-
抗生素在医疗、畜牧、养殖等行业广泛应用。由于不正当地使用和无组织排放,致使其大量流入环境介质中,近年来,国内外在水环境[1]、土壤[2]、动植物组织[3]等环境介质中均有抗生素的检出报道[4-5]。畜禽养殖业中抗生素的不合理使用引发了一系列潜在危害,主要体现在产生抗药基因、破坏生物体内的微环境、人畜共患病增多等方面。动物源性食品安全成为了重大问题,为了保证人类健康,世界卫生组织(WHO)和联合国粮食及农业组织(FAO)曾共同建立了农药和兽药的最大残留限量(MRL)标准来对其进行控制。
检测食品中微量或痕量级别抗生素最常采用仪器法,有高效液相色谱法(HPLC)[6]、高效液相色谱-串联质谱法(HPLC-MS/MS)[7-9]、液相色谱-紫外-质谱法(LC-UV-MS)[10]、液相色谱-荧光检测方法[11]等。仪器检测法的灵敏度高,检测数据准确,但由于其前处理复杂、耗时长等劣势,限制了其在原位快速检测中的应用。生物检测技术因其高灵敏度、高选择性被广泛用于动物源性食品中的抗生素残留量检测研究。基于抗体的生物免疫检测技术最为成熟,研究应用也比较广泛。而稳定性好、适用范围广的核酸适配体与响应快、操作简便的传感器相结合成为了生物检测研究的热门发展方向。基于此,本文综述了以抗体和核酸适配体为生物识别元件的生物检测技术特点及其在动物源性食品中抗生素残留量检测的研究进展,并在归纳总结生物检测技术检测抗生素的研究基础上,预测抗生素检测技术未来的发展趋势。
动物源性食品中抗生素类污染物生物检测技术研究进展
Research progress of bioassay technology for antibiotic pollutants in animal-derived foods
-
摘要: 抗生素类污染物在动物源性食品中的残留,因其对人类健康有着潜在危害而受到了广泛的关注,因此迫切需要建立快速、灵敏、高效、便捷的检测方法以便对其及时管理和防治。生物检测技术在实现对抗生素高灵敏度、高特异性、低成本、快速的检测方面具有很强的优势,主要包括微生物检测法、免疫分析法和生物传感器法等。本文基于免疫抗体和核酸适配体两种生物识别元件的检测原理和特点,对近年来采用这两种识别方式建立起的生物检测方法在动物源性食品中抗生素残留检测中的应用进行了综述。同时,对目前检测方法研究中存在的问题进行了综合评价,并对抗生素生物检测技术的未来发展做出展望。Abstract: The residues of antibiotic contaminants in animal-derived foods have received widespread attention due to their potential harm to human health. Thus, it is urgent to establish fast, sensitive, efficient and convenient detection method to manage and prevent antibiotic residues in time. Bioassay technology which mainly include microbiological assay, immunoassay and biosensor can achieve high sensitivity, high specificity, low cost and rapid detection of antibiotics. Based on detection principles and characteristics of antibodies and aptamers, this paper reviews the application of the bioassay technology established in recent years using these two biorecognition elements in the detection of antibiotic residues in animal-derived foods. In addition, this paper comprehensively evaluates the shortcomings in the current research and prospects the future development of antibiotic bioassay technology.
