曝气对MBBR联合管式膜MBR处理生活污水的影响及膜污染分析

钱光磊, 谢陈鑫, 滕厚开, 雷太平, 张程蕾, 周立山. 曝气对MBBR联合管式膜MBR处理生活污水的影响及膜污染分析[J]. 环境工程学报, 2022, 16(3): 1019-1027. doi: 10.12030/j.cjee.202111026
引用本文: 钱光磊, 谢陈鑫, 滕厚开, 雷太平, 张程蕾, 周立山. 曝气对MBBR联合管式膜MBR处理生活污水的影响及膜污染分析[J]. 环境工程学报, 2022, 16(3): 1019-1027. doi: 10.12030/j.cjee.202111026
QIAN Guanglei, XIE Chenxin, TENG Houkai, LEI Taiping, ZHANG Chenglei, ZHOU Lishan. The membrane fouling analysis and effect of aeration on the performance of MBBR combined tubular membrane MBR system treating domestic wastewater[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 1019-1027. doi: 10.12030/j.cjee.202111026
Citation: QIAN Guanglei, XIE Chenxin, TENG Houkai, LEI Taiping, ZHANG Chenglei, ZHOU Lishan. The membrane fouling analysis and effect of aeration on the performance of MBBR combined tubular membrane MBR system treating domestic wastewater[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 1019-1027. doi: 10.12030/j.cjee.202111026

曝气对MBBR联合管式膜MBR处理生活污水的影响及膜污染分析

    作者简介: 钱光磊(1986—),男,硕士,高级工程师,qiangl1987@163.com
    通讯作者: 谢陈鑫(1983—),男,硕士,高级工程师,xiechx@cnooc.com.cn
  • 基金项目:
    海油发展重点科技攻关项目(HFKJ-ZDGG-TJY-2021-04)
  • 中图分类号: X703.1

The membrane fouling analysis and effect of aeration on the performance of MBBR combined tubular membrane MBR system treating domestic wastewater

    Corresponding author: XIE Chenxin, xiechx@cnooc.com.cn
  • 摘要: 采用移动床生物膜反应器(MBBR)联合管式膜构建气提式管式膜MBR体系用以处理生活污水,考察了曝气对污水处理效果、膜内气液流态及膜过程的影响,探讨了污泥特性的变化及其对膜污染过程的影响机制。结果表明,气提式管式膜MBR体系下膜出水DO浓度高于混合液,且随着曝气量由50 L·h−1提高至150 L·h−1,管式膜内气含率由0.33增至0.60并呈“活塞流”流态,操作周期由6~7 d延长至17 d,膜污染速率由1.54 kPa·h−1降至0.21 kPa·h−1,临界通量显著增大;同时,MBBR混合液中EPS总量呈减小趋势,但MBBR内悬浮污泥粒径变小,且膜表面EPS中PN/PS比例显著高于MBBR混合液。膜表面污染阻力构成分析表明,气提式管式膜MBR体系下容易发生膜孔堵塞,膜污染以不可逆污染阻力为主。
  • 厨余垃圾是指产生于居民小区经大类粗分后的有机垃圾。近年来,生活垃圾中厨余垃圾的比例逐渐增加,甚至高达70%~80%[1-2]。因厨余垃圾具有有机成分多、含水率高、易腐烂、热值低、有害成分少等特点[3],高湿的厨余垃圾给收集、运输以及末端的处理处置都带来一定的难度。另外,高含水率厨余垃圾还使得生活垃圾不同组分间相互粘连,机械分选效果差,也限制了通过分选实现垃圾处理过程优化的可能性[4]。生物干化是近几年来逐步兴起的一种生活垃圾预处理技术,与热干化不同,它无需消耗外界热能,而利用垃圾中可生物降解的有机物好氧分解释放的热量,使垃圾中水分汽化,通过强制通风对流,将汽化后的水蒸气带出,从而降低生活垃圾水分[5]。生物干化技术追求的目标是通过最小的有机质降解实现最大水分去除,快速去除有机物料中水分。经生物干化过程预处理后含水率较低的厨余垃圾仍保留了大部分的有机物,具有较高的热值,可以进行直接焚烧处理,或经过进一步加工后制备垃圾衍生燃料[6]

    由于厨余垃圾含水率高、C/N低、物料致密,通常在厨余垃圾堆肥或生物干化过程中通过添加辅料来调节理化性质。秸秆、木屑、稻壳、菌糠等不同的生物质辅料已被用于调节厨余垃圾好氧生物转化的含水率、C/N比和孔隙率[7-10]。这种添加辅料的联合生物干化方式既可以处理生物质废弃资源,同时也可将厨余垃圾高效地转化为垃圾衍生燃料(RDF)。目前, 生物干化技术主要用于干化脱水污泥[11-12]。GEA等[7]发现脱水污泥中添加20%的玉米棒作为辅料,可获得较高的水分去除率。CAI等[13]使用木屑作为辅料调节污泥的含水率进行生物干化。不同种类的辅料可以用来调节厨余垃圾生物干化的理化特性,同时也会改变物料的降解特性和组成,从而影响厨余垃圾燃烧热特性。

    目前,大部分研究集中于利用生活垃圾中的塑料、纸质以及纤维等高热值的组分制备垃圾衍生燃料(RDF),这些组分的热解特性以及动力学参数已有报道[14-16]。LI等[17]研究了厌氧消化对污泥热解特性的影响,发现与原始污泥相比,经厌氧发酵后的沼渣的质量损失在180~550 ℃时较低,但在550~900 ℃时较高。ZHANG等[18]研究了混合生活垃圾生物干化过程的燃烧特性,发现生物干化过程可使混合垃圾的热值和表观活化能提高,这主要是由于有机质的降解使混合垃圾中的塑料占比增加,也意味着生物干化过程会使混合垃圾的燃烧更难。然而,生活垃圾的组成比较复杂,主要包括可降解和不可降解组分。目前,我国已经大力倡导生活垃圾源头分类,厨余垃圾需要被单独分离出来并进行单独的运输和处理处置。经生物干化后的厨余垃圾作为生物质能源的燃烧特性,以及不同的辅料添加对厨余垃圾生物干化产品热特性的影响引起人们的广泛关注。

    本研究以厨余垃圾为研究对象,研究了不同碳源的辅料添加对厨余垃圾生物干化产品燃烧热特性的影响,为厨余垃圾生物干化技术提供参考。

    厨余垃圾取自北京市南城地区马家楼转运站筛分的0~80 mm粒径段垃圾,经人工大类粗分去掉其他垃圾和可回收垃圾后的有机部分。厨余垃圾的物理组成为(湿基):蔬菜30.3%,主食38.9%,果皮17%,果壳5.1%,骨头4.2%,肉类2.4% 和蛋壳2.2%。玉米秸秆取自中国农业大学上庄实验站,经粉碎机切割为3 cm左右的秸秆段。木本泥炭是一种主要由树木、灌木和其他木本植物组成的泥炭,取自印度尼西亚,由中国香港中项国际有限公司提供,供试的木本泥炭为粉末状,粒径约5 mm。原材料的基本性状见表1

