-
随着大气中温室气体浓度的不断增加,气候变暖已成为当下全球面临的主要环境问题[1]。甲烷(CH4)的排放是自然生态系统中不可忽视的问题,其单位分子的增温潜力是CO2的25倍,平均存留时间为CO2的4倍,在自然生态系统碳循环过程中起着重要作用[2-3]。截止2016年,大气中甲烷含量已经达到1.32 mg·m−3。此外,全球生态系统还以每年540 Tg的速度继续向大气释放[4-5]。我国是世界上水库数量最多的国家。截止2017年底,我国已建成水库98 795座,总库容为9 035×108 m3,其容量是我国天然湖泊储水量的3倍左右,约占我国年河川年径流总量(2.8×1012 m3·a−1)的32%[6]。可见水库对于我国水资源的储存有着深远的影响。大量研究[7-8]表明,水库中甲烷的释放也是大气中甲烷浓度升高的一个重要来源。
水库甲烷排放是一个复杂的生物化学过程,产甲烷菌和甲烷氧化菌是影响甲烷产生与排放的主要微生物,且这2种微生物在自然环境中大量存在[9]。目前许多研究主要集中在海洋及淡水湖泊系统中[10],对底泥中甲烷功能菌对甲烷排放的影响还有待进一步研究。
三峡水库是世界上最大的人工水库,目前,对于甲烷排放的研究主要侧重于甲烷传输过程和排放量的测算[11],还未将甲烷排放量数据(宏观)与甲烷功能菌的生长与作用机制(微观)相结合进行深入的研究。因此,本研究拟从微观角度探讨了甲烷功能菌对水库中甲烷排放的影响,以期对大坝生态调度、温室气体排放的研究提供参考。
三峡库区夏季万州段底泥甲烷功能菌群落对甲烷排放的影响
Effects of functional methane community in sediments of Wanzhou section of the Three Gorges Reservoir on methane emissions in summer
-
摘要: 三峡水库是世界上最大的人工水库,其潜在甲烷释放近年来备受关注。目前将甲烷排放量与甲烷功能菌的生长与作用机制相结合开展研究的报道较少。为探究三峡库区夏季万州段甲烷功能菌群落对甲烷排放的影响,分别于2019年7月和9月采集了三峡库区万州段底泥,利用16S rRNA基因高通量测序技术,对该区域的万州干流和高阳、黄石支流在属水平上的甲烷功能菌群落组成结构以及甲烷功能菌群落与甲烷排放通量间的关系进行了研究。结果表明:监测期间内高阳、黄石、万州平均甲烷通量为(0.874±0.011)、(0.884±0.234)、(0.507±0.262) μmol·(m2·h)−1,支流大于干流,总体表现为甲烷排放“源”。在产甲烷菌群落中,部分未分类产甲烷古菌unclassified_p_Euryarchaeota、environmental_samples_f_ Methanosarcinaceae以及未命名古菌对产甲烷影响较大,该类细菌可促进甲烷产生。在甲烷氧化菌群落中,Methylobacter、Methylosarcina以及未分类氧化菌对甲烷氧化有较大影响,当该类细菌占比增加时会加速甲烷氧化,从而减少水-气界面中的甲烷排放。除甲烷功能菌群以外,推测温度与河流回水顶托作用也是导致干、支流甲烷排放出现差异的重要因素。以上研究结果可对揭示水库甲烷排放与甲烷功能菌生长和作用机制的关系提供参考。Abstract: The Three Gorges Reservoir is the largest artificial reservoir in the world, and its potential methane release has attracted much attention in recent years. At present, there are few reports on combining methane emission with the growth and action mechanism of methane functional bacteria. In order to explore the impact of functional methane bacterial communities in the Wanzhou section of the Three Gorges reservoir area on methane emissions in summer, sediments from the Wanzhou section of the Three Gorges reservoir area were collected during July and September 2019. 16S rRNA gene high-throughput sequencing technologies were used to study the composition and structure of the methane functional bacteria community at the genus level in Wanzhou mainstream, Gaoyang and Huangshi tributaries in the region, as well as the relationship between the methane functional bacteria community and methane emission fluxes. The results showed that during the monitoring period, the average methane fluxes in Gaoyang, Huangshi, and Wanzhou were (0.874±0.011), (0.884±0.234), (0.507±0.262) μmol·(m2·h)−1, and the tributaries were higher than the main streams, and they were generally methane emission sources. In the methanogen community, some unclassified methanogenic archaea unclassified_p_Euryarchaeota, environmental_samples_f_Methanosarcinaceae and unnamed archaea had a greater impact on methanogenesis than other bacteria, and they could promote methane production. In the methanotrophic community, Methylobacter, Methylosarcina and unclassified oxidizing bacteria had a greater influence on methane oxidation than other bacteria. When their proportion increased, methane oxidation could be accelerated, thereby reducing methane emissions at the water-air interface. In addition to the functional methane flora, it was speculated that temperature and river backwater support were also important factors that could cause the difference in methane emissions between dry and branch streams. The research results lay the foundation for the growth and action mechanism of methane functional bacteria that reveal the temporal and spatial changes of methane emissions from reservoirs.
