-
膜生物反应器(membrane bioreactor,MBR)是将微生物和膜分离有机结合的一种污水处理技术,具有容积负荷高、剩余污泥少、出水效果好等优点,所结合的膜组件类型包括平板膜、管式膜、中空纤维膜等。管式膜MBR是将生物处理单元与管式膜结合的一种外置式MBR技术,它具有通量大、耐污性强、易于维护等特点,近些年被广泛应用于垃圾渗滤液、油田水处理等领域[1]。但管式膜MBR为维持高通量和较强的耐污染性,一般膜面错流速度需维持在2.0~4.0 m·s−1,运行能耗较大,并且膜污染问题仍然存在[2]。目前,关于膜污染控制的研究较多,内容涉及膜材料改性、膜组件和生物反应器设计及运行参数优化、微生物和电化学调控膜分离等[3-4]。通过向膜组件导入气体,使膜表面形成气液两相流,可增强膜表面气液扰动,抑制膜表面浓差极化和滤饼层形成,从而显著提高膜的抗污染水平,减少维护频次[5-7];并且有研究表明,气体的导入可在较低膜面流速下使膜污染控制在较低水平,这有利于节省运行能耗[5]。但曝气的引入也可能引发一些不利影响,如污泥粒径变小[8]、污泥破碎引发的胞外聚合物释放[8-9]等,进而加重膜污染,这些问题对膜长周期运行产生不利影响。目前,在管式膜MBR体系下,采用生物曝气尾气导入管式膜组件用以减轻膜污染的研究较少,且此种方式下曝气量对于生化系统影响及膜污染过程机制仍需进一步开展研究。
本研究将移动床生物膜反应器(moving bed biofilm reactor, MBBR)与管式膜串联构建气提式管式膜MBR处理生活污水,采用MBBR曝气尾气对管式膜组件进行气泡持续强化清洗,研究了气提式管式膜MBR污染物去除效果,并对不同曝气量下膜污染状况、污泥特性及膜污染形成机制进行了探讨。本研究结果将为气提式管式膜MBR膜污染控制提供数据支持。
曝气对MBBR联合管式膜MBR处理生活污水的影响及膜污染分析
The membrane fouling analysis and effect of aeration on the performance of MBBR combined tubular membrane MBR system treating domestic wastewater
-
摘要: 采用移动床生物膜反应器(MBBR)联合管式膜构建气提式管式膜MBR体系用以处理生活污水,考察了曝气对污水处理效果、膜内气液流态及膜过程的影响,探讨了污泥特性的变化及其对膜污染过程的影响机制。结果表明,气提式管式膜MBR体系下膜出水DO浓度高于混合液,且随着曝气量由50 L·h−1提高至150 L·h−1,管式膜内气含率由0.33增至0.60并呈“活塞流”流态,操作周期由6~7 d延长至17 d,膜污染速率由1.54 kPa·h−1降至0.21 kPa·h−1,临界通量显著增大;同时,MBBR混合液中EPS总量呈减小趋势,但MBBR内悬浮污泥粒径变小,且膜表面EPS中PN/PS比例显著高于MBBR混合液。膜表面污染阻力构成分析表明,气提式管式膜MBR体系下容易发生膜孔堵塞,膜污染以不可逆污染阻力为主。Abstract: The air-lifting tubular MBR system was constructed by a moving bed biofilm reactor (MBBR) combined with tubular membranes for domestic wastewater treatment. The effects of aeration on the wastewater treatment effect, gas-liquid flow pattern in membrane module and membrane process were investigated, and the changes of sludge characteristics and its influence mechanism on membrane fouling process were also discussed. The results indicated that the DO level of the membrane effluent was higher than the mixed solution in air-lifting tubular MBR systems. Moreover, with the increase of the aeration rate from 50 L·h−1 to 150 L·h−1, the void fraction in the tubular membrane increased from 0.33 to 0.60 and "slug flow" state occurred in the tubular membrane, and the membrane operation time was extended from 6~7 d to 17 d, the membrane fouling rate decreased from 1.54 kPa·h−1 to 0.21 kPa·h−1 and the critical flux increased significantly. In addition, the total EPS in MBBR mixture showed a decreasing trend, but the particle size of the suspended sludge in MBBR decreased, and the ratio of PN/PS on the membrane surface was significantly higher than the mixture in MBBR system. The composition of the resistance to fouling on the membrane surface showed that the tubular membrane was prone to clogging of the membrane pores, and the membrane fouling was dominated by irreversible fouling resistance.