    表 1  原料的基本性质
    Table 1.  Basic properties of the raw materials
    处理组物理化学特性生物化学组成(以干基计)/%工业分析(以干基计)/%元素分析(以干基计)/%
    含水率1)/%容重1)/(kg·m−3)C/N2)挥发性固体(VS)淀粉脂肪蛋白质纤维素半纤维素木质素分析水挥发分固定碳灰分CHONS
    厨余垃圾77.4769921.3770.554.6413.7812.5016.786.8418.484.4365.716.5523.3136.294.9256.611.700.48
    玉米秸秆7.4316234.5991.303.4510.897.2130.5920.2019.395.0379.120.5715.2841.725.6651.031.210.38
    木本泥炭13.1981480.3494.700.2714.403.550.000.0072.364.6075.650.4519.352.144.9741.860.650.38
      注:1) 以湿基计算;2) 以干基计算。
     | Show Table
    DownLoad: CSV

    实验共设置3个处理,以厨余垃圾单独进行生物干化作为对照,分别添加玉米秸秆和木本泥炭2种辅料,使其与厨余垃圾联合进行生物干化。玉米秸秆为黄贮玉米,将收割后粉碎为3 cm左右的秸秆段直接与厨余垃圾进行混合。木本泥炭经晾晒至含水率低于15%后,将其直接与厨余垃圾混合。玉米秸秆的主要组成为纤维素和半纤维素,木本泥炭主要组成为木质素,因此,二者作为辅料所提供的碳源并不相同,前者可代表纤维素类碳源的辅料,后者代表木质素类碳源的辅料。厨余垃圾单独进行生物干化,不添加任何辅料为对照处理(CK),添加玉米秸秆辅料的处理简称为CS,添加木本泥炭的处理简称为WP。2种辅料的添加量均为初始物料总质量的15% (湿基)。辅料添加比例是综合考虑混合物料C/N比、含水率和好氧发酵温度确定的。将充分混匀后的初始物料堆置于容积为60 L同时具有鼓风和排风的密闭式发酵罐中,再进行生物干化实验。通风方式采用连续通风,通风速率为0.3 L· (kg·min)−1,实验周期为21 d,每隔3 d翻堆1次。生物干化实验装置见图1。生物干化发酵罐为60 L不锈钢圆柱形罐(内径0.36 m,高0.6 m),发酵罐采用2层不锈钢制成,之间为绝热层,防止热量损失。距离发酵罐底部5 cm处装有不锈钢的筛,筛板上为3 mm的气孔,便于气流输送。发酵罐底部设有2个口,1个用来鼓风通气,1个用来收集渗滤液。发酵罐的顶端装有可密封的不锈钢盖,顶盖中间部位有2个孔:1个密封连接温度探头,可在线连续监测生物干化过程中温度的变化;1个孔用来收集测定发酵罐内气体含量和组成。同时发酵罐盖设有直径50 mm的排气口,与冷凝器相连,将发酵罐中水蒸气冷凝,并收集于玻璃中。

    图 1  强制通风生物干化实验装置
    Figure 1.  Diagram of forced aeration bio-drying reactor

    在生物干化开始和结束时,采集固定样品约200 g,分2部分保存:一部分为新鲜样品,用于测定含水率,4 ℃条件下保存备用。另一部分自然风干,粉碎后过0.5 mm筛,用于测定挥发性固体(VS)、有机质组分(淀粉、脂肪、蛋白质、纤维素、半纤维素和木质素)、元素含量以及热重分析。

    含水率采用烘箱干燥法,105 ℃烘干至恒重;固相挥发性固体VS含量采用马弗炉灼烧法,在550 ℃灼烧6 h至恒重。纤维素、半纤维素和木质素含量采用范式洗涤法[19]测定;淀粉含量测定采用蒽酮比色法[20];脂肪含量测定采用乙醚索氏提取法[21];蛋白质含量测定采用凯氏定氮法[20]。各固体指标均测定了3个平行样。

    样品(C、N、S和H)含量采用元素分析仪(Elementar Analysensysteme, Hanau, 德国)测定,采用差减法计算O含量。

    使用日本 HITACHI 公司的 STA7200 型热重分析仪进行工业分析。测定条件为:升温速率为10 ℃·min−1,进气总流量为 375 mL·min−1,进气中 N2 与 O2 流量之比是 4∶1,在 25~950 ℃进行线性程序升温,每隔 0.5 s 进行一次测定。最后,对所得到的 TG和 DTG曲线使用热重分析仪自带软件 TA7000 Job Gallery 进行分析。根据热重分析仪输出的质量随温度变化的结果,从室温到110 ℃失重率为水分含量,在110~550 ℃失重率为挥发分含量,固定碳的含量为整个过程中质量总损失扣除分析水和挥发分后的含量[22]

    在进行热特性分析时,分析了每个失重段的最大燃烧温度,最大燃烧速率、温度范围和失重率。确定了燃点和燃烬点[23-24],计算了燃烧过程的可燃性指数、综合燃烧指数以及活化能。

    1)可燃性指数C直观地反映试样发生燃烧反应前期的能力。C越大,燃料的着火燃烧稳定性越好[25]C可按式(1)进行计算。

    C=[(dw/dt)max]/T2i (1)

    式中:C为可燃性指数,10−3μg·(min·℃2)−1;(dw/dt)max 为最大燃烧速率,μg·min−1Ti为燃点,℃。

    与反映燃料前期反应能力的可燃性指数C相比较,综合燃烧特征指数S则全面反映燃料着火和燃烬的综合性能[25]S越大,表明燃料的燃烧性能越佳。S可按式(2)进行计算。

    S=[(dw/dt)max(dw/dt)mean]/(T2iTh) (2)

    式中:S为综合燃烧特征指数,10−4μg2·(min2·℃3)−1;(dw/dt)max 为最大燃烧速率,μg·min−1;(dw/dt)mean为平均燃烧速率,μg·min−1Ti为燃点,℃;Th为燃烬点,℃。

    对剧烈燃烧温度范围内的 TG 曲线进行拟合,计算活化能 E,指前因子AR2[26-28]。活化能越大,说明物料反应越困难。R2越接近1,说明所选用的动力学方程拟合效果越好。动力学方程如式(3)和式(4)所示。

    ln(dα/dt)=lnAE/RT+nln(1α) (3)
    α=w0wtw0w (4)

    式中:w0为样品初始质量,mg;wt为反应t时刻样品质量,mg;w为反应结束最终的样品质量,mg;A为指前因子;E为活化能,kJ·mol−1

    表观活化能(Em)反映每个燃烧阶段对总反应活化能的贡献,Em可按式(5)进行计算。

    Em=F1E1+F2E2+FnEn (5)

    式中:Em为表观活化能,kJ·mol−1F1~Fn为每个反应区域所反映的质量分数,根据各个温度段的活化能和反应的质量分数,可计算试样的平均表观活化能。

    随着生物干化的进行,堆体中有机质在好氧微生物的活动下逐渐降解产生热量,产生的热量使物料温度升高,在通风的携带作用下,水蒸气被带出堆体,物料含水率也逐渐降低。袁京等[29]已详细分析说明,在整个生物干化周期内不同处理的温度变化、含水率变化以及水分去除情况。玉米秸秆富含纤维素和半纤维素,而木本泥炭富含木质素,由于木质素较难降解,纤维素较木质素容易降解,但是比脂肪和淀粉等易降解的有机质组分难降解。因此,经过21 d生物干化后,厨余垃圾单独生物干化后的VS降解率最高,添加木本泥炭处理的VS降解率最低。生物干化过程各有机质组分含量以及各组分对总VS损失的贡献率见表2表3。有机物料中可降解组分主要包含淀粉、脂肪、蛋白质、纤维素、半纤维素和木质素。与生物干化前相比,所有处理中淀粉、纤维素和半纤维素的含量经过生物干化后均有所降低,脂肪和蛋白质的含量变化较小。但是所有处理中的木质素含量经生物干化后有所增加,主要是由于木质素不容易降解,因此,比其他组分降解速率慢,其他组分的降解速率大于木质素的降解速率,会使木质素的含量浓缩。对于CK处理,对VS损失贡献较大的组分主要为淀粉(27.45%)、纤维素(25.3%)和脂肪(17.44%),占总有机质损失的70.2%。然而,对于CS和WP处理,纤维素、半纤维素和淀粉是主要的贡献组分。但是,WP处理木质素的贡献率明显高于其他2个处理(P =0.001)。