-
表 1 样本信息表
Table 1. Sample information table
采样时间 样本名称 采样时间及地点 2019年7月 WZ1907 2019年7月万州泥样 GY1907 2019年7月高阳泥样 HS1907 2019年7月黄石泥样 2019年9月 WZ1909 2019年9月万州泥样 GY1909 2019年9月高阳泥样 HS1909 2019年9月黄石泥样 表 2 高通量测序引物序列表[21]
Table 2. High-throughput sequencing primer sequence list
目的基因 引物 引物序列 (5’-3’) 16Sr RNA (细菌) 515FmodF GTGCCAGCMGCCGCGG 806RmodR GGACTAVHVGGGTWTCTAAT pmoA (好氧甲烷氧化菌) A189F GGNGACTGGGACTTCTGG Mb661R GGTAARGACGTTGCNCCGG mcrA (产甲烷菌) MLf GCCCGGTGGTGTMGGATTCACACARTAYGCWACAGC MLr TTCATTGCRTAGTTWGGRTAGTT 表 3 产甲烷菌群落与甲烷排放通量相关性分析
Table 3. Correlation analysis between methanogenic bacterial communities and methane emission flux
产甲烷菌群落 (属) P 值 相关系数 r unclassified_p__Euryarchaeota 0.174 0.636 norank_c__environmental_samples 0.122 0.700 environmental_samples_f__Methanos-
arcinaceae0.514 0.337 unclassified_k__norank_d__Archaea 0.481 −0.362 unclassified_o__Methanomicrobiales 0.276 −0.533 Methanoregula 0.311 0.501 unclassified_f__Methanoregulaceae 0.715 0.192 Methanobacterium 0.115 0.709 unclassified_f__Methanomassiliicocc-
aceae0.073 −0.771 unclassified_c__Thermoplasmata 0.563 −0.300 表 4 甲烷氧化菌群落与甲烷排放通量相关性分析
Table 4. Correlation analysis between methane oxidizing bacteria community and methane emission flux
甲烷氧化菌群落 (属) P 值 相关系数 r Methylocystis 0.141 0.651 unclassified_c__Gammaproteobacteria 0.763 −0.159 Methylosarcina 0.033* −0.847 Methylobacter 0.031* −0.853 norank_o__environmental_samples 0.581 0.287 unclassified_f__Methylocystaceae 0.214 0.593 environmental_samples_f__Methylococ-
caceae0.080 -0.759 unclassified_k__norank_d__Bacteria 0.275 0.534 Methylomonas 0.333 0.482 norank_p__environmental_samples 0.110 −0.715 注:“*”表示P<0.05,显著相关。 -
[1] OCKO I B, SUN T Y, SHINDELL D, et al. Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming[J]. Environmental Research Letters, 2021, 16(5): 054042. doi: 10.1088/1748-9326/abf9c8 [2] SHEN L, LIU S, ZHU Q, et al. Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River[J]. Environmental Microbiology, 2014, 67(2): 341-349. [3] 刘洋, 陈永娟, 王晓燕, 等. 水库与河流沉积物中好氧甲烷氧化菌群落差异性研究[J]. 中国环境科学, 2018, 38(5): 1844-1854. doi: 10.3969/j.issn.1000-6923.2018.05.030 [4] KIRSCHKE S, BOUSQUET P, CIAIS P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6(10): 813-823. doi: 10.1038/ngeo1955 [5] ROLAND F A, DARCHAMBEAU F, MORANA C, et al. Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium)[J]. Chemosphere, 2017, 168: 756-764. doi: 10.1016/j.chemosphere.2016.10.138 [6] 孙志禹, 陈永柏, 李翀, 等. 中国水库温室气体研究(2009—2019): 回顾与展望[J]. 