-
城市地区大气颗粒物污染是我国大多数城市所面临的亟待解决的环境问题,也引起了政府、学者和普通民众的广泛关注。众所周知,大气颗粒物污染不仅影响大气能见度[1]、人体健康[2]、农业生产[3-4]和全球气候变化[5],而且会导致极大的经济损失[6]。大气颗粒物的来源多种多样,除了二次来源和燃料(煤、石油、生物质等)燃烧的贡献较大外,开放源扬尘也对大气颗粒物有重要贡献[7-8]。根据前人的大气颗粒物源解析结果来看,扬尘对大气颗粒物的贡献能达到46%以上[7]。由此可见,控制开放源扬尘对改善城市地区大气环境质量有着十分重要的意义。
一般而言,开放源扬尘主要包括道路扬尘、土壤扬尘、建筑扬尘、堆场扬尘和城市降尘。由于扬尘源具有源强不确定、排放不连续性和排放位置不确定等特点,因此对扬尘源的治理和管理更有难度。研究发现,扬尘不仅对大气环境造成污染,其携带的重金属、PAHs等污染物也会通过呼吸吸入和皮肤接触等途径进入人体,导致致癌风险增加[9-10]。国内已有较多学者对不同城市不同类型扬尘重金属污染特征及健康风险进行了研究[10-13]。例如,张文超等[10]对云南宣威道路尘重金属污染及来源进行了研究,并对金属元素对人体暴露的健康风险进行评价。Yang等[12]研究了在密集的城市建设时期,中国7个快速发展城市建筑尘中重金属元素污染及健康风险。胡月琪等[13]研究了2004年和2013年北京市代表性道路扬尘PM2.5中重金属污染特征及潜在生态风险。Men等[14]研究了北京市道路尘重金属污染水平、生态风险及来源。然而,针对同一城市地区不同类型扬尘重金属污染特征及健康风险的研究报道还较少见到。
孝感市位于湖北省东北部,是武汉“1+8”城市圈成员城市之一,也是国家新型城镇化综合试点地区。本研究采集了孝感市5种不同类型扬尘源样品(道路扬尘、土壤扬尘、施工扬尘、堆场扬尘和城市降尘),利用电感耦合等离子体发射光谱法(ICP-AES)测定其中重金属元素Cr、Co、Cu、Zn、Pb和Mn的含量,探讨了不同类型扬尘样品重金属的污染特征与健康风险,并通过相关分析和聚类分析法解析其来源,以期为制定有效的城市扬尘污染防治工作方案提供可靠科学的依据。
孝感市开放源扬尘重金属污染特征、来源及健康风险评价
Pollution characteristics, sources and health risk assessment of heavy metals in open-source dusts in Xiaogan City
-
摘要: 为了解开放扬尘源重金属成分谱特征,对孝感市孝南区道路扬尘、土壤扬尘、城市降尘、建筑扬尘和堆场扬尘进行调查取样,利用电感耦合等离子体发射光谱法分析扬尘中重金属的含量,并通过地累积指数法、相关分析、聚类分析和人体健康风险评价法对扬尘重金属污染程度和人体健康风险进行评价。结果表明,扬尘中Mn、Cr、Zn、Cu、Co和Pb的平均含量分别为716.4、127.6、574.3、42.9、17.9、69.0 mg·kg−1,均高于湖北省土壤背景值。地累积指数法评价结果显示不同类型扬尘中Zn污染程度最高,其次为Pb,Mn和Co清洁无污染,其中城市降尘污染最严重,土壤扬尘污染程度最轻。相关分析和聚类分析结果表明,Cu、Co、Pb和Cr 等4种元素主要受工业活动、交通污染源的影响,而Mn和Zn元素则分别来自土壤母质和交通生活混合污染源。健康风险评价结果表明非致癌风险暴露的主要途径是手-口接触,且儿童所受非致癌风险大于成人。不同类型扬尘单项重金属致癌风险指数和致癌总风险指数均低于10−4,说明不会对人群产生明显的致癌风险。Abstract: In order to understand the characteristics of the heavy metal composition in the open-source dust, five different types of dusts which contained road dust, soil dust, urban dustfall, construction dust, and stack yard dust were sampled in Xiaogan City, Hubei Province. The concentrations of heavy metals including Mn, Cr, Zn, Cu, Co, and Pb were measured by the inductively coupled plasma emission spectroscopy (ICP-MS), and the pollution characteristics, sources, and human health risk of heavy metals were evaluated. The results showed that the average contents of Mn, Cr, Zn, Cu, Co, and Pb in the dust samples were 716.4, 127.6, 574.3, 42.9, 17.9 and 69.0 mg·kg−1, respectively, which were all higher than the soil background values of Hubei Province. The pollution