    表 2  生物干化过程生物化学组分含量
    Table 2.  Biochemical components before and after bio-drying (%)
    处理组VS淀粉脂肪蛋白质纤维素半纤维素木质素
    初始结束初始结束初始结束初始结束初始结束初始结束初始结束
    CK70.5551.6210.641.4413.7810.7412.5010.3716.7811.116.843.4011.4814.84
    CS72.0958.147.072.9413.4111.689.6411.8423.0311.249.945.2915.2517.13
    WP74.0462.857.012.6411.3711.4810.7210.3917.2910.675.302.1332.6835.00
     | Show Table
    DownLoad: CSV
    表 3  生物干化过程各组分对总VS损失的贡献率
    Table 3.  Contribution of various biochemical components to total organic losses (%)
    处理组淀粉脂肪蛋白质纤维素半纤维素木质素
    CK27.4517.4414.6025.3012.622.58
    CS15.0113.681.5544.9818.396.40
    WP21.806.457.8637.1215.9610.80
      注:贡献率基于表2数据计算得出;各组分贡献率=(各组分的初始百分含量*初始物料干重−各组分的结束百分含量*结束物料干重)/(初始VS量−结束VS量)
     | Show Table
    DownLoad: CSV

    对各处理生物干化前后的样品进行热重分析(TG)和微分热重分析(DTG),CK,CS和WP处理的热特性图谱分别如图2(a)~图2(c)所示。燃点可用于评价物料的着火性能[30]。最大燃烧速率、最大燃烧速率对应的温度、燃烬点、燃烧率、挥发分(VM)、固定碳(FC)和VM/FC均可以用来表征物料的燃烧热特性。热重曲线(TG)出现4个失重段,YE等[31]也发现了相似的失重曲线。第1失重段的温度为30~110 ℃,该温度范围内主要是物料中分析水的损失,失重率较少,约为2.5%~5.3%;第2失重段的温度为110~400 ℃,主要为淀粉、脂肪、蛋白质、纤维素、半纤维素和少量的木质素物质的损失,这一失重段的失重率较高,为30%~46%;DTG曲线的第1峰出现在这个燃烧段。生物干化前,3个处理的最大燃烧温度为282.03~289.8 ℃,差异不大,但是添加辅料的处理对应的最大燃烧速率(CS处理为525.15 μg·min−1,WP处理为595.08 μg·min−1)明显高于CK 处理(385.69 μg·min−1)。这主要是由于辅料的添加增加了初始物料的挥发分含量,主要增加了纤维素、半纤维素以及木质素的含量。有研究[32]表明,纤维素、半纤维素和木质素的燃烧温度分别为225~325、300~380和380~525 ℃。经生物干化后,各处理的最大燃烧速率均有所降低,为231.5~331.55 μg·min−1,但是最大燃烧温度基本保持不变(279.6~301.3 ℃)。生物干化过程对第2失重段的燃烧温度范围和最大燃烧温度影响较小,但是生物干化后物料的最大燃烧速率明显低于生物干化前,这主要是由于生物干化过程中有机质的降解导致第2失重段的质量损失减少。

    图2可见,有2个明显的峰,根据温度可以判断其为TG曲线第2和第3失重段物质剧烈燃烧反应峰。第3失重段的温度为380~570 ℃,主要为其他剩余的挥发分以及固定碳的析出,失重率为17%~24%;第2个明显的DTG 峰出现在这一失重段。蒲舸等[24]用城市生活垃圾混合样品得到的DTG 曲线也出现明显双峰峰形。CK处理中的原始物料在这一失重段的最大燃烧速率为1 261.7 μg·min−1,高于添加辅料的CS(485.75 μg·min−1)和WP(351.1 μg·min−1)处理,这主要是由于厨余垃圾较高的固定碳含量(6.55%)造成的。生物干化过程使第3失重段的最大燃烧温度提高,同时最大燃烧速率降低,这意味着物料在第3失重段的燃烧较生物干化前相比变困难了。第4失重段的温度为580~710 ℃,这一温度范围内主要为较难分解物质的析出,失重率为1.5%~4%。随着生物干化反应的进行,有机质不断降解,固定碳以及难降解物质所占的比例有所增加,因此,生物干化后物料在第4失重段的最大燃烧速率高于生物干化前。

    表4表5可以看出,第2和第3失重段为主要的失重段,90% 以上的质量损失发生在这2个阶段。各处理生物干化前后物料燃烧率约为60%~77%,燃烬温度为780~852 ℃。ROBINSON等[33]将垃圾衍生燃料(RDF)的 TG 曲线分为2次水分散发阶段(80~180 ℃)、纤维素分解阶段(180~380 ℃)、塑料分解阶段(400~560 ℃)和难分解的挥发分(>580 ℃),这与本研究结果相似。但是添加玉米秸秆和木本泥炭提高了物料的燃点,添加木本泥炭处理的燃点最高可达到285~288 ℃,这可能与木本泥炭含有大量的木质素有关,添加玉米秸秆增加了物料中纤维素的含量,导致燃点与CK处理相比也有所增加。随着生物干化反应的进行,与初始物料相比,各处理最后生物干化产品燃点基本保持稳定,有机质的降解并不会影响物料的燃点。但是随着有机质的降解,各处理的燃烬点延后了。生物干化过程会导致燃烧率降低以及燃烬点推后。ZHANG等[18]发现,生物干化各时期物料的燃烧率与有机质降解有关,但是燃点与有机质降解无关。这与本研究的结果相似,生物干化对于燃点的影响较小,燃点主要由物质的组成和性质决定。

    表 4  初始原料及干化产品的燃烧失重特性
    Table 4.  Combustion weight-loss Characteristics of mixed samples at the beginning and end of the bio-drying process
    处理组阶段第1失重段第2失重段
    温度/℃最大燃烧温度/℃最大燃烧速率/(μg·min−1)损失率/%温度/℃最大燃烧温度/℃最大燃烧速率/(μg·min−1)损失率/%
    CK初始31~11563.846.94.31196~378284.6385.6940.02
    结束29~11361.642.063.28194~360279.6331.5529.55
    CS初始33~10864.932.172.56183~379282.03525.1540.77
    结束34~11669.644.643.99186~380287.1318.9130.11
    WP初始34~12366.158.095.03167~396289.8595.0846.73
    结束34~14477.344.425.25176~402301.3231.531.82
    处理组阶段第3失重段第4失重段
    温度/℃最大燃烧温度/℃最大燃烧速率/(μg·min−1)损失率/%温度/℃最大燃烧温度/℃最大燃烧速率/(μg·min−1)损失率/%
    CK初始378~490438.51261.723.47588~705654.544.044.05
    结束393~530456.4502.5817.68577~709653.548.583.86
    CS初始393~532442.5485.7518.92578~701647.331.803.19
    结束388~539456347.2921.18577~701654.444.633.79
    WP初始399~575457.7351.120.86584~702632.121.051.52
    结束406~577465.7270.6123.76581~711658.333.953.60
     | Show Table
    DownLoad: CSV
    表 5  初始原料及经生物干化后产品的燃烧特性
    Table 5.  Characteristic parameters of combustion of mixed samples at the beginning and end of the bio-drying process
    处理组阶段Ti/℃Th/℃燃烧率/%VM/%FC/%VM/FC可燃性指数/(10−3μg·(min·℃2)−1)综合燃烧特征指数/(10−4μg2·(min2·℃3)−1)高位热值/(kJ·kg−1)低位热值/(kJ·kg−1)
    CK初始236.65835.6276.6965.716.5510.0322.5317.4315 634266
    结束248.01845.8360.9150.157.286.898.175.9512 7401 331
    CS初始252.36829.3269.2061.703.2013.048.256.1617 4961 479
    结束255.51852.263.6552.778.118.025.323.6914 7278 404
    WP初始288.4782.576.8168.573.0922.197.157.7218 0531 310
    结束284.8796.567.1956.975.3710.613.342.4316 8086 327
     | Show Table
    DownLoad: CSV