-
Key words:
- antibiotic /
- antibody /
- nucleic acid aptamer /
- immunoassay /
- biosensor /
- PCR
-
表 1 基于不同纳米材料用于检测动物源性食品抗生素残留的免疫技术
Table 1. Immunoassay based on different nanomaterials for the screening of antibiotics in animal-derived foods
检测类型
Assay mode纳米材料
Nanomaterials抗生素
Antibiotics样品
Sample检测限/ (ng·mL−1)
LOD
回收率/%
Recovery参考文献
ReferenceFIA MNPs 环丙沙星 牛奶 8 90—100 [28] QDs 链霉素 牛奶 0.005 80.21—108.3 [29] 四环素 80.5—109.2 [29] 青霉素 82.4—101.4 [29] NaYF4∶Yb, Er 诺氟沙星 牛奶 0.01 82.37—132.22 [30] CLIA MNPs 氯霉素 食品 2 10−4$ \times $ [31] AuNPs 虾、蜂蜜 3.3 10−4$ \times $ [32] SiO2 虾、蜂蜜 3.3 10−5$ \times $ 83.7—115.1 [33] EIA MOFs/AuPt 马杜霉素 鸡蛋 0.045 96.4—106 [34] PAMAM-Au 诺氟沙星 牛奶、鸡蛋、猪肉 0.3837 91.6—106.1 [35] PEDOT/MWCNT 瘦肉精 牛肉 4.66 85—111 [36] -
[1] 吕凯, 刘晓薇, 邓呈逊, 等. SPE-RRLC-MS/MS测定河水和沉积物中14种典型抗生素 [J]. 环境化学, 2019, 38(11): 2415-2424. LV K, LIU X W, DENG C X, et al. SPE-RRLC-MS/MS determination of 14 typical antibiotics in river water and sediments [J]. Environmental Chemistry, 2019, 38(11): 2415-2424(in Chinese).
[2] 赵文, 潘运舟, 兰天, 等. 海南商品有机肥中重金属和抗生素含量状况与分析 [J]. 环境化学, 2017, 36(2): 408-419. doi: 10.7524/j.issn.0254-6108.2017.02.2016051803 ZHAO W, PAN Y Z, LAN T, et al. Status and analysis of heavy metals and antibiotics in commercial organic fertilizers in Hainan [J]. Environmental Chemistry, 2017, 36(2): 408-419(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.02.2016051803
[3] 潘寻, 韩哲, 李浩. 抗生素在畜禽养殖业中的应用、潜在危害及去除 [J]. 农业环境与发展, 2012, 29(5): 1-6. PAN X, HAN Z, LI H. Application, potential harm and removal of antibiotics in livestock and poultry breeding [J]. Agricultural Environment and Development, 2012, 29(5): 1-6(in Chinese).
[4] 陈强, 邴乃慈, 谢洪勇, 等. 不同环境介质中抗生素的污染现状及其检测方法研究进展 [J]. 环境监控与预警, 2017, 9(5): 24-31. doi: 10.3969/j.issn.1674-6732.2017.05.007 CHEN Q, BING N C, XIE H Y, et al. Contamination status of antibiotics in different environmental media and research progress in detection methods [J]. Environmental Monitoring and Early Warning, 2017, 9(5): 24-31(in Chinese). doi: 10.3969/j.issn.1674-6732.2017.05.007
[5] 周志洪, 吴清柱, 王秀娟, 等. 环境中抗生素污染现状及检测技术 [J]. 分析仪器, 2016(6): 1-8. ZHOU Z H, WU Q Z, WANG X J, et al. Antibiotic pollution in the environment and its detection technology [J]. Analytical Instruments, 2016(6): 1-8(in Chinese).