assessment by geo-accumulation index showed that the pollution level of Zn was the highest, followed by Pb, while Mn and Co were non-polluting. Among the five types of dust, the most serious polluted was urban dust and the least polluted was soil dust. The results of correlation analysis and cluster analysis showed that Cu, Co, Pb, and Cr were mainly affected by industrial activities and traffic pollution sources, while Mn and Zn might come from soil parent materials and/or mixed pollution sources of traffic and daily life. Human health risk assessment indicated that the major way of non-carcinogenic exposure was hand-mouth intake, and the non-carcinogenic risks for children were higher than those for adults. The carcinogenic risks of heavy metals in different open-source dusts were lower than 10−4, indicating that there is no carcinogenic risk.
-
Key words:
- dust /
- heavy metal /
- pollution /
- source /
- health risk /
- Xiaogan City
-
表 1 重金属日平均暴露量评价参数含义及取值[18]
Table 1. Evaluation parameters of average daily exposure to heavy metals
参数
Factor物理意义及单位
Definition and Unit成人
Adults儿童
ChildrenC 重金属含量/(mg·kg−1) 扬尘中重金属质量浓度 IngR 经手-口摄入量/(mg·d−1) 100 200 InhR 每日空气呼吸量/(m3·d−1) 14.5 7.5 CF 单位转换/(kg·mg−1) 1 10−6$ \times $ 1 10−6$ \times $ EF 暴露频率/(d·a−1) 350 350 ED 暴露年限/a 24 6 SA 暴露皮肤面积/cm2 5373.99 2848.01 SL 皮肤的黏附系数/(mg·(cm2·d)−1) 0.07 0.2 ABS 皮肤吸收因子(无量纲) 0.001 0.001 PEF 颗粒物排放因子/(m3·kg−1) 1.36 109$ \times $ 1.36 109$ \times $ BW 平均体重/kg 61.8 19.2 AT 平均暴露时间/d 非致癌作用:ED 365;致癌作用:70$ \times $ 365$ \times $ 项目Items Mn Cr Zn Cu Co Pb RfDing/(mg·(kg·d)−1) 4.60×10−2 3.00×10−3 0.30 4.00×10−2 2.00×10−2 3.50×10−3 RfDinh/(mg·(kg·d)−1) 1.43×10−5 2.86×10−5 0.30 4.02×10−2 5.71×10−6 3.52×10−3 RfDdermal/(mg·(kg·d)−1) 1.80×10−3 6.00×10−5 6.00×10−2 1.20×10−2 1.60×10−2 5.25×10−4 SF/[mg·(kg·d)−1]−1 42.0 9.8 表 3 不同类型扬尘重金属含量统计结果
Table 3. Descriptive statistics of heavy metal concentrations in different types of fugitive dust
项目
ItemMn/(mg·kg−1) Cr/(mg·kg−1) Zn/(mg·kg−1) Cu/(mg·kg−1) Co/(mg·kg−1) Pb/(mg·kg−1) 土壤
扬尘变化范围
平均值±标准偏差126.7—541.4
381.7±139.569.2—97.6
80.2±10.144.9—436.6
144.6±136.58.8—28.3
17.9±6.511.9—23.9
18.8±3.915.8—72.5
39.9±21.0堆场
扬尘变化范围
平均值±标准偏差377.6—1159.0
661.7±208.850.3—94.9
77.8±11.861.7—669.7
175.6±176.19.8—38.8
21.3±7.713.6—25.4
17.4±3.522.3—83.2
43.1±25.6城市
降尘变化范围
