研究与试验发展 (R&D) 经费投入占GDP比重不断提高,由2018年的2.19%增加至2021年的2.44%。“十四五”规划提出,全社会研发经费投入年均增长要大于7%,基础研究经费投入占研发经费投入比重提高到8%,实验室危险废物产生量随着全社会研发经费的增加亦与日俱增[4-5],实验室危险废物管理引发公众关注。以北京市为例,可获取统计数据的12家产废单位实验室废物产生量由2014年的708.76 t增加至2018年的972.11 t[6],增长了近40%。我国新修订并于2020年9月生效实施的新《固体废物污染环境防治法》[7]第七十三条明确要求,各级各类实验室及其设立单位应当加强对实验室产生的固体废物的管理,其中属于危险废物的,应当按照危险废物管理。随着我国固体废物环境污染防治工作的不断深入,实验室危险废物环境管理的现实需求日益迫切。
本研究在我国实验室危险废物产生量预测的基础上,总结了我国实验室危险废物管理现状和存在的问题,提出了完善相应管理工作的建议,以期为我国实验室危险废物管理提供参考。
1. 数据与方法
1.1 实验室危险废物产生量预测
目前,国内外针对废物产生量的预测主要采用时间序列分析、回归分析和灰色模型等数理统计方法,根据人口总量和社会经济总产值等社会经济特征进行预测[8-9]。其中,灰色系统预测模型(Grey Model,GM),主要基于关联度收敛原则进行废物产生量预测,能够实现在基础产生数据较少的情况下较好地模拟废物产生量变化趋势[10],是相关预测研究较为常用的方法之一[11]。本文在北京市研究与试验发展 (R&D) 经费预测基础上,根据调研获取的实验室危险废物产生量与R&D经费的产废强度关系,预测北京市实验室危险废物产生量。首先,建立R&D经费随时间变化的一阶灰色预测模型GM (1,1) ,确定北京市R&D经费预测模型方程。GM (1,1) 模型构建见式 (1) 。
x0(k)+az(1)(k)=b (1) 通过最小二乘法求解参数
和a ,从而得到GM (1,1) 模型的时间影响见式 (2) 。b ˆx(1)(t+1)=(x(0)(1)−ba)e−at+ba,t=1,2,...,n (2) 式中:
为基准年北京市R&D经费预测值,108 元;x(0)(1) 为基准年到ˆx(1)(t+1) 年间北京市R&D经费预测值之和,×108 元。对式 (2) 进行累减,还原得到原始序列的灰色模型预测值见式 (3) 。t+1 ˆx(0)(t+1)=ˆx(1)(t+1)−ˆx(1)(t),t=1,2,...,n (3) 式中:
为第ˆx(0)(t+1) 年的北京市R&D经费值,×108 元;t+1 为基准年到ˆx(1)(t) 年间R&D经费值之和,×108 元。t 基于此,预测近10年北京市实验室危险废物产生量,预测方法见式 (4) 。
Qn(t+1)=ˆx(1)(t+1)×k,t=0,1,2... (4) 式中:
为实验室危险废物Qn(t+1) 年产生量,104 t;t+1 为R&D经费预测值,×108 元;ˆx(1)(t+1) 为实验室危险废物平均产废强度,×10−8 t∙元−1。k 1.2 数据来源
实验室危险废物产生源分散,且各单位产生量小,统计困难。目前,我国尚无公开的实验室危险废物产生量的统计数据,国内外针对实验室危险废物产生量预测的研究也较少。本研究基于北京市危险废物转移联单数据,筛选了项目期内 (2014-2017年) 可连续获取实验室危险废物联单信息的12家危险废物产生量最大的科研机构,调研收集了其实验室危险废物转移量作为产生量,并以此作为预测模型的基础参数。将收集到的数据与相应产废单位同时期R&D经费投入情况相结合,计算该时间范围内的平均产废强度关系,用于预测北京市实验室危险废物的产生量。
1.3 政策分析
本研究结合实验室危险废物相关内容,查找国家和地方、高校和企业实验室管理政策文件和相关举措。针对国家和地方出台的17项政策文本进行分析并找出各项政策针对实验室危险废物的切入点和欠缺点;同时,对39所“985”工程高校、116所“211”工程高校和6个地 (园) 区小微企业的实验室危险废物管理政策和举措进行调查,并对比分析高校和企业在收集处理实验室危险废物全过程中的优缺点。
2. 结果与讨论
2.1 实验室危险废物产生量预测
2.1.1 实验室危险废物产废强度
根据前述调研和计算,结果显示,2014-2017年间北京市研究所涉产废单位实验室危险废物收集量呈逐年递增趋势 (表1) ,结合同期相应R&D经费,计算得出平均产废强度为6.89×10−8 t∙元−1。鉴于本研究调研的研究机构大部分为综合性高校,因此本研究在当前可获取的数据条件下,据此作为北京市实验室危险废物产生量预测时的强度参数。