水利学报, 2020, 51(3): 253-267. [7] GUÉRIN F, ABRIL G, RICHARD S, et al. Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers[J]. Geophysical Research Letters, 2006, 33(21): 493-495. [8] ROSA L P, SANTOS M A D, MATVIENKO B, et al. Scientific errors in the Fearnside comments on greenhouse gas emissions (GHG) from hydroelectric dams and response to his political claiming[J]. Climatic Change, 2006, 75(1/2): 91-102. [9] 秦宇, 张渝阳, 李哲, 等. 三峡澎溪河水华期间水体CH4浓度及其通量变化特征初探[J]. 环境科学, 2018, 39(4): 1578-1588. [10] 唐千, 薛校风, 王惠, 等. 湖泊生态系统产甲烷与甲烷氧化微生物研究进展[J]. 湖泊科学, 2018, 30(3): 597-610. doi: 10.18307/2018.0302 [11] LEI D, LIU J, ZHANG J W. Methane oxidation in the water column of Xiangxi Bay, Three Gorges Reservoir[J]. Clean—Soil, Air, Water, 2019, 47(9): 1-9. [12] 卓海华, 吴云丽, 刘旻璇, 等. 三峡水库水质变化趋势研究[J]. 长江流域资源与环境, 2017, 26(6): 925-936. doi: 10.11870/cjlyzyyhj201706015 [13] 李哲, 姚骁, 何萍, 等. 三峡水库澎溪河水-气界面CO2、CH4扩散通量昼夜动态初探[J]. 湖泊科学, 2014, 26(4): 576-584. doi: 10.18307/2014.0412 [14] 李哲, 张呈, 刘靓, 等. 三峡水库澎溪河CO2、CH4气泡释放通量初探[J]. 湖泊科学, 2014, 26(5): 789-798. doi: 10.18307/2014.0518 [15] 秦宇, 杨博逍, 李哲, 等. 夏季金沙江下游水-气界面CO2、CH4通量特征初探[J]. 湖泊科学, 2017, 29(4): 991-999. [16] B. JÄHNE, P. LIBNER, R. FISCHER, et al. Investigating the transfer processes across the free aqueous viscous boundary layer by the controlled flux method[J]. Tellus B, 1989, 41B(2): 177-195. doi: 10.1111/j.1600-0889.1989.tb00135.x [17] MACINTYRE S, WANNINKHOF R, CHANTON J P. Trace gas exchange across the air-water interface in freshwater and coastal marine environments[J]. New York:P. A. Matson and Harriss Blackwell Science, 1995: 52-97. [18] MOREL, F M M. Principles of aquatic chemistry[J]. Limnology and Oceanography, 1985, 30(2): 450-450. doi: 10.4319/lo.1985.30.2.0450 [19] ROEHM C L, PRAIRIE Y T, DEL GIORGIO P A. The p(CO2)dynamics in lakes in the boreal region of northern Québec, Canada[J]. Global Biogeochemical Cycles, 2009, 23(3): 7-10. [20] ANDERSEN C B. Understanding carbonate equilibria by measuring alkalinity in experimental and natural systems[J]. Journal of Geoscience Education, 2002, 50(4): 389-403. doi: 10.5408/1089-9995-50.4.389 [21] 张曦. 三峡库区万州段沉积物细菌群落对CH4排放的影响[D]. 重庆: 重庆交通大学, 2020. [22] 秦宇, 王紫薇, 李哲, 等. 三峡水库澎溪河水-气界面CO2与CH4通量特征及影响因素初探[J]. 地球环境学报, 2019, 10(2): 177-189. [23] 赵登忠, 谭德宝, 汪朝辉, 等. 清江流域水布垭水库温室气体交换通量监测与分析研究[J]. 长江科学院院报, 2011, 28(10): 197-204. doi: 10.3969/j.issn.1001-5485.2011.10.035 [24] 谌佳伟, 葛继稳, 冯亮, 等. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系[J]. 