    可燃性指数(C)可以直观地反映物料燃烧前期的燃烧特性,可燃性指数越高,说明燃料的着火和燃烧稳定性越好[25]。综合燃烧指数(S)可用来综合评价着火和燃烬性能,S越高,说明燃烧越活跃。生物干化过程使得各处理的CS均有所降低。随着生物干化反应的进行,VM含量降低,但是FC的含量增加,因此,VM/FC比值有所降低。这一比值高于5,说明物料在低温区域有较高的质量损失[18](110~340 ℃)。在本实验中,各处理在生物干化前后的VM/FC比值均高于5,这与物料无论是在生物干化前还是干化后,在第2失重段质量损失率最高的结论是一致的。由物料热值变化可以看出,厨余垃圾进行干化前的高位热值较高,但是低位热值仅为266 kJ·kg−1,这主要是由于过高的含水率影响了物料的低位热值。CK处理经生物干化后的热值提高至1 331 kJ·kg−1,但仍无法达到自燃的要求,需要添加助燃剂。但是在添加辅料的CS和WP处理中,经生物干化后,物料的低位热值提高至6 327~8 404 kJ·kg−1,辅料中碳源的补充一方面增加了物料的热值,另一方面提高了生物干化效率,进而增加了最终物料的低位热值。

    Coats-Redfern 模型已被广泛用于计算一阶动力学反应和指前因子[34-35],在本研究中,采用Coats-Redfern 模型计算各燃烧阶段的动力学的参数。同时,也可计算获得活化能(E)和表观活化能(Em)[36]。各处理在生物干化前后的燃烧动力学参数见表6。可以看出,一级动力学方程的拟合效果较好, R2 =0.86~0.97。活化能越高表明发生反应更为困难。

    表 6  初始原料以及经生物干化后产品的燃烧动力学参数
    Table 6.  Combustion kinetic parameters of the mixed samples at the beginning and end of the bio-drying process
    处理组阶段第2失重段第3失重段Em/(kJ·mol−1)
    温度/℃E/(kJ·mol−1)A/min−1R2温度/℃E/(kJ·mol−1)A/min−1R2
    CK初始196~37831.1935.060.954378~49031.4222.850.86419.86
    结束194~36033.3959.540.969393~53023.53.470.88114.02
    CS初始183~39735.37102.670.954393~53224.555.450.89619.07
    结束186~38027.4112.270.945388~53925.685.450.88813.69
    WP初始167~39626.0410.160.931399~57520.992.750.8616.55
    结束176~40221.432.460.941406~57729.8911.550.92513.92
     | Show Table
    DownLoad: CSV

    随着生物干化反应的进行,CK处理中的第2失重段的活化能有所增加,但在CS和WP处理中的第2失重段的活化能均有所降低。与此相反,在第3失重段,CK处理的活化能降低,但是CS和WP处理的活化能增加。对于CK处理,生物干化过程使第2失重段反应变难,第3失重段反应变易。然而对于CS和WP处理,生物干化处理使第2失重段反应变易,第3失重段反应变难。总体而言,生物干化过程使各处理的表观活化能(Em)显著降低(P=0.006),与生物干化前相比,各处理生物干化后产品的表观活化能降低了15.9%~29.4%,从而使得厨余垃圾的燃烧更加容易。

    ZHANG等[18]报道了在生物干化过程中,厨余垃圾和纸质的混合物的表观活化能基本上保持不变,主要是由于原料中包含了20%的纸质。然而,对于混合垃圾的活化能,ZHANG等[18]发现,随着生物干化反应的进行,混合垃圾的活化能增加了。这可能主要是由于有机质的降解浓缩了混合垃圾中的塑料组分。因此,不同的原材料对于生物干化过程表观活化能的影响不同。浮爱青等[37]发现纸类的活化能为85.04 kJ·mol−1,橡胶塑料类的活化能为101.41 kJ·mol−1。本研究中的厨余垃圾经过人工分选去除了大部分的纸类和塑料,因此,活化能低于单一物料的活化能。煤在温度<300 ℃ 的条件下进行燃烧,活化能为80 kJ·mol−1,而本研究中生物干化前后物料在200~350 ℃时,活化能基本均低于50 kJ·mol−1,这表明与煤相比,厨余垃圾经生物干化后作为燃料的低温燃烧反应更容易发生[38]

    1)厨余垃圾单独生物干化VS降解率最高,添加木本泥炭处理VS降解率最低。CK处理对VS损失贡献的主要组分为淀粉、纤维素和脂肪。然而,对于添加玉米秸秆和木本泥炭的处理,纤维素、半纤维素和淀粉是VS损失主要的贡献组分。

    2)随着生物干化反应的进行,物料的燃烧速率和燃烧率均有所降低,同时燃烬点推后。但燃点基本保持不变。添加木本泥炭的处理燃点最高,燃烬点最低,燃烧率最高。

    3)生物干化过程使CK处理中的第2失重段反应变难,第3失重段反应变易。然而,对于添加辅料的处理,第2失重段反应变易,第3失重段反应变难。总体而言,生物干化过程使各处理的表观活化能(Em)降低了15.9%~29.4%,从而使得厨余垃圾的燃烧更加容易。

  • 图 1  实验装置图

    Figure 1.  Schematic of experimental setup

    图 2  不同曝气量下MBBR中悬浮态和附着态污泥浓度状况

    Figure 2.  MLSS and VSS concentrations in MBBR system at different aeration rates

    图 3  膜组件内气液流态状况

    Figure 3.  The observed gas-liquid flow pattern in membrane module

    图 4  膜组件内气含率和TMP变化

    Figure 4.  Variations of the void fraction and TMP in membrane module

    图 5  不同曝气量下膜污染速率随膜通量变化状况

    Figure 5.  Membrane fouling rate vs flux at different aeration rates

    图 6  不同曝气量下MBBR混合液中悬浮态污泥粒径状况

    Figure 6.  Particle volume distributions of sludge granules in MBBR at different aeration rates

    图 7  不同曝气量下MBBR混合液中EPS组分状况

    Figure 7.  The composition of EPS of mixed liquid in MBBR at different aeration rates

    图 8  不同曝气量下混合液及膜表面EPS中PN/PS状况

    Figure 8.  PN/PS in EPS of mixed liquid and membrane surface at different aeration rates