表 1 北京市部分研究机构实验室危险废物产生量 (2014-2017年)Table 1. Volume of laboratory hazardous waste generation in major generator in Beijing from 2014 to 2017年份 实验室危险废物产生量/t R&D经费值/(×108 元) 实验室危险废物产废强度/(×10−8 t∙元−1) 2014 708.76 96.96 7.31 2015 814.13 92.97 8.76 2016 748.18 131.53 5.69 2017 777.0 133.68 5.81 实验室危险废物收集率方面,北京市2018年收集单位数量较2017年增加44.1%,收集覆盖范围和收集成效逐渐提高。同时,2018年北京市实验室危险废物收集量近40 00 t,较2017年增加35.7%。此外,采用前述方法,结合北京市R&D经费情况和危险废物产生量预测,估算结果显示2018年北京市实验室危险废物收集率约27%。鉴于北京市自2016年出台《北京市实验室危险废物污染防治技术规范》[12],逐步规范实验室危险废物管理,收集率显著高于全国同期其他省市。
2.1.2 R&D经费预测
根据2014-2020年北京市R&D经费,采用公式统计值拟合出2021-2030年北京市R&D经费预测值,将原始数据代入GM (1,1) 模型,见式 (5) 。
ˆx(1)(t+1)=10874.5e0.1154t−9605.7,t=0,1,2... (5) 式中:
为北京市R&D经费预测值,×108 元。ˆx(1)(t+1) 式 (5) 表示以R&D经费值为数值的累加序列,t=0时计算得到的值代表基准年的R&D经费值,t=n时计算得到的是基准年至基准年+n年间R&D经费累积值。2021-2030年北京市R&D经费预测值见表2。
表 2 2021-2030年北京市R&D经费预测值Table 2. Forecast value of Beijing R&D funds from 2021 to 2030年份 预测值/ (×108 元) 年份 预测值/ (×108 元) 2021 2 661.76 2026 4 748.96 2022 2 988.51 2027 5 331.92 2023 3 355.37 2028 5 986.46 2024 3 767.27 2029 6 721.34 2025 4 229.73 2030 7 546.43 预测结果通过模型精度进行检验,由表3可以看出,预测值与实际值间的残差波动较小,在-6.06~5.53之间,经计算得出预测值与实际值之前的关联度R=0.97>0.5,模型精度满足要求。同理,计算得到小误差概率P=1>0.95,方差比值C=0.21<0.35,当P>0.95,C<0.35时,判断预测精度等级为好[13]。
表 3 2014-2020年北京市R&D经费模型检验Table 3. Beijing R&D funds model test from 2014 to 2020年份 实际值/(×108 元) 预测值/(×108 元) 绝对误差 残差/% 2014 1 268.8 1 268.8 0 0 2015 1 384.0 1 330.2 53.8 3.89 2016 1 484.6 1 492.7 -8.1 -0.55 2017 1 579.7 1 675.5 -95.8 -6.06 2018 1 870.8 1 880.3 -9.5 -0.51 2019 2 233.6 2 110.0 123.6 5.53 2020 2 326.6 2 368.3 -41.7 -1.79 2.1.3 实验室危险废物产生量
将产废强度和北京市R&D经费预测值代入式 (4) 中,预测结果如图1所示。可见,随着R&D经费值增加,预期北京市实验室危险废物产生量呈明显上升趋势,其中2020年和2021年北京市实验室危险废物产生量预计分别为1.61×104和1.83×104 t,2025年和2030年分别为2.91×104和5.20×104 t,较2021年产生量分别增长为59%和184%。同时,采用该方法和参数对全国实验室危险废物产生量进行简单地预测,结果显示,2025年和2030年产生量分别可达133.17×104和231.16×104 t。
北京市2016-2018年实验室危险废物收集率从15%增长至27%,平均增长率约为4%,预计2021年收集率约为39%。根据北京市2021年统计年鉴公布的北京市2020年危险废物产生量为24.97×104 t,北京市实验室产生的危险废物量约占北京市所有危险废物量的6.4%,随着产生量的增长及收集率的增高,实验室危险废物也将成为北京市危险废物管理中非常重要的类别。探索建立实验室废物收集及处理处置机制,规范化管理实验室危险废物且有法可依是目前更迫切需要解决的问题。本研究以北京市实验室危险废物产生量为基础数据,研究预测北京市产生量,是本研究的初步结果。目前针对各地区及全国实验室危险废物产生量有较少的研究,因此预测存在一定的局限性和不确定性。北京市汇集了众多高校和科研机构,相对于全国其他地区,较具有代表性和典型性。本研究采用的预测方法和预测对象与蔡彬等[10]原理相同,建议后续同类研究中可以将其他相关影响因素加入到预测中来,在统计学中获得更加准确的结论与数据。
2.2 实验室危险废物管理政策
2.2.1 国外政策