平均值±标准偏差399.4—2151.7
939.3±674.337.5—407.9
129.5±108.4104.6—10808.1
2124.2±3459.119.1—136.2
70.8±41.012.2—28.3
18.0±4.624.7—358.4
149.9±111.6建筑
扬尘变化范围
平均值±标准偏差551.1—863.4
656.3±111.8100.0—196.7
125.0±34.881.6—261.5
205.1±61.115.9—63.5
49.1±18.45.8—34.5
17.0±8.624.7—52.8
42.9±9.2道路
扬尘变化范围
平均值±标准偏差532.6—1556.4
803.3±280.8102.9—570.8
186.8±133.1114.8—575.3
262.2±154.615.6—102.5
49.9±28.413.5—25.4
18.3±3.314.7—139.0
63.1±42.6全部
扬尘平均值±标准偏差 716.4±379.9 127.6±95.9 574.3±1637.0 42.9±30.8 17.9±4.6 69.0±67.4 湖北省土壤背景值[19] 712 86 83.6 30.7 15.4 26.7 表 4 国内外城市街道扬尘中重金属平均含量对比(mg·kg−1)
Table 4. Comparison of average content of heavy metals in street dust from different regions in the world (mg·kg−1)
城市 City Cu Pb Zn Mn Cr Co 参考文献
Reference车里亚宾斯克,俄罗斯 55.9 14.4 154 421 48.5 6.3 [22] 阿巴丹,伊朗 113 59 288 — 50 8 [23] 多伦多,加拿大 162.2 182.8 232.8 1407.2 197.9 — [24] 卡瓦拉,希腊 123.9 300.9 271.6 — 196.0 — [25] 首尔,韩国 353 128 1188 769 794 — [26] 北京,中国 97.37 62.29 255.90 536.29 99.50 — [14] 铜川,中国 32.6 75.2 141.8 369.1 106.4 34.0 [27] 唐山,中国 69.86 121.48 815.42 — 312.35 — [28] 许昌,中国 25.4 41.9 145.3 408.1 96.7 — [29] 宝鸡,中国 66.42 16.38 330.8 — 76.02 4.76 [30] 成都,中国 126.0 143.0 285.0 614.0 105.0 — [31] 西安,中国 46.6 97.4 169.2 337.6 177.5 9.8 [32] 孝感,中国 49.9 69.0 262.2 803.3 186.8 17.9 本研究 表 5 不同类型扬尘重金属非致癌健康风险
Table 5. Values of non-carcinogenic health risk posed by heavy metals in dust from Xiaogan City
类型
Type项目
ItemsMn Cr Zn Cu Co Pb 儿童
Children土壤扬尘
Soil dustHQing 8.29×10−2 2.67×10−1 4.81×10−3 4.47×10−3 9.41×10−3 1.14×10−1 HQinh 7.35×10−9 7.72×10−10 1.33×10−13 1.23×10−13 9.09×10−10 3.12×10−12 HQdermal 6.03×10−3 3.80×10−2 6.86×10−5 4.24×10−5 3.35×10−5 2.16×10−3 HI 8.89×10−2 3.05×10−1 4.88×10−3 4.51×10−3 9.44×10−3 1.17×10−1 堆场扬尘
Yard dustHQing 1.44×10−1 2.59×10−1 5.85×10−3 5.31×10−3 8.71×10−3 1.23×10−1 HQinh 1.27×10−8 7.45×10−10 1.61×10−13 1.46×10−13 8.41×10−10 3.38×10−12 HQdermal 1.05×10−2 3.69×10−2 8.33×10−5 5.04×10−5 3.10×10−5 2.34×10−3 HI 1.55×10−1 2.96×10−1 5.93×10−3 5.36×10−3 8.74×10−2 1.25×10−1 城市降尘
Urban dustfallHQing 2.04×10−1 4.30×10−1 7.07×10−2 1.77×10−2 8.98×10−3 4.28×10−1 HQinh 1.81×10−8 1.25×10−9 1.95×10−12 4.85×10−13 8.67×10−10 1.17×10−11 HQdermal 1.48×10−2 6.14×10−2 1.01×10−3 1.68×10−4 3.20×10−5 8.12×10−3 HI 2.19×10−1 4.91×10−1 7.17×10−2 1.79×10−2 9.01×10−3 4.36×10−1 建筑扬尘