    图 9  不同曝气量下膜污染阻力构成分析

    Figure 9.  Resistance distributions at different aeration rates

    图 10  物理清洗后膜表面SEM

    Figure 10.  SEM images of the membrane surface after phycial cleaning

    表 1  不同曝气量下MBBR和膜出水状况

    Table 1.  Average characteristics of the MBBR and MBR effluent water at different aeration rates

    曝气量/(L·h−1)MBBR出水 膜出水
    COD/(mg·L−1)NH+4-N/(mg·L−1)浊度/NTUDO/(mg·L−1) COD/(mg·L−1)NH+4-N/(mg·L−1)浊度/NTUDO/(mg·L−1)
    50(0~20 d)96.24±19.6116.82±4.2110.11±2.552.56±0.2563.73±10.1113.21±2.150.51±0.293.12±0.51
    100(21~40 d)55.67±10.362.21±0.985.46±1.353.76±0.4742.55±7.321.84±0.540.36±0.174.83±0.76
    150(41~60 d)41.54±9.611.21±0.327.13±2.554.65±0.6524.28±3.161.02±0.210.42±0.255.81±1.02
    曝气量/(L·h−1)MBBR出水 膜出水
    COD/(mg·L−1)NH+4-N/(mg·L−1)浊度/NTUDO/(mg·L−1) COD/(mg·L−1)NH+4-N/(mg·L−1)浊度/NTUDO/(mg·L−1)
    50(0~20 d)96.24±19.6116.82±4.2110.11±2.552.56±0.2563.73±10.1113.21±2.150.51±0.293.12±0.51
    100(21~40 d)55.67±10.362.21±0.985.46±1.353.76±0.4742.55±7.321.84±0.540.36±0.174.83±0.76
    150(41~60 d)41.54±9.611.21±0.327.13±2.554.65±0.6524.28±3.161.02±0.210.42±0.255.81±1.02
    下载: 导出CSV
  • [1] 薛怡亭, 党岩, 郭慧雯, 等. 外置管式MBR处理垃圾焚烧渗沥液中的膜污染[J]. 环境工程学报, 2015, 9(3): 1269-1275. doi: 10.12030/j.cjee.20150346
    [2] 李春杰, 何义亮, 欧阳铭. 错流膜生物反应器水力清洗特性研究[J]. 环境科学, 1999, 20(2): 57-60. doi: 10.3321/j.issn:0250-3301.1999.02.014
    [3] MENG F G, ZHANG S Q, OH Y, et al. Fouling in membrane bioreactors: An updated review[J]. Water Research, 2017, 114: 151-180. doi: 10.1016/j.watres.2017.02.006
    [4] 于伯洋, 苏帆, 孙境求, 等. 电控膜生物反应器技术回顾与展望[J]. 环境科学学报, 2020, 40(12): 4215-4224.
    [5] MONSALVO V M, LOPEZ J, SOMER M M, et al. Short-term fouling control by cyclic aeration in membrane bioreactors for cosmetic wastewater treatment[J]. Desalination and Water Treatment, 2015, 56: 3599-3606. doi: 10.1080/19443994.2014.974217
    [6] BUETEHORN S, VOLMERING D, VOSSENKAUL K, et al. CFD simulation of single- and multi-phase flows through submerged membrane units with irregular fiber arrangement[J]. Journal of Membrane Science, 2011, 384: 184-197. doi: 10.1016/j.memsci.2011.09.022
    [7] FRAPPART M, MASSE A, JAFFRIN M Y, et al. Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation[J]. Desalination, 2011, 265: 279-283. doi: 10.1016/j.desal.2010.07.061
    [8] DING A, LIANG H, LI G B, et al. Impact of aeration shear stress on permeate flux and fouling layer properties in a low pressure membrane bioreactor for the treatment of grey water[J]. Journal of Membrane Science, 2016, 510: 382-390. doi: 10.1016/j.memsci.2016.03.025
    [9] BRAAK E, ALBASI C, ANNE-ARCHARD D, et al. Impact of aeration on mixed liquor in submerged membrane bioreactor for wastewater treatment: From macro to local scale[J]. Chemical Engineering and Technology, 2017, 40(8): 1453-1465. doi: 10.1002/ceat.201600470
    [10] 国家环境保护局. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002.
    [11] LIU H, FANG H H P. Extraction of extracellular polymeric substances (EPS) of sludges[J]. Journal of Biotechnology, 2002, 95: 249-256. doi: 10.1016/S0168-1656(02)00025-1
    [12] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28: 350-356. doi: 10.1021/ac60111a017
    [13] FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30: 1749-1758. doi: 10.1016/0043-1354(95)00323-1
    [14] LU H, XUE Z, SAIKALY P, et al. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination[J]. Water Research, 2016, 88: 337-345. doi: 10.1016/j.watres.2015.10.013
    [15] 王俊杰, 张姚, 刘清华, 等. 连续/间歇曝气下MBBR-亚硝化生物膜特性[J]. 中国环境科学, 2020, 40(1): 261-268. doi: 10.3969/j.issn.1000-6923.2020.01.029
    [16] VERA L, DELGADO S, ELMALEH S. Dimensionless numbers for the steady-state flux of cross-flow microfiltration and ultrafiltration with gas sparging[J]. Chemical Engineering Science, 2000, 55: 3419-3428. doi: 10.1016/S0009-2509(00)00016-6
    [17] BRAAK E, MARION A, SYLVIE S, et al. Aeration and hydrodynamics in submerged membrane bioreactors[J]. Journal of Membrane Science, 2011, 379: 1-18. doi: 10.1016/j.memsci.2011.06.004
    [18] ZHANG K S, CUI Z F, FIELD R W. Effect of bubble size and frequency on mass transfer in flat sheet MBR[J]. Journal of Membrane Science, 2009, 332: 30-37. doi: 10.1016/j.memsci.2009.01.033
    [19] NEEMANN F, ROSENBERGER S, JEFFERSON B, et al. Non-covalent protein-polysaccharide interactions and their influence on membrane fouling[J]. Journal of Membrane Science, 2013, 446: 310-317. doi: 10.1016/j.memsci.2013.06.054
    [20] 李珊, 段亮, 周北海, 等. 不同泥龄MBR中溶解性微生物代谢产物对膜污染的影响[J]. 环境工程学报, 2015, 9(6): 2731-2738. doi: 10.12030/j.cjee.20150631
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 5.9 %DOWNLOAD: 5.9 %HTML全文: 82.7 %HTML全文: 82.7 %摘要: 11.4 %摘要: 11.4 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 96.2 %其他: 96.2 %XX: 2.7 %XX: 2.7 %北京: 0.2 %北京: 0.2 %南京: 0.1 %南京: 0.1 %天津: 0.1 %天津: 0.1 %广州: 0.1 %广州: 0.1 %忻州: 0.1 %忻州: 0.1 %扬州: 0.1 %扬州: 0.1 %枣庄: 0.1 %枣庄: 0.1 %深圳: 0.1 %深圳: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %郑州: 0.1 %郑州: 0.1 %重庆: 0.1 %重庆: 0.1 %其他XX北京南京天津广州忻州扬州枣庄深圳石家庄福州衡水衡阳衢州郑州重庆Highcharts.com
图( 10) 表( 1)
计量
  • 文章访问数:  4979
  • HTML全文浏览数:  4979
  • PDF下载数:  105
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-11-04
  • 录用日期:  2021-12-20
  • 刊出日期:  2022-03-10
钱光磊, 谢陈鑫, 滕厚开, 雷太平, 张程蕾, 周立山. 曝气对MBBR联合管式膜MBR处理生活污水的影响及膜污染分析[J]. 环境工程学报, 2022, 16(3): 1019-1027. doi: 10.12030/j.cjee.202111026
引用本文: 钱光磊, 谢陈鑫, 滕厚开, 雷太平, 张程蕾, 周立山. 曝气对MBBR联合管式膜MBR处理生活污水的影响及膜污染分析[J]. 环境工程学报, 2022, 16(3): 1019-1027. doi: 10.12030/j.cjee.202111026
QIAN Guanglei, XIE Chenxin, TENG Houkai, LEI Taiping, ZHANG Chenglei, ZHOU Lishan. The membrane fouling analysis and effect of aeration on the performance of MBBR combined tubular membrane MBR system treating domestic wastewater[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 1019-1027. doi: 10.12030/j.cjee.202111026
Citation: QIAN Guanglei, XIE Chenxin, TENG Houkai, LEI Taiping, ZHANG Chenglei, ZHOU Lishan. The membrane fouling analysis and effect of aeration on the performance of MBBR combined tubular membrane MBR system treating domestic wastewater[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 1019-1027. doi: 10.12030/j.cjee.202111026