国外重视实验室危险废物管理,出台了一系列法规和管理政策。美国联邦法规[14] (第40篇第262部分第K子部分) 制定了适用于实验室危险废物产生者的要求,对每月产生实验室危险废物量少于100 kg的极小规模生产者采取豁免机制。美国大部分高校设有EHS (环境、健康、安全) 部门,为学校各实验室和研究中心提供有关环境和安全方面的服务,并承担环境监督与管理的职责[15-17]。日本大多数高校依据国家颁布的《废弃物管理和清扫法》[18]制定其针对实验室危险废物的管理指南,对实验室危险废物的管理流程和方法进行详细说明。部分高校专门设立“环境保护中心”,负责制定管理标准及注意事项,对收集的实验室危险废物在单位内部处理处置、检测排水及其他环保事项 (宣传、培训等) [19]。
2.2.2 国家和地方政策
随着实验室危险废物产生量的增多,我国对实验室危险废物管理越来越重视。我国自2004年就开始出台实验室管理文件,但主要针对生物类实验室及高校实验室排污管理。原国家环保总局发布了《关于加强实验室类污染环境监管的通知》[20],提出禁止将废弃药品转移给不具备污染治理条件的企业、单位或个人使用,禁止随意丢弃有毒有害废物及废液,防止实验室类污染危害环境,损害人体健康的原则性要求。同年,国务院发布了《病原微生物实验室生物安全管理条例》[21],提出了对病原微生物将实行分类管理,对实验室实行分级管理的总体要求。相关政策未针对实验室危险废物提出明确管理规定和要求,导致实验室危险废物的分类收集、贮存、运输、处置等操作流程缺乏专门的管理规范。
2005年,教育部和原国家环保总局发布了《关于加强高等学校实验室排污管理的通知》[22],提出了实验室科研教学活动中产生和排放的废气、废液、固体废物等严格按照主管部门申报登记、收集、运输和处置,实验室危险废物的暂存、交换、运送和处置应严格执行危险废物转移联单制度的要求。该通知构建了高校实验室排污监管制度,启动了高校实验室危险废物规范化管理工作。2006年,原国家环保总局发布了《病原微生物实验室生物安全环境管理办法》[23],提出了建立健全病原微生物实验室废水、废气和危险废物污染防治管理的规章制度。2008年,国家质量监督检验检疫总局和国家标准化管理委员会发布了《实验室生物安全通用要求》[24],主要对生物安全实验室以及动物生物安全实验室安全管理,明确各部门责任、严格危险废物的处理处置,防止污染环境。相关政策和标准针对生物实验室安全管理,提出了具体要求,以降低实验室安全管理存在的隐患。
2008年,原环境保护部、国家发展改革委和公安部发布了《国家危险废物名录》[1],在2005年《关于加强高等学校实验室排污管理的通知》[22]基础上,进一步明确了在科研教学活动中产生的应参照危险废物进行管理的实验室固体废物,具体为“在研究、开发和教学活动中,化学和生物实验室产生的废物” (HW49,废物代码900-047-49) 。2016年,教育部发布了《关于集中开展教育系统危险化学品安全专项整治的通知》[25],要求教育部门及各类学校建立完善实验用废弃危化品处置备案制度,联系有资质的危化品处置企业尽快将高校积压的危废品予以分批处理,并逐步建立高校和危废处置企业长期合作、定向处理机制,加强了学校对危险化学品安全隐患的排查治理和监督管理能力,整治了安全管理工作的薄弱环节。2021年国务院办公厅发布《强化危险废物监管和利用处置能力改革实施方案》[26],鼓励在有条件的高校集中区域开展实验室危险废物分类收集和预处理示范项目建设。该方案为进一步完善危险废物监管体制机制,建立安全监管与环境监管联动机制提供了保障措施,为逐渐完善危险废物收集处理设施提供了依据。2022年生态环境部办公厅发布《关于开展小微企业危险废物收集试点的通知》[27],主要针对危险废物产生量较小的企业,还包括科研机构和学校实验室等社会源开展试点收集,要求小微企业按照高标准、可持续的原则,明确收集单位责任,强化收集过程环境监管,加强收集单位的培训及宣传等工作,为后续加强小微企业危险废物污染防治,防范小微企业危险废物环境风险,推动各地完善小微企业危险废物收集建设具有重要意义。具体管理政策见表4。
表 4 我国在实验室安全管理等方面管理政策Table 4. Management policies in laboratory safety management in China文件名称 发布日期 发布单位 《关于加强实验室类污染环境监管的通知》[20] 2004年2月 原国家环保总局 《病原微生物实验室生物安全管理条例》[21] 2004年11月 国务院 《关于加强高等学校实验室排污管理的通知》[22] 2005年7月 教育部和原国家环保总局 《病原微生物实验室生物安全环境管理办法》[23] 2006年5月 原国家环保总局 《国家危险废物名录》[1] 2008年8月 (2021年更新) 原环境保护部、国家发展和改革委员会和公安部 《实验室生物安全通用要求》[24] 2008年12月 国家质量监督检验检疫总局和国家标准化管理委员会 《关于集中开展教育系统危险化学品安全专项整治的通知》[25] 2016年5月 教育部 《强化危险废物监管和利用处置能力改革实施方案》[26] 2021年5月 国务院办公厅 《关于开展小微企业危险废物收集试点的通知》[27] 2022年2月 生态环境部办公厅 根据国家颁布的政策法规文件,目前有10个省市及地区出台了相关的实验室危险废物管理办法、污染防治技术规范、技术指南等。10个省份的政策都明确了高校及科研机构等产废单位实验室废物的管理,强化了源头管理问题。北京、四川、山东和湖南明确了分类、投放、暂存、收运、贮存、处置利用过程的技术要求,详细的指明处理处置各项要求;浙江、江苏、上海、重庆市渝北区和广东省东莞市指出了责任主体,更加明确责任分工;四川和浙江强调了危险废物的源头控制要求,最大限度的减少了实验室危险废物的产生。全国其他省份应尽快制定出相关文件,加强实验室产废单位的规范化管理。具体内容见表5。