Construction dustHQing 1.43×10−1 4.19×10−1 6.87×10−3 1.23×10−2 8.47×10−3 1.22×10−1 HQinh 1.26×10−8 1.20×10−9 1.88×10−13 3.37×10−13 8.18×10−10 3.36×10−12 HQdermal 1.04×10−2 5.92×10−2 9.74×10−6 1.16×10−4 3.02×10−5 2.32×10−3 HI 1.53×10−1 4.78×10−1 6.87×10−3 1.24×10−2 8.50×10−2 1.24×10−2 道路扬尘
Road dustHQing 1.74×10−1 6.21×10−1 8.70×10−3 1.25×10−2 9.15×10−3 1.80×10−1 HQinh 1.55×10−8 1.80×10−9 2.41×10−13 3.42×10−13 8.84×10−10 4.94×10−12 儿童
Children道路扬尘
Road dustHQdermal 1.27×10−2 8.86×10−2 1.24×10−5 1.18×10−4 3.26×10−5 3.42×10−3 HI 1.87×10−1 7.10×10−1 8.71×10−3 1.26×10−2 9.18×10−3 1.83×10−2 成人
Adults土壤扬尘
Soil dustHQing 1.29×10−2 4.15×10−2 7.48×10−4 6.94×10−4 1.46×10−3 1.76×10−2 HQinh 4.43×10−9 4.64×10−10 7.97×10−14 7.36×10−14 5.46×10−10 1.87×10−12 HQdermal 1.24×10−3 7.97×10−3 1.40×10−5 8.70×10−6 6.88×10−6 4.43×10−4 HI 1.41×10−2 4.95×10−2 7.62×10−4 7.03×10−4 1.47×10−3 1.80×10−2 堆场扬尘
Yard dustHQing 2.23×10−2 4.02×10−2 9.08×10−4 8.24×10−4 1.35×10−3 1.91×10−2 HQinh 7.66×10−9 4.50×10−10 9.69×10−14 8.75×10−14 5.05×10−10 2.03×10−12 HQdermal 2.15×10−3 7.56×10−3 1.71×10−5 1.03×10−5 6.36×10−6 4.80×10−4 HI 2.45×10−2 4.78×10−2 9.25×10−4 8.34×10−4 1.36×10−3 1.96×10−2 城市降尘
Urban dustfallHQing 3.18×10−2 6.70×10−2 1.10×10−2 2.75×10−3 1.40×10−3 6.65×10−2 HQinh 1.09×10−8 7.49×10−10 1.17×10−12 2.91×10−13 5.21×10−10 7.04×10−12 HQdermal 3.06×10−3 1.26×10−2 2.07×10−4 3.44×10−5 6.56×10−6 1.67×10−3 HI 3.49×10−2 7.96×10−2 1.12×10−2 2.78×10−3 1.41×10−3 6.82×10−2 建筑扬尘
Construction dustHQing 2.22×10−2 6.46×10−2 1.06×10−3 1.90×10−3 1.31×10−3 1.90×10−2 HQinh 7.59×10−9 7.23×10−10 1.13×10−13 2.02×10−13 4.92×10−10 2.02×10−12 HQdermal 2.13×10−3 1.22×10−2 1.99×10−5 2.39×10−5 6.19×10−6 4.77×10−4 HI 2.43×10−2 7.68×10−2 1.08×10−3 1.92×10−3 1.32×10−3 1.95×10−2 道路扬尘
Road dustHQing 2.72×10−2 9.19×10−2 1.36×10−3 1.94×10−3 1.42×10−3 2.81×10−2 HQinh 9.37×10−9 1.08×10−9 1.45×10−13 2.05×10−13 5.31×10−10 2.97×10−12 HQdermal 2.61×10−3 1.82×10−2 2.55×10−5 2.43×10−5 6.69×10−6 7.02×10−4 HI 2.98×10−2 1.10×10−1 1.39×10−3 1.96×10−3 1.43×10−3 2.88×10−2 表 6 不同扬尘重金属的致癌健康风险
Table 6. Carcinogenic health risk posed by heavy metals in different types of fugitive dust
类型 Type Cr Co TCR 土壤扬尘 Soil dust 8.61×10−6 4.73×10−7 9.08×10−6 堆场扬尘 Yard dust 8.36×10−6 4.38×10−7 8.80×10−6 城市降尘 Urban dustfall 1.39×10−5 4.51×10−7 1.44×10−5 建筑扬尘 Construction dust 1.34×10−5 4.26×10−7 1.38×10−5 道路扬尘 Road dust 2.01×10−5 4.61×10−7 2.05×10−5 -