曝气对MBBR联合管式膜MBR处理生活污水的影响及膜污染分析

    通讯作者: 谢陈鑫(1983—),男,硕士,高级工程师,xiechx@cnooc.com.cn
    作者简介: 钱光磊(1986—),男,硕士,高级工程师,qiangl1987@163.com
  • 中海油天津化工研究设计院有限公司,天津 300131
基金项目:
海油发展重点科技攻关项目(HFKJ-ZDGG-TJY-2021-04)

摘要: 采用移动床生物膜反应器(MBBR)联合管式膜构建气提式管式膜MBR体系用以处理生活污水,考察了曝气对污水处理效果、膜内气液流态及膜过程的影响,探讨了污泥特性的变化及其对膜污染过程的影响机制。结果表明,气提式管式膜MBR体系下膜出水DO浓度高于混合液,且随着曝气量由50 L·h−1提高至150 L·h−1,管式膜内气含率由0.33增至0.60并呈“活塞流”流态,操作周期由6~7 d延长至17 d,膜污染速率由1.54 kPa·h−1降至0.21 kPa·h−1,临界通量显著增大;同时,MBBR混合液中EPS总量呈减小趋势,但MBBR内悬浮污泥粒径变小,且膜表面EPS中PN/PS比例显著高于MBBR混合液。膜表面污染阻力构成分析表明,气提式管式膜MBR体系下容易发生膜孔堵塞,膜污染以不可逆污染阻力为主。

English Abstract

  • 膜生物反应器(membrane bioreactor,MBR)是将微生物和膜分离有机结合的一种污水处理技术,具有容积负荷高、剩余污泥少、出水效果好等优点,所结合的膜组件类型包括平板膜、管式膜、中空纤维膜等。管式膜MBR是将生物处理单元与管式膜结合的一种外置式MBR技术,它具有通量大、耐污性强、易于维护等特点,近些年被广泛应用于垃圾渗滤液、油田水处理等领域[1]。但管式膜MBR为维持高通量和较强的耐污染性,一般膜面错流速度需维持在2.0~4.0 m·s−1,运行能耗较大,并且膜污染问题仍然存在[2]。目前,关于膜污染控制的研究较多,内容涉及膜材料改性、膜组件和生物反应器设计及运行参数优化、微生物和电化学调控膜分离等[3-4]。通过向膜组件导入气体,使膜表面形成气液两相流,可增强膜表面气液扰动,抑制膜表面浓差极化和滤饼层形成,从而显著提高膜的抗污染水平,减少维护频次[5-7];并且有研究表明,气体的导入可在较低膜面流速下使膜污染控制在较低水平,这有利于节省运行能耗[5]。但曝气的引入也可能引发一些不利影响,如污泥粒径变小[8]、污泥破碎引发的胞外聚合物释放[8-9]等,进而加重膜污染,这些问题对膜长周期运行产生不利影响。目前,在管式膜MBR体系下,采用生物曝气尾气导入管式膜组件用以减轻膜污染的研究较少,且此种方式下曝气量对于生化系统影响及膜污染过程机制仍需进一步开展研究。

    本研究将移动床生物膜反应器(moving bed biofilm reactor, MBBR)与管式膜串联构建气提式管式膜MBR处理生活污水,采用MBBR曝气尾气对管式膜组件进行气泡持续强化清洗,研究了气提式管式膜MBR污染物去除效果,并对不同曝气量下膜污染状况、污泥特性及膜污染形成机制进行了探讨。本研究结果将为气提式管式膜MBR膜污染控制提供数据支持。

    • 本研究所采用实验装置如图1所示。污水由进水泵泵入MBBR反应柱,反应柱内装填亲水性悬浮填料,填料密度为0.98 g·cm−3,比表面积为650 m2·m−3,填料填充率为40%。MBBR曝气通过曝气头由空压机提供,进水量和曝气量分别通过液体流量计1和气体流量计控制,MBBR出水和曝气尾气经气液分流装置共同进入膜组件促使管式膜腔内形成气液两相流以减轻膜污染。实验过程中采用相同尺寸和结构的有机玻璃管代替膜组件用高速相机观察不同曝气量下膜组件内气液流态。管式膜组件采用恒通量运行模式,抽吸泵与膜组件之间装有负压表P0,管式膜组件两端装有数显压力表P1P2P1P2压力平均值为膜组件内部平均压力P3,膜组件跨膜压力ΔP=P3-P0;管式膜浓缩液进入缓冲池,并通过循环泵将液体循环至MBBR,循环泵流量通过液体流量计2调节控制;MBBR顶部和管式膜组件设有取样池,以定期对出水分析检测。

    • 本实验采用人工模拟海上钻井平台生活污水。其中,污水COD为546~812 mg·L−1,氨氮为52~61 mg·L−1,TP约为5~8 mg·L−1。实验所采用MBBR反应器高度1.5 m,直径200 mm,反应器有效容积约为40 L,进水流量控制在5 L·h−1,水力停留时间约为8 h。MBBR曝气量通过气体流量计调节,以考察不同曝气量下管式膜MBR体系下污染物降解与膜污染状况。本实验通过驯化培养完成MBBR挂膜,运行稳定后开始实验,实验共持续2个月左右,分3个阶段运行:第1阶段(0~20 d)、第2阶段(21~40 d)和第3阶段(41~60 d),3个阶段的曝气量分别为50、100和150 L·h−1

      本研究使用的管式膜组件来自天津工业大学膜技术中心,膜材质为PVDF,孔径为0.03 µm,膜组件长度约1 m,膜组件由4根膜管通过环氧树脂密封制成,单个膜管流道内径为8 mm,总有效过滤面积约0.1 m2。膜组件采用恒通量运行,膜通量控制在50 L·(m2·h)−1左右,液体流量计2控制在100 L·h−1。当跨膜压力上升至55 kPa左右时,采用0.5% NaClO溶液对膜组件进行化学清洗,清洗时间约1~2 h,以保证膜通量恢复至初始水平。

    • 本实验常规水质指标包括COD、NH4+-N、MLSS、VSS和浊度采用《水和废水检测分析方法》中的标准方法进行测定[10],溶解氧(DO)采用哈希HQ30d 测定,污泥粒径采用马尔文激光粒度测定仪进行测定。