-
表 1 不同曝气量下MBBR和膜出水状况
Table 1. Average characteristics of the MBBR and MBR effluent water at different aeration rates
曝气量/(L·h−1) MBBR出水 膜出水 COD/
(mg·L−1) -N/$ {\rm{NH}}_4^{+}$
(mg·L−1)浊度/NTU DO/
(mg·L−1)COD/
(mg·L−1) -N/${\rm{NH}}_4^{+} $
(mg·L−1)浊度/NTU DO/
(mg·L−1)50(0~20 d) 96.24±19.61 16.82±4.21 10.11±2.55 2.56±0.25 63.73±10.11 13.21±2.15 0.51±0.29 3.12±0.51 100(21~40 d) 55.67±10.36 2.21±0.98 5.46±1.35 3.76±0.47 42.55±7.32 1.84±0.54 0.36±0.17 4.83±0.76 150(41~60 d) 41.54±9.61 1.21±0.32 7.13±2.55 4.65±0.65 24.28±3.16 1.02±0.21 0.42±0.25 5.81±1.02 -
[1] 薛怡亭, 党岩, 郭慧雯, 等. 外置管式MBR处理垃圾焚烧渗沥液中的膜污染[J]. 环境工程学报, 2015, 9(3): 1269-1275. doi: 10.12030/j.cjee.20150346 [2] 李春杰, 何义亮, 欧阳铭. 错流膜生物反应器水力清洗特性研究[J]. 环境科学, 1999, 20(2): 57-60. doi: 10.3321/j.issn:0250-3301.1999.02.014 [3] MENG F G, ZHANG S Q, OH Y, et al. Fouling in membrane bioreactors: An updated review[J]. Water Research, 2017, 114: 151-180. doi: 10.1016/j.watres.2017.02.006 [4] 于伯洋, 苏帆, 孙境求, 等. 电控膜生物反应器技术回顾与展望[J]. 环境科学学报, 2020, 40(12): 4215-4224. [5] MONSALVO V M, LOPEZ J, SOMER M M, et al. Short-term fouling control by cyclic aeration in membrane bioreactors for cosmetic wastewater treatment[J]. Desalination and Water Treatment, 2015, 56: 3599-3606. doi: 10.1080/19443994.2014.974217 [6] BUETEHORN S, VOLMERING D, VOSSENKAUL K, et al. CFD simulation of single- and multi-phase flows through submerged membrane units with irregular fiber arrangement[J]. Journal of Membrane Science, 2011, 384: 184-197. doi: 10.1016/j.memsci.2011.09.022 [7] FRAPPART M, MASSE A, JAFFRIN M Y, et al. Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation[J]. Desalination, 2011, 265: 279-283. doi: 10.1016/j.desal.2010.07.061 [8] DING A, LIANG H, LI G B, et al. Impact of aeration shear stress on permeate flux and fouling layer properties in a low pressure membrane bioreactor for the treatment of grey water[J]. Journal of Membrane Science, 2016, 510: 382-390. doi: 10.1016/j.memsci.2016.03.025 [9] BRAAK E, ALBASI C, ANNE-ARCHARD D, et al. Impact of aeration on mixed liquor in submerged membrane bioreactor for wastewater treatment: From macro to local scale[J]. Chemical Engineering and Technology, 2017, 40(8): 1453-1465. doi: 10.1002/ceat.201600470 [10] 国家环境保护局. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002. [11] LIU H, FANG H H P. Extraction of extracellular polymeric substances (EPS) of sludges[J]. Journal of Biotechnology, 2002, 95: 249-256. doi: 10.1016/S0168-1656(02)00025-1 [12] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28: 350-356. doi: 10.1021/ac60111a017 [13] FRØLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30: 1749-1758. doi: 10.1016/0043-1354(95)00323-1 [14] LU H, XUE Z, SAIKALY P, et al. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination[J]. Water Research, 2016, 88: 337-345. doi: 10.1016/j.watres.2015.10.013 [15] 王俊杰, 张姚, 刘清华, 等. 连续/间歇曝气下MBBR-亚硝化生物膜特性[J]. 中国环境科学, 2020, 40(1): 261-268. doi: 10.3969/j.issn.1000-6923.2020.01.029 [16] VERA L, DELGADO S, ELMALEH S. Dimensionless numbers for the steady-state flux of cross-flow microfiltration and ultrafiltration with gas sparging[J]. Chemical Engineering Science, 2000, 55: 3419-3428. doi: 10.1016/S0009-2509(00)00016-6 [17] BRAAK E, MARION A, SYLVIE S, et al. Aeration and hydrodynamics in submerged membrane bioreactors[J]. Journal of Membrane Science, 2011, 379: 1-18. doi: 10.1016/j.memsci.2011.06.004 [18] ZHANG K S, CUI Z F, FIELD R W. Effect of bubble size and frequency on mass transfer in flat sheet MBR[J]. Journal of Membrane Science, 2009, 332: 30-37. doi: 10.1016/j.memsci.2009.01.033 [19] NEEMANN F, ROSENBERGER S, JEFFERSON B, et al. Non-covalent protein-polysaccharide interactions and their influence on membrane fouling[J]. Journal of Membrane Science, 2013, 446: 310-317. doi: 10.1016/j.memsci.2013.06.054 [20] 李珊, 段亮, 周北海, 等. 不同泥龄MBR中溶解性微生物代谢产物对膜污染的影响[J]. 环境工程学报, 2015, 9(6): 2731-2738. doi: 10.12030/j.cjee.20150631