[1] PUI D Y H, CHEN S C, ZUO Z L. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation [J]. Particuology, 2014, 13: 1-26. doi: 10.1016/j.partic.2013.11.001 [2] KIM K H, KABIR E, KABIR S. A review on the human health impact of airborne particulate matter [J]. Environment International, 2015, 74: 136-143. doi: 10.1016/j.envint.2014.10.005 [3] 刘秀位, 张小雨, 张喜英. 大气气溶胶增加对作物的影响研究进展 [J]. 生态学报, 2016, 36(7): 2084-2090. LIU X W, ZHANG X Y, ZHANG X Y. A review of the research on crop responses to the increase in aerial aerosol [J]. Acta Ecologica Sinica, 2016, 36(7): 2084-2090(in Chinese).
[4] SCHIFERL L D, HEALD C L. Particulate matter air pollution may offset ozone damage to global crop production [J]. Atmospheric Chemistry and Physics, 2018, 18(8): 5953-5966. doi: 10.5194/acp-18-5953-2018 [5] HILL J, POLASKY S, NELSON E, et al. Climate change and health costs of air emissions from biofuels and gasoline [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 2077-2082. doi: 10.1073/pnas.0812835106 [6] PANDEY A, BRAUER M, CROPPER M L, et al. Health and economic impact of air pollution in the states of India:The global burden of disease study 2019 [J]. The Lancet Planetary Health, 2021, 5(1): e25-e38. doi: 10.1016/S2542-5196(20)30298-9 [7] HUANG R J, ZHANG Y L, BOZZETTI C, et al. High secondary aerosol contribution to particulate pollution during haze events in China [J]. Nature, 2014, 514(7521): 218-222. doi: 10.1038/nature13774 [8] HOPKE P K, DAI Q L, LI L X, et al. Global review of recent source apportionments for airborne particulate matter [J]. Science of the Total Environment, 2020, 740: 140091. doi: 10.1016/j.scitotenv.2020.140091 [9] GONG X S, SHEN Z X, ZHANG Q, et al. Characterization of polycyclic aromatic hydrocarbon (PAHs) source profiles in urban PM2.5 fugitive dust: A large-scale study for 20 Chinese cites [J]. Science of the Total Environment, 2019, 687: 188-197. doi: 10.1016/j.scitotenv.2019.06.099 [10] 张文超, 吕森林, 刘丁彧, 等. 宣威街道尘中重金属的分布特征及其健康风险评估 [J]. 环境科学, 2015, 36(5): 1810-1817. ZHANG W C, LV S L, LIU D Y, et al. Distribution characteristics of heavy metals in the street dusts in Xuanwei and their health risk assessment [J]. Environmental Science, 2015, 36(5): 1810-1817(in Chinese).