      胞外聚合物(extracellular polymeric substances, EPS)主要成分包括多糖(polysaccharide, PS)和蛋白质(protein, PN)。其中,溶解态EPS提取方法:取悬浊液10 mL,在4 ℃,9 000 r·min−1件下,离心20 min,所得上清液在4℃冰箱保存4 h,然后分析测定其组分。结合态EPS提取采用甲醛-NaOH法[11]:将上述离心后剩余固体污泥用去离子水稀释至10 mL,摇匀,加入37.5%HClO的溶液60 μL,充分摇匀,在4℃下放置1 h,取出,加入1 mol·L−1 NaOH溶液4 mL,再次摇匀,在4℃下放置3 h,取出,在4 ℃,13 500 r·min−1条件下,离心20 min,所得上清液测定结合态EPS。EPS中PS采用苯酚—硫酸法[12],在485 nm下比色测定;PN采用Lowry法[13],在750 nm下比色测定。气提式管式膜MBR混合液中EPS为溶解态和结合态之和,膜表面EPS通过高速物理冲洗方式将污染物清洗下来,而后进行分类测定。

      管式膜内气、液表观流速通过公式(1)进行计算。

      式中:Qi为管式膜进气或进液流量,m³·s−1D为单个膜管流道内径,取0.008 m。因小试试验氧的利用效率较低,管式膜内进气流量按近似等于MBBR曝气量处理。

      本实验膜污染阻力测定包括膜总过滤阻力Rt、膜本身过滤阻力Rm、滤饼阻力Rc及不可逆污染阻力Rf,他们之间的关系如式(2)[14]所示。

      式中:膜本身过滤阻力Rm采用新膜或膜化学清洗后过滤去离子水测定;膜总过滤阻力Rt采用膜污染后过滤去离子水测定;单次膜过滤周期后,采用海绵球配合高速水流刮擦膜表面,用于去除滤饼层污染,从而得出Rm+Rf;根据上述公式可分别计算出RfRc

    • 在气提式管式膜MBR体系下,不同曝气量下MBBR及膜出水状况如表1所示。随着曝气量由50 L·h−1增至150 L·h−1,MBBR出水COD平均值由96.24 mg·L−1降至41.54 mg·L−1,膜出水COD平均值由63.73 mg·L−1降至24.28 mg·L−1。由图2可以看出,MBBR生物填料上平均生物量由22.2 g·m−2增至31.7 g·m−2,混合液中悬浮态污泥质量浓度由672 mg·L−1降至150 mg·L−1左右。这主要由于:曝气量的增加促进了MBBR反应器内污染物与生物膜表面的传质作用,提高了微生物活性和污染物降解能力;同时,体系中较高的溶解氧浓度促使生物膜维持较高的生物活性,使微生物与填料结合更加牢固,而填料表面生物量的增加势必提高污水处理效率。此外,由于膜对颗粒物及大分子污染物的截留作用,在相同曝气量下膜出水水质均好于MBBR出水。另外,在第1阶段(0~20 d),MBBR出水氨氮平均质量浓度维持在16.82 mg·L−1;而在第2、3阶段,氨氮出水平均质量浓度在1.84 mg·L−1以下。这主要因硝化菌生长周期较长,在第1阶段有机污染物浓度较高,不利于硝化菌的生长;随着第2、3阶段曝气量的增加和运行周期的延长,污染物浓度进一步降低,并在管式膜截留作用下,此时反应器内硝化菌已成为优势菌种。

      值得注意的是,当曝气量增至150 L·h−1时(第3阶段),MBBR中悬浮污泥质量浓度为131~519 mg·L−1,波动较大。一方面,可能由于过高的曝气量容易使MBBR内形成强烈气液扰动,促使生物膜更新加快;另一方面,由于该阶段MBBR出水COD平均质量浓度在41.54 mg·L−1左右(见表1),反应器内底物已消耗殆尽,MBBR内填料上生物膜因底物不足无法维持结构而脱落,最终导致此阶段悬浮污泥浓度波动较大[15]。此外,由表1可看出,在气提式管式膜MBR体系下,相同曝气量下膜出水DO浓度高于MBBR上清液。这主要因为MBBR出水和曝气尾气在管式膜腔内形成强烈的气液扰动和传质作用,提高了膜出水溶解氧水平和氧的利用率。不仅如此,管式膜内强烈的气液扰动对膜污染也将产生较大影响。

    • 1)曝气量对管式膜内流态和膜污染周期影响。一般情况下,管式膜内气含率不同,膜内会形成不同流态的气液两相流,具体流态随气含率ε而变化。当ε≤0.2时,管式膜内为气泡流;当0.2<ε<0.9时,管式膜内为活塞流,即此时气泡横向尺寸与单个膜管内径相同,流向上不存在混合现象;当ε≥0.9时,为环形流[16]。其中,气含率根据式(3)进行计算。

      式中:ε为气含率;vg为管式膜内气体表观流速,m·s−1vl为管式膜内液体表观流速,m·s−1

      图3可看出,本实验3个阶段管式膜内气含率ε分别为0.33、0.50和0.60,即管式膜腔内均形成“活塞流”流态,它使膜腔内形成强烈的气液扰动并在膜表面形成较强的错流剪切作用,抑制膜表面浓差极化层和滤饼层形成,从而减缓膜污染。另外,随着曝气量增加,管式膜内产生“活塞流”频率增加,这主要因为 “活塞流”气泡大小取决于管式膜腔内径,因此,同一膜组件内气泡清洗频率与进气流量之间关系如式(4)[17]所示。

      式中:Qg为管式膜内进气流量,L·h−1V为单个气泡体积,mL;f为气泡频率,s−1

      由于管式膜内径不变,则单个活塞流气泡体积基本变化不大,又因本实验中管式膜进气量与曝气量基本相等,因此,随着曝气量的增加,产生活塞流气泡频率将呈线性增加,即膜表面气泡清洗频次增大。由图4可看出,随着曝气量由50 L·h−1增至150 L·h−1,膜操作周期由6~7 d延长至17 d左右,不同曝气阶段内化学清洗频次由3次降至1次。这主要由于气泡频率的增加,强化了膜表面清洗效果,减缓了膜污染速率,从而延长了膜操作运行时间。值得注意的是,在整个膜操作周期内,气提式管式膜MBR膜面液体表观流速维持在0.14 m·s−1左右,显著低于传统管式膜错流速度2.0~4.0 m·s−1,即通过向管式膜引入MBBR曝气尾气,可实现在较低膜面流速下控制膜污染。这有助于节约能耗,对工程化应用具有重要意义。

      2)曝气量对临界通量影响。图5为不同曝气量下跨膜压力增长速率随膜通量变化状况。当膜通量维持在50 L·(m2·h)−1时,曝气量分别为50、100和150 L·h−1时,膜污染速率分别为1.54、0.45、0.21 kPa·h−1,即随着曝气量的增加,跨膜压力增长速率显著下降,膜污染速率得到有效抑制。不仅如此,根据临界通量定义,当膜操作通量低于临界通量时,跨膜压力增速缓慢,膜污染速率处于较低水平;但当膜操作通量大于临界通量时,跨膜压力出现快速增长,膜污染速率会出现陡增现象。因此,当曝气量分别为50、100和150 L·h−1时,膜临界通量分别为20~30、40~50和70~80 L·(m2·h)−1,即随着曝气量的增加,膜操作临界通量也出现增加。这可能由于曝气量增加了膜表面气液混合流速,增大了膜表面剪切作用,而膜面流速与临界通量成正比关系[18]。由于本实验采用恒通量运行,膜通量维持在50 L·(m2·h)−1左右,即通过将MBBR曝气尾气导入管式膜,使第1阶段膜实际操作通量处于超临界通量区,第2阶段和第3阶段膜实际操作通量分别处于临界通量区和次临界通量区。因此,第1阶段膜污染最为严重,第2阶段次之,第3阶段最轻。这与膜操作周期相符(图4)。