[6] MOUDGIL P, BEDI J S, AULAKH R S, et al. Validation of HPLC multi-residue method for determination of fluoroquinolones, tetracycline, sulphonamides and chloramphenicol residues in bovine milk [J]. Food Analytical Methods, 2019, 12(2): 338-346. doi: 10.1007/s12161-018-1365-0 [7] DU J, ZHAO H, LIU S, et al. Antibiotics in the coastal water of the South Yellow Sea in China: Occurrence, distribution and ecological risks [J]. Science of the Total Environment, 2017, 595: 521-527. doi: 10.1016/j.scitotenv.2017.03.281 [8] GROS M, RODRIGUEZ-MOZAZ S, BARCELO D. Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry [J]. Journal of Chromatography A, 2012, 1248: 104-121. doi: 10.1016/j.chroma.2012.05.084 [9] XU X, XU X Y, HAN M, et al. Development of a modified QuEChERS method based on magnetic multiwalled carbon nanotubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS [J]. Food Chemistry, 2019, 276: 419-426. doi: 10.1016/j.foodchem.2018.10.051 [10] BAILAC S, BARRON D, BARBOSA J. New extraction procedure to improve the determination of quinolones in poultry muscle by liquid chromatography with ultraviolet and mass spectrometric detection [J]. Analytica Chimica Acta, 2006, 580(2): 163-169. doi: 10.1016/j.aca.2006.07.064 [11] POSYNIAK A, MITROWSKA K. Analytical procedure for the determination of fluoroquinolones in animal muscle [J]. Bulletin of the Veterinary Institute in Pulawy, 2008, 52(3): 427-430. [12] ASHU TUFA R, PINACHO D G, PASCUAL N, et al. Development and validation of an enzyme linked immunosorbent assay for fluoroquinolones in animal feeds [J]. Food Control, 2015, 57: 195-201. doi: 10.1016/j.foodcont.2015.04.015 [13] WEI D, MENG H, ZENG K, et al. Visual dual dot immunoassay for the simultaneous detection of kanamycin and streptomycin in milk [J]. Analytical Methods, 2019, 11(1): 70-77. doi: 10.1039/C8AY02006J [14] MEYER M T, BUMGARNER J E, VARNS J L, et al. Use of radioimmunoassay as a screen for antibiotics in confined animal feeding operations and confirmation by liquid chromatography/mass spectrometry [J]. The Science of the total environment, 2000, 248(2-3): 181-187. doi: 10.1016/S0048-9697(99)00541-0 [15] YANG S, CARLSON K. Routine monitoring of antibiotics in water and wastewater with a radioimmunoassay technique [J]. Water Research, 2004, 38(14-15): 3155-3166. doi: 10.1016/j.watres.2004.04.028 [16] AL-MAZEEDI H M, ABBAS A B, ALOMIRAH H F, et al. Screening for tetracycline residues in food products of animal origin in the State of Kuwait using charm Ⅱ radio-immunoassay and LC/MS/MS methods [J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2010, 27(3): 291-301. [17] LE T, YI S, WEI S, et al. A competitive dual-label time-resolved fluoroimmunoassay for the simultaneous detection of chlortetracycline and doxycycline in animal edible tissues [J]. Food and Agricultural Immunology, 2015, 26(6): 804-812. doi: 10.1080/09540105.2015.1036355 [18] LE T, YAN P, LIU J, et al. Simultaneous detection of sulfamethazine and sulfaquinoxaline using a dual-label time-resolved fluorescence immunoassay [J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2013, 30(7): 1264-1269. [19] ASHUO A, ZOU W, FU J, et al. High throughput detection of antibiotic residues in milk by time-resolved fluorescence immunochromatography based on QR code [J]. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2020, 37(9): 1481-1490. [20] LI Z B, CUI P L, LIU J, et al. Production of generic monoclonal antibody and development of chemiluminescence immunoassay for determination of 32 sulfonamides in chicken muscle [J]. Food Chemistry, 2020, 311: 125966. doi: 10.1016/j.foodchem.2019.125966 [21] YU X, TAO X, SHEN J, et al. A one-step chemiluminescence immunoassay for 20 fluoroquinolone residues in fish and shrimp based on a single chain Fv-alkaline phosphatase fusion protein [J]. Analytical Methods, 2015, 7(21): 9032-9039. doi: 10.1039/C5AY01410G [22] LUO M, XING K, GUO Z, et al. Sensitive immunoassays based on a monoclonal antibody for detection of marbofloxacin in milk [J]. Journal of Dairy Science, 2020, 103(9): 7791-7800. doi: 10.3168/jds.2019-18108 [23] GUO L, WU X, CUI G, et al. Colloidal gold immunochromatographic assay for rapid detection of carbadox and cyadox in chicken breast [J]. Acs Omega, 2020, 5(3): 1422-1429. doi: 10.1021/acsomega.9b02931 [24] XU N, XU L, MA W, et al. An ultrasensitive immunochromatographic assay for non-pretreatment monitoring of chloramphenicol in raw milk [J]. Food and Agricultural Immunology, 2015, 26(5): 635-644. doi: 10.1080/09540105.2014.998640 [25] SHI Q, HUANG J, SUN Y, et al. Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced Raman spectroscopy for ultrasensitive detection of antibiotics in milk [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2018, 197: 107-113. doi: 10.1016/j.saa.2017.11.045 [26] YANG N, XIE L L, PAN C, et al. A novel on-chip solution enabling rapid analysis of melamine and chloramphenicol in milk by smartphones [J]. Journal of Food Process Engineering, 2019, 42(2): e12976. doi: 10.1111/jfpe.12976 [27] XIAO J, HU X, WANG K, et al. A novel signal amplification strategy based on the competitive reaction between 2D Cu-TCPP(Fe) and polyethyleneimine (PEI) in the application of an enzyme-free and ultrasensitive electrochemical immunosensor for sulfonamide detection [J]. Biosensors & Bioelectronics, 2020, 150: 111883. [28] KERGARAVAT S V, NAGEL O G, ALTHAUS R L, et al. Detection of quinolones in milk and groundwater samples using an indirect immunofluorescent magneto assay [J]. International Journal of Environmental Analytical Chemistry, 2020: 1-18. [29] SONG E, YU M, WANG Y, et al. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk [J]. Biosensors & Bioelectronics, 2015, 72: 320-325. [30] HU G, SHENG W, ZHANG Y, et al. A novel and sensitive fluorescence immunoassay for the detection of fluoroquinolones in animal-derived foods using upconversion nanoparticles as labels [J]. Analytical and Bioanalytical Chemistry, 2015, 407(28): 8487-8496. doi: 10.1007/s00216-015-8996-4 [31] WANG L, YAO M, FANG C, et al. A highly sensitive detection of chloramphenicol based on chemiluminescence immunoassays with the cheap functionalized Fe3O4@SiO2 magnetic nanoparticles [J]. Luminescence, 2017, 32(6): 1039-1044. doi: 10.1002/bio.3288 [32] LUO L, ZHOU X, PAN Y, et al. A simple and sensitive flow injection chemiluminescence immunoassay for chloramphenicol based on gold nanoparticle-loaded enzyme [J]. Luminescence:the journal of biological and chemical luminescence, 2020, 35(6): 877-884. doi: 10.1002/bio.3795 [33] ZHOU X, SHI J, ZHANG J, et al. Multiple signal amplification chemiluminescence immunoassay for chloramphenicol using functionalized SiO2 nanoparticles as probes and resin beads as carriers [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2019, 222: 117177. doi: 10.1016/j.saa.2019.117177 [34] HU M, WANG Y, YANG J, et al. Competitive electrochemical immunosensor for maduramicin detection by multiple signal amplification strategy via hemin@Fe-MIL-88NH2/AuPt [J]. Biosensors & Bioelectronics, 2019, 142: 111554. [35] LIU B, LI M, ZHAO Y, et al. A sensitive electrochemical