[11] MEN C, WANG Y F, LIU R M, et al. Temporal variations of levels and sources of health risk associated with heavy metals in road dust in Beijing from May 2016 to April 2018 [J]. Chemosphere, 2021, 270: 129434. doi: 10.1016/j.chemosphere.2020.129434 [12] YANG S C, LIU J L, BI X Y, et al. Risks related to heavy metal pollution in urban construction dust fall of fast-developing Chinese cities [J]. Ecotoxicology and Environmental Safety, 2020, 197: 110628. doi: 10.1016/j.ecoenv.2020.110628 [13] 胡月琪, 郭建辉, 张超, 等. 北京市道路扬尘重金属污染特征及潜在生态风险 [J]. 环境科学, 2019, 40(9): 3924-3934. HU Y Q, GUO J H, ZHANG C, et al. Pollution characteristics and potential ecological risks of heavy metals in road dust in Beijing [J]. Environmental Science, 2019, 40(9): 3924-3934(in Chinese).
[14] MEN C, LIU R M, XU L B, et al. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China [J]. Journal of Hazardous Materials, 2020, 388: 121763. doi: 10.1016/j.jhazmat.2019.121763 [15] MÜLLER G. Index of geoaccumulation in sediments of the Rhine River [J]. Journal of Geology, 1969, 2: 108-118. [16] ZAHRA A, HASHMI M Z, MALIK R N, et al. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—Feeding tributary of the Rawal Lake Reservoir, Pakistan [J]. Science of the Total Environment, 2014, 470/471: 925-933. doi: 10.1016/j.scitotenv.2013.10.017 [17] ZHANG J, WU L, ZHANG Y J, et al. Elemental composition and risk assessment of heavy metals in the PM10 fractions of road dust and roadside soil [J]. Particuology, 2019, 44: 146-152. doi: 10.1016/j.partic.2018.09.003 [18] 郭志娟, 周亚龙, 王乔林, 等. 雄安新区土壤重金属污染特征及健康风险 [J]. 中国环境科学, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049 GUO Z J, ZHOU Y L, WANG Q L, et al. Characteristics of soil heavy metal pollution and health risk in Xiong’an New District [J]. China Environmental Science, 2021, 41(1): 431-441(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.01.049
[19] 中国环境监测总站. 中国土壤背景值[M]. 北京: 中国环境科学出版社, 1990. China National Environmental Monitoring Center. Background values of soil elements in China[M]. Environmental Science Press, Beijing, 1990(in Chinese).
[20] US EPA. Risk Assessment Guidance for Superfund (RAGS) Part A [R]. Washington, DC: Office of Emergency Remedial Response, 1989. [21] 柴育红, 王明新, 赵兴青. 重工业区户外灰尘重金属含量水平及其生态和健康风险评估 [J]. 环境化学, 2019, 38(6): 1375-1384. doi: 10.7524/j.issn.0254-6108.2018082802 CHAI Y H, WANG M X, ZHAO X Q. Levels, ecological and health risk assessments of heavy metals in outdoor dust of a heavy industrial area [J]. Environmental Chemistry, 2019, 38(6): 1375-1384(in Chinese). doi: 10.7524/j.issn.0254-6108.2018082802
[22] KRUPNOVA T G, RAKOVA O V, GAVRILKINA S V, et al. Road dust trace elements contamination, sources, dispersed composition, and human health risk in Chelyabinsk, Russia [J]. Chemosphere, 2020, 261: 127799. doi: 10.1016/j.chemosphere.2020.127799 [23] GHANAVATI N, NAZARPOUR A, WATTS M J. Status, source, ecological and health risk assessment of toxic metals and polycyclic aromatic hydrocarbons (PAHs) in street dust of Abadan, Iran [J]. CATENA, 2019, 177: 246-259. doi: 10.1016/j.catena.2019.02.022 [24] NAZZAL Y, GHREFAT H, ROSEN M A. Application of multivariate geostatistics in the investigation of heavy metal contamination of roadside dusts from selected highways of the Greater Toronto