-
餐厨垃圾有机组分质量分数较高,利用其进行厌氧消化可以产生甲烷气体,产生的沼渣沼液经处理后也可用作有机肥料[1]。相比于湿式厌氧消化,干式厌氧消化处理的有机固废的固体(Total solid,TS)质量分数较高,一般可达15%~40%,其具有沼液产量少,单位容积产气率高、预处理成本低等优点[2]。物料的流变特性对厌氧消化的运行及性能有重要影响,同时,流变特性对水力过程如混合、泵送、脱水及干燥等过程均有较大影响[3-4]。如粘度高、流动性差的物料在厌氧消化过程中容易在反应器中形成滞留区,不利于有机质与微生物的相互作用,并会影响厌氧消化过程中的传质传热过程,进而影响有机质向甲烷的转化效率。因此,物料流变特性及其演变规律不光是厌氧消化过程中重要的设计参数,也是反应器优化运行的重要控制因子[5-6]。MIRYAHYAEI等[7]研究了污泥厌氧消化过程中流变特性与甲烷产气量及污泥脱水性能的对应关系。结果表明,污泥粘度越低,其消化过程中的产气量及挥发性固体(Volatile solids,VS)去除率越高。LIU等[8]研究了微波辅助H2O2预处理对污泥厌氧消化流变特性的影响。结果表明,该预处理技术可降低污泥的粘度,提高其流动性,并且也可降低其触变性,进而有助于提高VS去除率和甲烷产气量。以上等研究结果均表明,有机固体废弃物厌氧消化后,消化系统混合液的流变特性会发生变化,流动性相对于未消化之前会有所提高,但是对于混合液在厌氧消化过程中的流变特性变化则缺乏关注。此外,部分类型干式厌氧反应器(如Kompogas)采用了卧式推流、间歇进料的方式,随着污泥厌氧消化的进行,流变特性发生转变,直接关系到反应器不同运行时间、不同搅拌区域的混合特性。因此,明确不同组分物料在厌氧消化过程中的流变特性演变规律及其成因对提高厌氧消化效率、优化反应器运行至关重要。
厌氧消化反应器内混合效果主要受到局部流场的影响,通过计算流体力学(Computational fluid dynamics,CFD)模拟反应器内流场分布对混合过程的设计和优化十分必要[9-10]。曹秀芹等[11]借助实验和CFD模拟方法对污泥厌氧消化的混合效果及能耗进行实验和模拟,研究得出,针对含水率95%的污泥的最佳搅拌转速为180 r∙min−1。WU的研究[12-13]综合考虑了反应器形状,搅拌桨类型和安装位置等因素对混合效果的影响,这为反应器设计与运行的优化提供了参考。但目前厌氧消化反应器中的流场模拟主要集中于湿式厌氧消化过程,缺乏针对干式厌氧过程流场模拟及不同组分物料在厌氧消化过程中的流场演变规律探究。
本研究采用实际餐厨垃圾物料,通过改变其多糖,蛋白质及脂质的质量分数,研究不同有机组成物料厌氧消化过程中的流变特性变化及产甲烷特性,进而明确不同有机组成物料的产气特性差异,及各有机组成物料的表观粘度变化趋势,以探讨不同组成物料的产气量与其粘度的关联性。同时,以CFD模拟探究卧式反应器流场随物料流变特征变化的演变过程,以期优化不同组分物料在厌氧消化过程中的搅拌策略,为优化干式厌氧消化反应器的运行提供理论支撑。
餐厨垃圾干式厌氧消化过程流变特性变化及其对反应器流场的影响
Alteration of rheological properties of food waste during dry anaerobic digestion and influence on reactor fluid field
-
摘要: 餐厨垃圾的有机组成是影响其干式厌氧消化性能的重要因素。以实际餐厨垃圾为研究对象,通过向其中投加馒头改变其有机组成,进而研究不同有机组成下物料厌氧消化过程中的流变特性变化及产甲烷特性。结果表明,不同有机组成物料的甲烷产气量与其粘度具有一定的负相关关系,表明物料流动性的提高有助于其产甲烷效率的提高。而物料流变特性的差异则主要可归因于TS、VS以及溶解性有机物释放的差异。物料的屈服应力与其TS、VS具有一定的线性相关关系。CFD模拟结果表明,随着厌氧消化的进行,反应器内流场逐渐变好,死区率降低,且死区率与物料TS质量分数、屈服应力及表观粘度呈正相关关系。因此,针对不同有机组成物料流变特性及反应器流场的不同需选取合适的搅拌策略,以实现搅拌效率与搅拌能耗之间的平衡。本研究结果可为优化干式厌氧消化反应器的运行提供参考。Abstract: The organic composition of food waste is a significant factor affecting its dry anaerobic digestion performance. This study selected real food waste as the research object, and changed its organic composition by adding steamed bread to investigate its rheological properties and methane production characteristics under different organic compositions during dry anaerobic digestion. The results indicated that the methane yields of different substrates had certain negative correlation with its viscosity, suggesting that the improvement of fluidity was beneficial to the increase of methane production efficiency. The difference in the rheological properties of food waste could mainly be attributed to the different contents of TS, VS and the release of dissolved organic matters. The yield stress of different substrates had a certain linear correlation with its TS and VS contents. The CFD simulation results demonstrated that the fluid field in the reactor became better and the dead zone proportion decreased with the progress of anaerobic digestion. Moreover, the dead zone proportion was positively correlated with the TS content, yield stress and apparent viscosity of substrates. Therefore, based on the rheological characteristics of substrates with different organic compositions and the corresponding fluid field in the reactor, it was necessary to select a suitable stirring strategy to achieve a balance between stirring efficiency and energy consumption. The results of this study can provide a reference for the optimization of the operation of dry anaerobic digestion reactor.