immunosensor based on PAMAM dendrimer-encapsulated Au for detection of norfloxacin in animal-derived foods [J]. Sensors, 2018, 18(6): 1946. doi: 10.3390/s18061946 [36] TALIB N A A, SALAM F, YUSOF N A, et al. Enhancing a clenbuterol immunosensor based on poly (3, 4-ethylenedioxythiophene)/multi-walled carbon nanotube performance using response surface methodology [J]. Rsc Advances, 2018, 8(28): 15522-15532. doi: 10.1039/C8RA00109J [37] SUN H, ZU Y. A highlight of recent advances in aptamer technology and its application [J]. Molecules, 2015, 20(7): 11959-11980. doi: 10.3390/molecules200711959 [38] KIM Y S, GU M B. Advances in aptamer screening and small molecule aptasensors [M]//GU M B and KIM H S. Biosensors based on aptamers and enzymes. 2014: 29-67. [39] KUDLAK B, WIECZERZAK M. Aptamer based tools for environmental and therapeutic monitoring: A review of developments, applications, future perspectives [J]. Critical Reviews in Environmental Science and Technology, 2020, 50(8): 816-867. doi: 10.1080/10643389.2019.1634457 [40] CHEN A, YANG S. Replacing antibodies with aptamers in lateral flow immunoassay [J]. Biosensors & Bioelectronics, 2015, 71: 230-242. [41] MEHLHORN A, RAHIMI P, JOSEPH Y. Aptamer-based biosensors for antibiotic detection: A review [J]. Biosensors-Basel, 2018, 8(2): 54. doi: 10.3390/bios8020054 [42] WANG S, LIU J, YONG W, et al. A direct competitive assay-based aptasensor for sensitive determination of tetracycline residue in honey [J]. Talanta, 2015, 131: 562-569. doi: 10.1016/j.talanta.2014.08.028 [43] KIM C H, LEE L P, MIN J R, et al. An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk [J]. Biosensors & Bioelectronics, 2014, 51: 426-430. [44] WU Y Y, HUANG P C, WU F Y. A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics [J]. Food Chemistry, 2020, 304: 125377. doi: 10.1016/j.foodchem.2019.125377 [45] ABEDALWAFA M A, TANG Z, QIAO Y, et al. An aptasensor strip-based colorimetric determination method for kanamycin using cellulose acetate nanofibers decorated DNA-gold nanoparticle bioconjugates [J]. Microchimica Acta, 2020, 187(6): 1-9. [46] LIU J, ZENG J, TIAN Y, et al. An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples [J]. Analyst, 2018, 143(1): 182-189. doi: 10.1039/C7AN01476G [47] EMRANI A S, DANESH N M, LAVAEE P, et al. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles [J]. Food Chemistry, 2016, 190: 115-121. doi: 10.1016/j.foodchem.2015.05.079 [48] RAMEZANI M, DANESH N M, LAVAEE P, et al. A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline [J]. Biosensors & Bioelectronics, 2015, 70: 181-187. [49] OUYANG Q, LIU Y, CHEN Q, et al. Rapid and specific sensing of tetracycline in food using a novel upconversion aptasensor [J]. Food Control, 2017, 81: 156-163. doi: 10.1016/j.foodcont.2017.06.004 [50] WU S, ZHANG H, SHI Z, et al. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles [J]. Food Control, 2015, 50: 597-604. doi: 10.1016/j.foodcont.2014.10.003 [51] TAN B, ZHAO H, DU L, et al. A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection [J]. Biosensors & Bioelectronics, 2016, 83: 267-273. [52] SUN C, SU R, BIE J, et al. Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline [J]. Dyes and Pigments, 2018, 149: 867-875. doi: 10.1016/j.dyepig.2017.11.031 [53] YANG L, NI H, LI C, et al. Development of a highly specific chemiluminescence aptasensor for sulfamethazine detection in milk based on in vitro selected aptamers [J]. Sensors and Actuators B-Chemical, 2019, 281: 801-811. doi: 10.1016/j.snb.2018.10.143 [54] LIU S, BAI J, HUO Y, et al. A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol [J]. Biosensors & Bioelectronics, 2020, 149: 111801. [55] ROUHBAKHSH Z, VERDIAN A, RAJABZADEH G. Design of a liquid crystal-based aptasensing platform for ultrasensitive detection of tetracycline [J]. Talanta, 2020, 206: 120246. doi: 10.1016/j.talanta.2019.120246 [56] WANG S, DONG Y, LIANG X. Development of a SPR aptasensor containing oriented aptamer for direct capture and detection of tetracycline in multiple honey samples [J]. Biosensors & Bioelectronics, 2018, 109: 1-7. [57] NGUYEN A H, MA X, PARK H G, et al. Low-blinking SERS substrate for switchable detection of kanamycin [J]. Sensors and Actuators B-Chemical, 2019, 282: 765-773. doi: 10.1016/j.snb.2018.11.037 [58] JIANG Y, SUN D W, PU H, et al. A simple and sensitive aptasensor based on SERS for trace analysis of kanamycin in milk [J]. Journal of Food Measurement and Characterization, 2020: 1-10. [59] WU Y H, BI H, NING G, et al. Cyclodextrin subject-object recognition-based aptamer sensor for sensitive and selective detection of tetracycline [J]. Journal of Solid State Electrochemistry, 2020: 1-8. [60] CHEN X, LIU Y, FANG X, et al. Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors [J]. Biosensors & Bioelectronics, 2019, 126: 664-671. [61] MOHAMMAD-RAZDARI A, GHASEMI-VARNAMKHASTI M, IZADI Z, et al. Detection of sulfadimethoxine in meat samples using a novel electrochemical biosensor as a rapid analysis method [J]. Journal of Food Composition and Analysis, 2019, 82: 103252. doi: 10.1016/j.jfca.2019.103252 [62] MOHAMMAD-RAZDARI A, GHASEMI-VARNAMKHASTI M, ROSTAMI S, et al. Development of an electrochemical biosensor for impedimetric detection of tetracycline in milk[J]. Journal of Food Science and Technology-Mysore, 2020. [63] LI Y, BU Y, JIANG F, et al. Fabrication of ultra-sensitive photoelectrochemical aptamer biosensor: Based on semiconductor/DNA interfacial multifunctional reconciliation via 2D-C3N4 [J]. Biosensors & Bioelectronics, 2020, 150: 1-9. [64] ZHOU L, GAN N, ZHOU Y, et al. A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes [J]. Talanta, 2017, 167: 544-549. doi: 10.1016/j.talanta.2017.02.061 [65] HUANG Y, YAN X, ZHAO L, et al. An aptamer cocktail-based electrochemical aptasensor for direct capture and rapid detection of tetracycline in honey [J]. Microchemical Journal, 2019, 150: 104179. doi: 10.1016/j.microc.2019.104179 [66] TAO X, HE Z, CAO X, et al. Development of a highly sensitive real-time immuno-PCR for the measurement of chloramphenicol in milk based on magnetic bead capturing [J]. Analytical Methods, 2014, 6(23): 9340-9347. doi: 10.1039/C4AY02158D [67] SUH S H, DWIVEDI H P, JAYKUS L-A. Development and evaluation of aptamer magnetic capture assay in conjunction with real-time PCR for detection of Campylobacter jejuni [J]. Lwt-Food Science and Technology, 2014, 56(2): 256-260. doi: 10.1016/j.lwt.2013.12.012 [68] DUAN Y, WANG L, GAO Z, et al. An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR [J]. Talanta, 2017, 165: 671-676. doi: 10.1016/j.talanta.2016.12.090 [69] ZHOU L, GAN N, HU F, et al. Microchip electrophoresis array-based aptasensor for multiplex antibiotic detection using functionalized magnetic beads and polymerase chain reaction amplification [J]. Sensors and Actuators B-Chemical, 2018, 263: 568-574. doi: 10.1016/j.snb.2018.02.136 [70] MA P, YE H, DENG J, et al. A fluorescence polarization aptasensor coupled with polymerase chain reaction and streptavidin for chloramphenicol detection [J]. Talanta, 2019, 205: 120119. doi: 10.1016/j.talanta.2019.120119