表 5 我国10省市出台的实验室废物政策及内容介绍Table 5. Introduction of laboratory waste policies and contents issued by 9 provinces and cities in China地区 文件名称 北京市 北京市危险废物污染环境防治条例[28] 四川省 四川省实验室危险废物污染防治技术指南 (试行) (川环发〔2017〕73号) [29] 浙江省 关于进一步加强实验室废物处置监管工作的通知[30] 福建省 关于进一步规范学校实验室废弃物处置工作的通知 (闽环保土〔2018〕24号) [31] 山东省 山东省实验室废弃物环境管理暂行办法 (鲁环发〔2009〕5号) 湖南省 关于印发《湖南省实验室危险废物环境管理指南》的通知 (湘环发〔2021〕12号) [32] 江苏省 关于进一步加强实验室危险废物管理工作的通知 (苏环办〔2020〕284号) [33] 关于加强全省高校实验室危险废物收集处置工作的通知 (苏教办科函〔2020〕31号) [34] 上海市 关于进一步加强实验室危险废物管理工作的通知 (沪环土〔2020〕270号) [35] 重庆市渝北区 关于加强实验室危险废物管理的通知 (渝北环发〔2020〕64号) [36] 广东省东莞市 关于加强实验室危险废物环境管理工作的通知[37] 2.2.3 企事业单位管理政策
1) 高校。我国部分高校根据《关于加强高等学校实验室排污管理的通知》[22]要求,制定了有关实验室废物的管理办法、条例等。也有高校将实验室废物的管理列入到《实验室安全管理办法》中进行统一规定。在调查的29个省市区中,39所“985”工程高校中85%以上制定了实验室危险废物相关管理办法,116所“211”工程高校中60%以上制定了实验室危险废物管理办法,其他普通高校制定管理办法的占比较低。
目前高校对实验室危险废物的处理处置并没有明确的统一方法,陈璐等[15]在2017年调研的高校实验室中,只有36%的调研单位对废弃物进行细致分类;有28%的高校建立了分类管控的废弃物仓,对不同种类的废弃物进行全时监控管理;有78%的调研单位在实验室废物后期清运处置中与已有专业资质的第三方机构进行合作。
从全国高校出台的相关实验室危险废物方面的管理办法看出,我国一部分高校对实验室危险废物比较重视。1) 大部分主要的产生源在教学实验、科学研究等环境类、生物类、化工类专业的实验室。2) 一部分学校设有专门负责实验室废物管理的部门,以学校、学院、实验室三级管理体制,学院是实验室危险废物的主管部门,学校是监督、检查的归口部门。3) 一部分学校以“谁购买,谁保管,谁使用,谁负责”的原则进行管理。4) 高校在教学中产生的危险废物处置费用由学校承担,科研产生的危险废物处置费用暂由学校承担,再依据学校成本分担机制的推进,逐步过渡到由科研项目承担;而有的学校则是学院承担一部分,剩下的由学校来承担;有的学校则由课题组全额承担;一些普通高校科研经费少,没有太多经费投入到处置费用中。5) 一部分学校定期对全校危险废物进行回收、转移、处置,在收集时填写好台账信息,并且由有资质的公司进行预约回收、转移、处置。
2) 产业园区。实验室危险废物不仅在高校教学中产生,研究和开发活动中也会产生。实验室危险废物产生量少且产生来源分散,具有小微企业产废的特点,同时,很多小微企业管理政策涉及到实验室危险废物的管理,表6中列举出产业园区中小微企业的实验室危险废物相关政策文件。
表 6 我国小微企业危险废物管理政策Table 6. Hazardous waste management policy of small and micro enterprises in China上海市2019年发布了《上海市产业园区小微企业危险废物集中收集平台管理办法》[38],分别从管理职责、危险废物管理台账、危险废物运输和转移联单制度、危险废物源头管理、信息报送及罚则等方面详细制定了本办法。其中,以下几点突出显示其在责任机制等方面的管理制度:1) 在管理职责中,各部门分别履行各自的责任,要求各区生态环境局监管频次不少于1年10次;2) 主要收集贮存危险废物年产生量小于10 t的小微企业所产生的危险废物和废荧光灯管、废铅蓄电池等社会源危险废物;3) 鼓励产业园区开展收集贮存转运设施的规划与建设;4) 危险废物收集贮存转运设施建立危险废物出入库管理台账。上海市产业园区危险废物收集平台的建立,使小微产废企业的危险废物在产业园区层面得以得到有效收集,使平台将小微企业危险废物纳入合规渠道,避免其向其它渠道流失,在产废企业与处理企业之间构筑了园区的缓冲区间,也使上海市危险废物管理体系更具韧性与弹性[40]。