    • 1)曝气量对悬浮污泥浓度及粒径影响。曝气量直接影响气提式管式膜MBR中溶解氧水平和水力状况,进而对悬浮污泥浓度和粒径产生影响,而这些都将对膜污染产生影响。由图2可看出,在整个操作阶段,MBBR混合液中悬浮态污泥质量浓度均小于700 mg·L−1,并且随着曝气量增加,尽管反应器内气液扰动加剧,但混合液中悬浮态污泥浓度有减小趋势。这主要由于曝气量的增加提高了反应器溶解氧水平,填料上生物膜活性较高,结合较为牢固,但强烈的气液扰动所产生的剪切力可能使污泥破碎,从而影响膜污染过程[8]

      图6可看出,当曝气量为50、100和150 L·h−1时,MBBR反应器中悬浮污泥平均粒径分别为84.48、75.29和42.34 μm,即随着曝气量的增加,悬浮污泥平均粒径有减小趋势,特别是当曝气量增至150 L·h−1时,污泥粒径明显减小。一方面,MBBR反应器内和管式膜内气液扰动所产生的剪切力促使悬浮态污泥破碎,导致粒径变小;另一方面,随着曝气量的增加,出水中有机物浓度较低,微生物长期处于内源代谢期,所形成的微生物碎片促使悬浮颗粒粒径变小,这容易使膜表面形成致密滤饼层或引发膜孔堵塞等,致使膜发生不可逆性污染。

      2)曝气量对混合液中EPS的影响。在微生物生长代谢过程中,细胞表面会吸附有机物并产生EPS,而EPS在膜污染过程中有重要作用。由图7可看出,随着曝气量由50 L·h−1增至150 L·h−1,MBBR混合液EPS中PS质量浓度由42~85 mg·L−1降低至16~41 mg·L−1,PN质量浓度由10~25 mg·L−1降至4~11 mg·L−1,即两者浓度均随曝气量增加呈现减小趋势。这与膜污染速率和运行周期的变化趋势相符(图4图5),即膜污染与混合液中EPS有较大关系[19]。一方面,悬浮物污泥浓度随曝气量减小,降低了混合液中结合态EPS浓度;另一方面,由于曝气量会改变了反应器内污染物浓度和DO水平,MBBR体系中微生物活性和代谢方式也会因此发生显著变化。有研究表明,相对稳定的生物膜结构所分泌EPS的量明显减少[15,20]。在第1、2阶段,反应器内维持相对较高污染物浓度,DO维持在2.56~3.76 mg·L−1,此阶段微生物活性较高,代谢活性较强,胞外聚合物分泌量较多;在第3阶段,反应器内COD平均值维持在41.54 mg·L−1,污染物浓度较低,此时MBBR反应器内DO达到4.65 mg·L−1左右,微生物内源代谢增强,生物膜处于相对稳定状态,微生物所分泌EPS相对较少,这有利于膜污染控制。值得注意的是,通过对EPS组成分析发现,PN/PS随着曝气量的增大由0.24增至0.38左右(图7),即EPS中PN分泌比例增加。LU等[14,20]的研究表明,当生物膜处于稳定阶段后,所分泌的EPS中PN和PS比率呈逐渐升高趋势。

      为进一步探讨MBBR体系中EPS对膜污染的影响,对不同曝气量下MBBR混合液和膜表面EPS组分进行了分析。如图8所示,不同曝气量下膜表面PN/PS均显著高于混合液。这表明膜对蛋白质等大分子物质具有截留作用,致使其在膜表面发生累积现象,并且随着曝气量的增加,蛋白质累积作用加强。此外,随着曝气量的增加,出水COD逐渐降低,微生物内源呼吸作用加强,导致部分微生物细胞裂解释放蛋白质,而膜的截留作用势必进一步增加体系内胞外聚合物中蛋白质的比例。尽管如此,随着曝气量的增加,膜操作周期仍然大幅提高。这说明将MBBR曝气尾气导入管式膜所产生的气泡清洗作用对于膜污染控制至关重要,但膜表面强烈气液扰动也可能引发膜孔堵塞,进而发生不可逆污染。

    • 一般情况下,膜表面气液湍流程度和传质情况对膜污染形成过程和机理均有较大影响,最终所形成的污染阻力构成也不尽相同。为进一步探讨气提式管式膜MBR下膜污染形成状况,对不同曝气量下每次运行结束时进行化学清洗前,即当跨膜压差增至55 kPa左右时的膜污染阻力构成进行了分析。由图9可以看出,当曝气量由50 L·h−1增至150 L·h−1时,膜表面滤饼阻力由40.1%降到25.1%,不可逆污染阻力由54.6%增至 69.6%,即在气提式管式膜MBR体系下,膜表面污染阻力主要为不可逆污染。这与传统膜过滤阻力构成有较大区别。另外,由图10可以看出,管式膜运行结束经物理清洗后,不同曝气量下膜表面均出现不同程度的膜孔堵塞,且随曝气量增加堵塞更为严重。这与不可逆污染阻力增加相符。一方面,由于气提式管式膜MBR下膜表面形成气液两相流,增大了膜表面错流剪切作用,促使滤饼脱落从而减轻了滤饼污染,但滤饼层的剥落增加了膜孔堵塞和吸附污染概率[9];另一方面,随着曝气量的增加和运行时间的延长,MBBR体系内污泥内源代谢作用加强,大分子蛋白质和细胞碎片也增加了膜孔吸附和堵塞风险[20],并且由于膜孔堵塞和吸附污染均为不可逆污染,因此,一旦膜通量下降,必须进行化学清洗方可恢复膜通量。值得注意的是,在气提式管式膜MBR体系下,由图4图9可看出,每次化学清洗后,管式膜初始过滤跨膜压差和膜自身过滤阻力并未增加,相同曝气量下膜过滤操作周期重复性较好且随曝气量增加而延长。总之,通过将MBBR曝气尾气引入管式膜构建气提式管式膜MBR仍然可显著提高膜污染操作周期,最大程度上延长膜化学清洗周期,减少清洗频率,因而在一定程度上节省了运行能耗和药剂成本。

    • 1)通过MBBR与管式膜构建了气提式管式膜MBR,膜出水水质优于MBBR,出水DO质量浓度高于MBBR;膜组件内呈“活塞流”流态,气泡清洗频率随曝气量增加而增加,膜污染速率由1.54 kPa·h−1降至0.21 kPa·h−1,膜的临界操作通量变大,膜操作周期由6~7 d延长至17 d左右。

      2) MBBR中悬浮污泥平均粒径随曝气量增加由84.48 μm降至42.34 μm,混合液EPS中PN和PS均呈减小趋势,但PN/PS比例由0.24增至0.38,而膜表面PN/PS比例均在0.85以上,蛋白质在膜表面发生了累积现象。

      3)膜表面污染阻力以不可逆污染阻力为主,曝气量的增加使膜表面滤饼阻力由40.1%降到25.1%,不可逆污染阻力由54.6%增至 69.6%。

    参考文献 (20)

返回顶部

目录

/

返回文章
返回