Area, Canada [J]. Environmental Earth Sciences, 2014, 71(3): 1409-1419. doi: 10.1007/s12665-013-2546-1 [25] CHRISTOFORIDIS A, STAMATIS N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala's region, Greece [J]. Geoderma, 2009, 151(3/4): 257-263. [26] KIM J A, PARK J H, HWANG W J. Heavy metal distribution in street dust from traditional markets and the human health implications [J]. International Journal of Environmental Research and Public Health, 2016, 13(8): E820. doi: 10.3390/ijerph13080820 [27] LU X W, WU X, WANG Y W, et al. Risk assessment of toxic metals in street dust from a medium-sized industrial city of China [J]. Ecotoxicology and Environmental Safety, 2014, 106: 154-163. doi: 10.1016/j.ecoenv.2014.04.022 [28] CUI X T, WANG X Q, LIU B. The characteristics of heavy metal pollution in surface dust in Tangshan, a heavily industrialized city in North China, and an assessment of associated health risks [J]. Journal of Geochemical Exploration, 2020, 210: 106432. doi: 10.1016/j.gexplo.2019.106432 [29] 闫慧, 陈杰, 肖军. 典型农业城市街道灰尘重金属特征及其环境风险评价: 以许昌市为例 [J]. 环境科学, 2013, 34(10): 4017-4023. YAN H, CHEN J, XIAO J. Heavy metal content in street dust and environmental risk assessment of agricultural city: A case study of Xuchang City [J]. Environmental Science, 2013, 34(10): 4017-4023(in Chinese).
[30] 耿雅妮, 梁青芳, 杨宁宁, 等. 宝鸡市城区灰尘重金属空间分布、来源及健康风险 [J]. 地球与环境, 2019, 47(5): 696-706. GENG Y N, LIANG Q F, YANG N N, et al. Distribution, sources and health risk assessment of heavy metals in dusts of the urban area of the Baoji city [J]. Earth and Environment, 2019, 47(5): 696-706(in Chinese).
[31] 徐国栋, 葛建华, 杜谷, 等. 成都市中心城区地表沉积物中重金属分布及矿物学特征 [J]. 岩矿测试, 2019, 38(4): 418-428. XU G D, GE J H, DU G, et al. The heavy metal distribution and mineralogical characteristics of surface sediments in Chengdu city [J]. Rock and Mineral Analysis, 2019, 38(4): 418-428(in Chinese).
[32] 石栋奇, 卢新卫. 西安城区路面细颗粒灰尘重金属污染水平及来源分析 [J]. 环境科学, 2018, 39(7): 3126-3133. SHI D Q, LU X W. Contamination levels and source analysis of heavy metals in the finer particles of urban road dust from Xi'an, China [J]. Environmental Science, 2018, 39(7): 3126-3133(in Chinese).
[33] 王硕, 蔡立梅, 王秋爽, 等. 中国城市地表灰尘中重金属的富集状况及空间分布特征 [J]. 地理研究, 2018, 37(8): 1624-1640. WANG S, CAI L M, WANG Q S, et al. Spatial distribution and accumulation of heavy metals in urban surface dust of China [J]. Geographical Research, 2018, 37(8): 1624-1640(in Chinese).
[34] 宋怡, 卢新卫, 周潇, 等. 邢台市区道路可悬浮灰尘重金属污染特征及来源识别 [J]. 环境科学, 2020, 41(7): 3130-3135. SONG Y, LU X W, ZHOU X, et al. Source identification and pollution characteristics of heavy metals in suspended particles of urban road dust from Xingtai City [J]. Environmental Science, 2020, 41(7): 3130-3135(in Chinese).
[35] PAN H Y, LU X W, LEI K. A comprehensive analysis of heavy metals in urban road dust of Xi'an, China: Contamination, source apportionment and spatial distribution [J]. Science of the Total Environment, 2017, 609: 1361-1369. doi: 10.1016/j.scitotenv.2017.08.004 [36] 王丽, 王利军, 史兴民, 等. 西安城区地表灰尘中重金属分布、来源及潜在生态风险 [J]. 环境科学与技术, 2017, 40(7): 180-187. WANG L, WANG L J, SHI X M, et al. Distribution, sources and potential ecological risk of heavy metals in surface dusts from urban areas of Xi'an city [J]. Environmental Science & Technology, 2017, 40(7): 180-187(in Chinese).