山东2019年发布了《山东省生态环境厅关于开展危险废物集中收集贮存转运试点的指导意见》[39],仅限收集年产生危险废物50 t以下的企业、实验室危险废物产生单位、机动车维修拆解单位和垃圾分类后产生的家庭源危险废物。江苏宿迁、江西南昌、浙江温州及福建宁德根据当地实际情况管理小微企业危险废物,逐渐完善产业园区危险废物收集平台。
2.3 我国实验室危险废物问题分析
1) 管理政策欠缺。我国没有针对实验室危险废物管理方面的具体政策,只有2个环保总局和教育部下发的通知。未加大对实验室危险废物的监督管理,未确定具体的责任机制,不能按规定将实验室危险废物交由有资质的处置单位定时定点处置。在《医疗废物管理条例》[41]中,仅对医学科研和教学等相关活动中产生感染性废物的管理依据此条例执行。在《实验室生物安全通用要求》[23]中对生物实验室废物处理没有专门的管理要求[14]。高校实验室归口管理职能部门混乱,缺乏有效的监督管理机制[42]。而对于小微企业,存在环保技术人员缺乏等现象,导致产生的实验室危险废物管理意识薄弱,无法达到危险废物规范化管理的相关要求[43]。
2) 收运处置困难。目前高校危险废物种类繁多、分布散且呈周期性产生,即使部分学校制定了相关管理规定,却依然存在收集难、贮存难、运输难、处置难等问题。调研发现,由于处置单位收运不及时,大多数产废单位都面临着较大的危险废物暂存或贮存压力,产废量较小的实验室在收运处置前长期堆存危险废物且不能及时处理,产生了一定的安全及环境风险。而处置单位对于未达到收运量的实验室收取同样的费用,导致一些小微企业面临处置费用高的问题,进而降低了对危险废物处理处置的积极性。实验室危险废物在运输时,必须使用危险品车辆运输,但部分高校位于城区,导致危险品车辆禁区通行难[44]。同时,由于产废单位贮存空间有限,运输单位能力不足,处置单位地域分配不均衡,导致多数产废单位的实验室危险废物积压严重。实验室危险废物在产生到收运处置全流程中,各方面都存在着安全及环境风险。
3) 环保意识不足。我国大部分高校在教学、科学研究过程中,需要大量的化学药品,但大部分化学药品及试剂未得到充分的利用,有的化学药品会长时间放置,不仅会产生安全隐患,而且造成了浪费。高校中实验室的分类收集已经有一定基础,但在一些普通高校,环保意识落后、专业化水平低、实验室设备陈旧落后、教学和科研经费少。这就导致了在处理实验室危险废物时,直接倒入下水道、只做简单处理排放、不分类直接倒入废液桶等一系列管理、监督不到位的问题。产业园区从业人员对危险废物的管理认识匮乏,企业员工在填写危险废物进出库记录中,存在危险废物类别出入库数量不一致、个别类别无入库却有出库现象[40]。
3. 建议
1) 明确实验室危险废物责任主体、形成管理机制及指南。实验室危险废物规范管理的机构占比较低,各行业主管部门 (教育、科技、卫健、市场监管等) 应协同生态环境部,指导各自负责的单位 (中小学及高等院校、科研院所、医疗机构、企业) 开展实验室危险废物管理工作,包括制度制定、人员培训等,形成生态环境部门和行业主管部门分工协作、齐抓共管的工作格局。各高校、科研机构或其他产业园区可以在申请项目时,将处理实验室危险废物的经费纳入到预算中,适时制定对收集处理不及时的机构实施相应的处罚。“无废城市”试点期间将高校及科研机构实验室废物等社会源废物处理纳入建设指标中,应加快管理机制研究,推进“无废城市”建设。
2) 建立高校定时定点回收处理、小微企业豁免相结合的收集体系。高校建立贮存设施,将单位内部实验室危险废物应分类收集,将不含危险物质或可自行无害化处理的实验室废物按照一般固体废物处置,切实做到源头减量。按规定分类后,分别放入不同容器中,由有资质的公司进行定时定点收集运输,并鼓励试剂生产厂家执行生产者责任延伸制,主动与产废单位建立沟通渠道,回收废旧试剂和空瓶。产废单位开展区域实验室危险废物收集试点,建立集中贮存设施,鼓励积极探索预处理方案,将实验室危险废物作破碎、压块、沥干、同质废液混合等处理,进一步做到实验室危险废物减容,降低贮存压力和处置单位的处理压力。产业园区小微企业,如每月实验室危险废物产生量少于100 kg的机构,或产生低风险类实验室危险废物的,如废弃药品、油漆、含汞灯管、铅蓄电池等,可以探索实行特定环节豁免管理机制。
3) 加强高校实验室危险废物管理能力建设。产废单位专人负责实验室药品及试剂的使用,以及危险废物的产生、分类、投放、暂存、收运、贮存、利用处置等环节的监管,并建立专业管理团队,明确组织构架,保证实验室危险废物各个环节都有相应的责任人。高校或其他机构在上课或实验操作前,指导教师或专业人员应向学生或实验人员介绍实验室内仪器及药品的使用,加强学生及实验人员对危险废物的分类和处理的培训,增强主管教师和学生的实验室危险废物环境管理意识。学校可以将实验室危险废物管理纳入学生和科研助理的实验室准入考核内容,教师在评定职称时将实验室安全纳入到评定范围内。
-
表 1 样品前处理方法汇总
Table 1. Summary of methods for sample pretreatment.