-
表 1 底物及接种污泥质量分数
Table 1. Mass fraction of substrates and inoculum sludge
% 供试原料 TS VS 蛋白质 多糖 脂质 餐厨垃圾 25.3 23.6 28.1 37.7 25.4 馒头 61.1 60.6 12.4 77.6 3.1 接种污泥 15.3 5.4 8.1 4.2 5.4 注:蛋白质、多糖和脂质的质量分数基于TS。 表 2 不同有机组成物料产甲烷特性
Table 2. Methane production characteristics of substrates with different organic compositions
实验组 累积甲烷产量/
(mL·g−1)最大产甲烷速率的时间/d 最大产甲烷速率/
(mL·(g·d)−1)Control 391.1 ± 26.5 22 41.7 ± 5.6 Car50% 427.5 ± 37.4 15 34.3 ± 5.1 Car60% 373.8 ± 12.6 26 35.3 ± 3.6 Car70% 488.7 ± 28.7 15 40.4 ± 6.9 表 3 不同组分物料厌氧消化过程中的流变参数变化
Table 3. Change of rheological parameters during anaerobic digestion
实验组 τ0/Pa K/(Pa·sn) n R2 Control-day0 5.019 4 2.582 1 0.400 0 0.993 6 Control-day5 4.292 1 3.387 3 0.345 0 0.978 3 Control-day10 5.288 7 0.950 6 0.533 3 0.992 7 Control-day20 2.439 8 0.901 5 0.485 0 0.994 5 Control-day35 1.016 6 0.810 4 0.462 5 0.981 5 Car50%-day0 4.741 6 2.474 5 0.432 2 0.991 0 Car50%-day5 4.297 8 1.603 7 0.460 0 0.996 2 Car50%-day10 1.488 1 1.628 6 0.382 2 0.984 5 Car50%-day20 0.779 0 1.553 5 0.377 7 0.989 2 Car50%-day35 0.593 7 1.522 9 0.348 6 0.995 2 Car60%-day0 6.647 1 1.913 0 0.479 2 0.990 2 Car60%-day5 2.369 0 5.234 7 0.257 1 0.991 8 Car60%-day10 2.916 1 1.255 7 0.460 9 0.990 3 Car60%-day20 2.329 2 0.957 6 0.486 8 0.991 0 Car60%-day35 1.497 0 0.906 1 0.442 7 0.993 1 Car70%-day0 2.994 3 3.954 5 0.356 8 0.994 6 Car70%-day5 1.362 6 2.914 2 0.340 4 0.994 1 Car70%-day10 2.525 8 0.987 4 0.468 7 0.992 6 Car70%-day20 1.149 2 1.472 4 0.397 5 0.993 8 Car70%-day35 1.212 8 1.557 6 0.396 0 0.994 7 -
[1] 谭燕宏. 餐厨垃圾处理工艺及资源化技术进展[J]. 绿色科技, 2012, 3: 177-179. doi: 10.3969/j.issn.1674-9944.2012.03.070 [2] GUENDOUZ J, BUFFIERE P, CACHO J, et al. Dry anaerobic digestion in batch mode: Design and operation of a laboratory-scale, completely mixed reactor[J]. Waste Management, 2010, 30(10): 1768-1771. doi: 10.1016/j.wasman.2009.12.024 [3] SEYSSIECQ I, FERRASSE J H, ROCHE N. State-of-the-art: Rheological characterisation of wastewater treatment sludge[J]. Biochemical Engineering Journal, 2003, 16(1): 41-56. doi: 10.1016/S1369-703X(03)00021-4 [4] XIA M F, WANG Z W, WU Z C, et al. Simulation and assessment of sludge concentration and rheology in the process of waste activated sludge treatment[J]. Journal of Environmental Sciences, 2009, 21(12): 1639-1645. doi: 10.1016/S1001-0742(08)62467-5 [5] BREHMER M, EPPINGER T, KRAUME M. Influence of rheology on the flow pattern in stirred biogas plants[J]. Chemie Ingenieur Technik, 2012, 84(11): 2048-2056. doi: 10.1002/cite.201200062 [6] WANG Y L, DENTEL S K. The effect of high speed mixing and polymer dosing rates on the geometric and rheological characteristics of conditioned anaerobic digested sludge (ADS)[J]. Water Research, 2010, 44(20): 6041-6052. doi: 10.1016/j.watres.2010.07.068 [7] MIRYAHYAEI S, OLINGA K, MUTHALIB F A A, et al. Impact of rheological properties of substrate on anaerobic digestion and digestate dewaterability: New insights through rheological and physico-chemical interaction[J]. Water Research, 2019, 150: 56-67. doi: 10.1016/j.watres.2018.11.049 [8] LIU J B, YU D W, ZHANG J Y, et al. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment[J]. Water Research, 2016, 98: 98-108. doi: 10.1016/j.watres.2016.03.073 [9] HUANG Q S, YANG C, YU G Z, et al. CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model[J]. Chemical Engineering Science, 2010, 65(20): 5527-5536. doi: 10.1016/j.ces.2010.07.021 [10] YANG C, ZHANG J, KOCH D L, et al. Mass/heat transfer from a neutrally buoyant sphere in simple shear flow at finite reynolds and peclet numbers[J]. AlChE Journal, 2011, 57(6): 1419-1433. doi: 10.1002/aic.12370 [11] 曹秀芹, 杜金海, 李彩斌. 污泥厌氧消化搅拌条件的优化分析[J]. 环境科学与技术, 2015, 38(1): 100-105. [12] WU B X. CFD simulation of mixing in egg-shaped anaerobic digesters[J]. Water Research, 2010, 44(5): 1507-1519. doi: 10.1016/j.watres.2009.10.040 [13] WU B X. CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters[J]. Water Research, 2011, 45(5): 2082-2094. doi: 10.1016/j.watres.2010.12.020 [14] CAMPUZANO R, GONZALEZ-MARTINEZ S. Characteristics of the organic fraction of municipal solid waste and methane production: A review[J]. Waste Management, 2016, 54: 3-12. doi: 10.1016/j.wasman.2016.05.016 [15] NEGRI C, RICCI M, ZILIO M, et al. Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review[J]. Renewable & Sustainable Energy Reviews, 2020, 133: 110138. [16] 中华人民共和国建设部. 城市污水处理厂污泥检验方法: CJ/T 221-2005[S]. 2005. [17] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017 [18] FROLUND B, GRIEBE T, NIELSEN P H. Enzymatic-activity in the activated-sludge floc matrix[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 755-761. doi: 10.1007/BF00164784 [19] OHEMENG-NTIAMOAH J, DATTA T. Evaluating analytical methods for the characterization of lipids, proteins and carbohydrates in organic substrates for anaerobic co-digestion[J]. Bioresource Technology, 2018, 247: 697-704. doi: 10.1016/j.biortech.2017.09.154 [20] MONTEIRO P S. The influence of the anaerobic digestion process on the sewage sludges rheological behaviour[J]. Water Science and Technology, 1997, 36(11): 61-67. doi: 10.2166/wst.1997.0394 [21] MAHMOUD N, ZEEMAN G, GIJZEN H, et al. Interaction between digestion conditions and sludge physical characteristics and behaviour for anaerobically digested primary sludge[J]. Biochemical Engineering Journal, 2006, 28(2): 196-200. doi: 10.1016/j.bej.2005.11.004 [22] LIU Y Q, CHEN J J, SONG J, et al. Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion[J]. Bioresource Technology, 2019, 272: 360-369. doi: 10.1016/j.biortech.2018.10.050 [23] WANG Y Y, ZHANG J X, LI Y Y, et al. Methane production from the co-digestion of pig manure and corn stover with the addition of cucumber residue: Role of the total solids content and feedstock-to-inoculum ratio[J]. Bioresource Technology, 2020, 306: 123172. doi: 10.1016/j.biortech.2020.123172 [24] FARNO E, BAUDEZ J C, PARTHASARATHY R, et al. Impact of temperature and duration of thermal treatment on different concentrations of anaerobic digested sludge: Kinetic similarity of organic matter solubilisation and sludge rheology[J]. Chemical Engineering Journal, 2015, 273: 534-542. doi: 10.1016/j.cej.2015.03.097 [25] MAO L W, ZHANG J X, DAI Y J, et al. Effects of mixing time on methane production from anaerobic co-digestion of food waste and chicken manure: Experimental studies and CFD analysis[J]. Bioresource Technology, 2019, 294: 122177. doi: 10.1016/j.biortech.2019.122177