前处理方法Pretreatment methods 样品基质Sample matrix 优点Advantages 缺点Disadvantage 参考文献Reference 筛分过滤法 过滤筛分 水、固体样品浮选上清液 可快速分离;通过不同孔径滤网,可对微塑料按照粒径分类 没有标准化的孔径尺寸,不同研究可比性低 [4, 28-30] 密度分离法 NaCl 水、土、沉积物、生物 无毒、无害、成本低 对高密度微塑料提取效率低 [26, 27, 31- 32] NaI 水、土、沉积物、生物 密度高、安全、可重复使用、提取效率高 价格昂贵 [31, 33-36] ZnCl2 水、土、沉积物、生物 密度高、提取效率高、成本低 腐蚀性、危害性 [32, 37-40] 甲酸钾 水、土、沉积物、生物 稳定性好、成本低 目前应用研究较少 [41-42] 聚钨酸钠 水、土、沉积物、生物 密度高、成本较低 吸湿性强 [43-44] 油 土、沉积物 成本低、易操作 需要对微塑料进行进一步清洗;目前应用研究较少 [45-47] 密度分离浮选装置 土、沉积物 直接分离,能够有效减小样品量 需要与密度浮选液结合,还需进一步验证及优化 [32, 40, 48] 消解法 酸消解 (HCl) 水、土、沉积物、生物 − 不能破坏所有有机质 [49-52] 酸消解 (HNO3) 水、土、沉积物、生物 能够去除大部分有机质 可能会造成PET等聚合物溶解 [34, 49, 53-56] 碱消解 (NaOH/KOH) 水、土、沉积物、生物 能去除大部分有机质;对大部分聚合物没有破坏性 可能使塑料变色;沉积残留物对光谱信号产生干扰 [51-54, 56-61] 氧化消解 (H2O2) 水、土、沉积物、生物 能去除大部分有机质; 对部分聚合物有破坏性 [31, 50, 52, 59, 62] 氧化消解 (Fenton试剂) 水、土、沉积物、生物 能去除有机质、提取效率高、对光谱信号无影响 − [27, 63] 酶消解 水、土、沉积物、生物 危害小、不会对聚合物造成损害 成本高、耗时长 [51-52, 63-64] 其他方法 静电分离装置 沉积物 能够将样品量减小99% 不适用于少量样品 [65] 磁提取法 水、沉积物 对大部分聚合物提取效率高 对于复杂样品需与其他方法结合,更适用于饮用水等基质简单的样品;需进一步优化 [66] -
[1] PlasticsEurope, Plastics - the Facts 2017: An analysis of European plastics production, demand and waste data[R], 2017. Available from: https://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdf [2] CARPENTER E, SMITH K L. Plastics on the Sargasso Sea surface [J]. Science, 1972, 175(4027): 1240-1241. doi: 10.1126/science.175.4027.1240 [3] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004, 304(5672): 838-838. doi: 10.1126/science.1094559 [4] HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: A review of the methods used for identification and quantification [J]. Environmental Science & Technology, 2012, 46(6): 3060-3075. [5] ZHANG W W, ZHANG S F, ZHANG Z Y, et al. Microplastic pollution in the surface waters of the Bohai Sea, China [J]. Environmental Pollution, 2017, 231: 541-548. doi: 10.1016/j.envpol.2017.08.058 [6] EERKES-MEDRANO D, THOMPSON R C, ALDRIDGE D C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs [J]. Water Research, 2015, 75: 63-82. doi: 10.1016/j.watres.2015.02.012 [7] BLETTLER M C M, ABRIAL E, KHAN F R, et al. Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps [J]. Water Research, 2018, 143: 416-424. doi: 10.1016/j.watres.2018.06.015 [8] LI J Y, LIU H H, CHEN J P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection [J]. Water Research, 2018, 137: 362-374. doi: 10.1016/j.watres.2017.12.056 [9] KOELMANS A A, MOHAMED N H, HERMSEN E, et al. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality [J]. Water Research, 2019, 155: 410-422. doi: 10.1016/j.watres.2019.02.054 [10] PRATA J C, DA C J P, DUARTE A C, et al. Methods for sampling and detection of microplastics in water and sediment: A critical review [J]. Trends in Analytical Chemistry, 2019, 110: 150-159. doi: 10.1016/j.trac.2018.10.029 [11] DING L, MAO R F, GUO X T, et al. Microplastics in surface waters and sediments of the Wei River, in the northwest of China [J]. Science of the Total Environment, 2019, 667: 427-434. doi: 10.1016/j.scitotenv.2019.02.332 [12] HE D F, LUO Y M, LU S B, et al. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks [J]. Trends in Analytical Chemistry, 2018, 109: 163-172. doi: 10.1016/j.trac.2018.10.006 [13] MÖLLER J N, LÖDER M G J, LAFORSCH C. Finding microplastics in soils: A review of analytical methods [J]. Environmental Science & Technology, 2020, 54(4): 2078-2090. [14] RIBEIRO F, O'BRIEN J W, GALLOWAY T, et al. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms [J]. Trends in Analytical Chemistry, 2018, 111: 139-147. [15] SHAHABALDIN R, JUNBOUM P, MOHD F M D, et al. Microplastics pollution in different aquatic environments and biota: A review of recent studies [J]. Marine Pollution Bulletin, 2018, 133: 191-208. doi: 10.1016/j.marpolbul.2018.05.022 [16] BROWNE M A, DISSANAYAKE A, GALLOWAY T, et al. Ingested microscopic plastic translocates to the circulatory system of the Mussel, Mytilus edulis (L. ) [J]. Environmental Science & Technology, 2008, 42(13): 5026-5031. [17] DERRAIK J G B. The Pollution of the marine environment by plastic debris: A review [J]. Marine Pollution Bulletin, 2002, 44(9): 842-852. doi: 10.1016/S0025-326X(02)00220-5 [18] TEUTEN E L, SAQUING J M, KNAPPE D R, et al. Transport and release of chemicals from plastics to the environment and to wildlife [J]. Philosophical transactions - Royal Society. Biological Sciences, 2009, 364(1526): 2027-2045. doi: 10.1098/rstb.2008.0284 [19] SUHRHOFF T J, SCHOLZ-BOTTCHER B M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics - A lab experiment [J]. Marine Pollution Bulletin, 2016, 102(1): 84-94. doi: 10.1016/j.marpolbul.2015.11.054 [20] KOELMANS A A, BESSELING E, FOEKEMA E M. Leaching of plastic additives to marine organisms [J]. Environmental Pollution, 2014, 187: 49-54. doi: 10.1016/j.envpol.2013.12.013 [21] ROCHMAN C M, HOH E, HENTSCHEL B T, et al. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris [J]. Environmental Science & Technology, 2013, 47(3): 1646-1654. [22] LIU X M, SHI H H, XIE B, et al. Microplastics as both a sink and a source of Bisphenol A in the marine environment [J]. Environmental Science & Technology, 2019, 53(17): 10188-10196. [23] ROCHMAN C M, MANZANO C, HENTSCHEL B T, et al. Polystyrene plastic: A source and sink for polycyclic aromatic hydrocarbons in the marine environment [J]. Environmental Science & Technology, 2013, 47(24): 13976-13984. [24] WARDROP P, SHIMETA J, NUGEGODA D, et al. Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish [J]. Environmental Science & Technology, 2016, 50(7): 4037-4044. [25] SONG X W, WU X F, SONG X P, et al. Sorption and desorption of petroleum hydrocarbons on biodegradable and nondegradable microplastics [J]. Chemosphere, 2020,273: 128553. [26] MSFD Technical Subgroup on Marine Litter, Guidance on monitoring of marine litter in european seas. A guidance document within the common implementation strategy for the marine strategy framework directive[M]. European Commission, 2013. [27] MASURA J, BAKER J, FOSTER G, et al. Laboratory methods for the analysis of microplastics in the marine environment: Recommendations for quantifying synthetic particles in waters and sediments[R], NOAA Technical Memorandum, 2015. Available from: https://marinedebris.noaa.gov/sites/ default/files/publications-files/noaa_microplastics_methods_manual.pdf. [28] CLAESSENS M, MEESTER S D, LANDUYT L V, et al. Occurrence and distribution of microplastics in marine sediments along the Belgian coast [J]. Marine Pollution Bulletin, 2011, 62(10): 2199-2204. doi: 10.1016/j.marpolbul.2011.06.030 [29] KUSUI T, NODA M. International survey on the distribution of stranded and buried litter on beaches along the Sea of Japan [J]. Marine Pollution Bulletin, 2003, 47(1/6): 175-179. [30] SUL J A I D, SPENGLER A, COSTA M F. Here, there and everywhere. Small plastic fragments and pellets on beaches of Fernando de Noronha (Equatorial Western Atlantic) [J]. Marine Pollution Bulletin, 2009, 58(8): 1236-1238. doi: 10.1016/j.marpolbul.2009.05.004 [31] NUELLE M T, DEKIFF J H, REMY D, et al. A new analytical approach for monitoring microplastics in marine sediments [J]. Environmental Pollution, 2014, 184: 161-169. doi: 10.1016/j.envpol.2013.07.027 [32] IMHOF H K, SCHMID J, NIESSNER R, et al. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments [J]. Limnology & Oceanography Methods, 2012, 10: 524-537. [33] CRAWFORD C B, QUINN B. 9-Microplastic separation techniques[M]. Microplastic Pollutants. Amsterdam: Elsevier Science, 2017: 203-218. [34] CLAESSENS M, VAN C L, VANDEGEHUCHTE M B, et al. New techniques for the detection of microplastics in sediments and field collected organisms [J]. Marine Pollution Bulletin, 2013, 70(1/2): 227-233. [35] KEDZIERSKI M, LE T V, C G, et al. Efficient microplastics extraction from sand. A cost-effective methodology based on sodium iodide recycling [J]. Marine Pollution Bulletin, 2017, 115(1/2): 120-129. [36] QUINN B, MURPHY F, EWINS C. Validation of density separation for the rapid recovery of microplastics from sediment [J]. Analytical Methods, 2016, 9(9): 1491-1498. [37] DRIS R, IMHOF H, SANCHEZ W, et al. Beyond the ocean: contamination of freshwater ecosystems with (micro-)plastic particles [J]. Environmental Chemistry, 2015, 12(5): 539-550. doi: 10.1071/EN14172 [38] IMHOF H K, WIESHEU A C, ANGER P M, et al. Variation in plastic abundance at different lake beach zones-A case study [J]. Science of the Total Environment, 2017, 613/614: 530-537. [39] HORTON A A, SVENDSEN C, WILLIAMS R J, et al. Large microplastic particles in sediments of tributaries of the River Thames, UK-Abundance, sources and methods for effective quantification [J]. Marine Pollution Bulletin, 2016, 114(1): 218-226. [40] COPPOCK R L, COLE M, LINDEQUE P K, et al. A small-scale, portable method for extracting microplastics from marine sediments [J]. Environmental Pollution, 2017, 230: 829-837. doi: 10.1016/j.envpol.2017.07.017 [41] ZHANG K, SU J, XIONG X, et al. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China [J]. Environmental Pollution, 2016, 219: 450-455. doi: 10.1016/j.envpol.2016.05.048 [42] XIONG X, ZHANG K, CHEN X C, et al. Sources and distribution of microplastics in China's largest inland lake - Qinghai Lake [J]. Environmental Pollution, 2018, 235: 899-906. doi: 10.1016/j.envpol.2017.12.081 [43] CORCORAN P L, BIESINGER M C, GRIFI M. Plastics and Beaches: A Degrading Relationship [J]. Marine Pollution Bulletin, 2009, 58(1): 80-84. doi: 10.1016/j.marpolbul.2008.08.022 [44] PAGTER E, FRIAS J, NASH R. Microplastics in Galway Bay: A comparison of sampling and separation methods [J]. Marine Pollution Bulletin, 2018, 135: 932-940. doi: 10.1016/j.marpolbul.2018.08.013 [45] CRICHTON E M, NOL M, GIES E A, et al. A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments [J]. Analytical Methods, 2017, 9(9): 1419-1428. doi: 10.1039/C6AY02733D [46] MANI T, FREHLAND S, KALBERER A, et al. Using castor oil to separate microplastics from four different environmental matrices [J]. Analytical Methods, 2019, 11(13): 1788-1794. doi: 10.1039/C8AY02559B [47] KARLSSON T M, VETHAAK A D, ALMROTH B C, et al. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation [J]. Marine Pollution Bulletin, 2017, 122(1/2): 403-408. [48] ZOBKOV M B, ESIUKOVA E E. Evaluation of the munich plastic sediment separator efficiency in extraction of microplastics from natural marine bottom sediments [J]. Limnology & Oceanography Methods, 2017, 15(11): 967-978. [49] DESFORGES J P W, GALBRAITH M, ROSS P S. Ingestion of microplastics by Zooplankton in the Northeast Pacific Ocean [J]. Archives of Environmental Contamination & Toxicology, 2015, 69(3): 320-330. [50] ZHAO S Y, DANLEY M, WARD J E, et al. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy [J]. Analytical Methods, 2016, 9(9): 1470-1478. [51] MAES T, JESSOP R, WELLNER N, et al. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red [J]. Scientific Reports, 2017, 7: 44501. doi: 10.1038/srep44501 [52] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: A review [J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597. doi: 10.1016/j.marpolbul.2011.09.025 [53] CATARINO A I, THOMPSON R, SANDERSON W, et al. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues [J]. Environmental Toxicology and Chemistry, 2017, 36(4): 947-951. doi: 10.1002/etc.3608 [54] DEHAUT A, CASSONE A L, FRERE L, et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization [J]. Environmental Pollution, 2016, 215: 223-233. doi: 10.1016/j.envpol.2016.05.018 [55] NAIDOO T, GOORDIYAL K, GLASSOM D, Are nitric acid (HNO3) digestions efficient in isolating microplastics from Juvenile Fish? [J]. Water Air & Soil Pollution, 2017, 228(12): 470. [56] MUNNO K, HELM P A, JACKSON D A, et al. Impacts of temperature and selected chemical digestion methods on microplastic particles [J]. Environmental Toxicology & Chemistry, 2017, 37(1): 91-98. [57] 李陵云, 朱静敏, 李佳娜, 等. 水生生物样品中微塑料的提取和分离方法综述 [J]. 海洋环境科学, 2019, 38(2): 187-191. doi: 10.12111/j.mes20190204 LI L L, ZHU J M, LI J N, et al. Review on methods for extraction and isolation of microplastics in aquatic organisms [J]. Marine Environmental Science, 2019, 38(2): 187-191(in Chinese). doi: 10.12111/j.mes20190204
[58] FOEKEMA E M, GRUIJTER C D, MERGIA M T, et al. Plastic in North Sea Fish [J]. Environmental Science & Technology, 2013, 47(15): 8818-8824. [59] QIU Q X, TAN Z, WANG J D, et al. Extraction, enumeration and identification methods for monitoring microplastics in the environment [J]. Estuarine Coastal & Shelf Science, 2016, 176: 102-109. [60] KUHN S, WERVEN V B, OYEN V A, et al. The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms [J]. Marine Pollution Bulletin, 2017, 115(1/2): 86-90. [61] WAGNER J, WANG Z M, GHOSAL S, et al. Novel method for the extraction and identification of microplastics in Ocean Trawl and Fish Gut Matrices [J]. Analytical Methods, 2016, 9(9): 1479-1490. [62] AVIO C G, GORBI S, REGOLI F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea [J]. Marine Environmental Research, 2015, 111: 18-26. doi: 10.1016/j.marenvres.2015.06.014 [63] HURLEY R R, LUSHER A L, OLSEN M, et al. Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices [J]. Environmental Science & Technology, 2018, 52(13): 7409-7417. [64] LÖDER M G J, GERDTS G. Methodology Used for the detection and identification of microplastics—A critical appraisal[B]. Springer, Cham, 2015: 201-227. https://doi.org/10.1007/978-3-319-16510-3_8 [65] FELSING S, KOCHLEUS C, BUCHINGER S, et al. A new approach in separating microplastics from environmental samples based on their electrostatic behavior [J]. Environmental Pollution, 2018, 234: 20-28. doi: 10.1016/j.envpol.2017.11.013 [66] GRBIC J, NGUYEN B, GUO E, et al. Magnetic extraction of microplastics from environmental samples [J]. Environmental Science & Technology Letters, 2019, 6(2): 68-72. [67] 王昆, 林坤德, 袁东星. 环境样品中微塑料的分析方法研究进展 [J]. 环境化学, 2017, 36(1): 27-36. doi: 10.7524/j.issn.0254-6108.2017.01.2016051704 WANG K, LIN K D, YUAN D X. Research progress on the analysis of microplastics in the environment [J]. Environmental Chemistry, 2017, 36(1): 27-36(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051704
[68] MILLER M E, KROON F J, MOTTI C A. Recovering microplastics from marine samples: A review of current practices [J]. Marine Pollution Bulletin, 2017, 123(1/2): 6-18. [69] DEVRIESE L I, VAN D M, MYRA D, et al. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area [J]. Marine Pollution Bulletin, 2015, 98(1/2): 179-187. [70] LUSHER A, WELDEN N, SOBRAL P, et al. Sampling, isolating and identifying microplastics ingested by fish and invertebrates [J]. Analytical Methods, 2016, 9(9): 1346-1360. -