地球科学, 2020, 45(3): 1082-1092. [25] 赵登忠, 程学军, 汪朝辉, 等. 清江流域典型发电水库甲烷源汇时空变化规律研究[J]. 水力发电学报, 2014, 33(5): 128-137. [26] 赵炎, 曾源, 吴炳方, 等. 三峡水库香溪河支流水域温室气体排放通量观测[J]. 水科学进展, 2011, 22(4): 546-553. [27] 吴学谦, 操满, 傅家楠, 等. 三峡水库夏季干流、支流(草堂河)水体的二氧化碳分压及扩散通量[J]. 上海大学学报(自然科学版), 2015, 21(3): 311-318. [28] 李哲, 方芳, 郭劲松, 等. 三峡小江(澎溪河)藻类功能分组及其季节演替特点[J]. 环境科学, 2011, 32(2): 392-400. [29] 赵玮, 朱孔贤, 黄文敏, 等. 三峡水库湖北段甲烷排放通量时空特征及其影响因素分析[J]. 水生生物学报, 2013, 37(4): 776-781. doi: 10.7541/2013.95 [30] WATANABE T, KIMURA M, ASAKAWA S. Distinct members of a stable methanogenic archaeal community transcribe mcrA genes under flooded and drained conditions in Japanese paddy field soil[J]. Soil Biology and Biochemistry, 2008, 40(1): 276-285. [31] IMACHI H, AOI K, TASUMI E, et al. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor[J]. The ISME Journal:Multidisciplinary Journal of Microbial Ecology, 2011, 5(12): 1913-1925. [32] 李思琦, 臧昆鹏, 宋伦. 湿地甲烷代谢微生物产甲烷菌和甲烷氧化菌的研究进展[J]. 海洋环境科学, 2020, 39(3): 488-496. doi: 10.12111/j.mes20200325 [33] LIU Y, WANG P, CROWLEY D, et al. Methanogenic abundance and changes in community structure along a rice soil chronosequence from east China[J]. European Journal of Soil Science, 2016, 67(4): 443-455. doi: 10.1111/ejss.12348 [34] CONRAD R, ERKEL C, LIESACK W. Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil[J]. Current Opinion in Biotechnology, 2006, 17(3): 262-267. doi: 10.1016/j.copbio.2006.04.002 [35] ZHUANG G C, HEUER V B, LAZAR C S, et al. Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea[J]. Geochimica Et Cosmochimica Acta, 2018, 224: 171-186. doi: 10.1016/j.gca.2017.12.024 [36] 沈李东. 湿地亚硝酸盐型厌氧氨氧化和厌氧甲烷氧化微生物生态学研究[D]. 浙江: 浙江大学, 2014. [37] MER J L, ROGER P. Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 2001, 37(1): 25-50. doi: 10.1016/S1164-5563(01)01067-6 [38] 王晓琳, 曹爱新, 周传斌, 等. 垃圾填埋场甲烷氧化菌及甲烷减排的研究进展[J]. 生物技术通报, 2016, 32(5): 16-25. [39] 贠娟莉, 王艳芬, 张洪勋. 好氧甲烷氧化菌生态学研究进展[J]. 生态学报, 2013, 33(21): 6774-6785. [40] 马若潺, 魏晓梦, 何若. 低氧生境中好氧甲烷氧化菌的缺氧耐受机理及种群结构研究进展[J]. 应用生态学报, 2017, 28(6): 2047-2054. [41] YANG Y Y, CHEN J F, TONG T L, et al. Eutrophication influences methanotrophic activity, abundance and community structure in freshwater lakes[J]. Science of the Total Environment, 2019, 662: 863-872. doi: 10.1016/j.scitotenv.2019.01.307 [42] OSWALD K, MILUCKA J, BRAND A, et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters[J]. Limnology and Oceanography, 2016, 61(S1): S101-S118. doi: 10.1002/lno.10312 [43] 秦宇, 黄璜, 李哲, 等. 内陆水体好氧甲烷氧化过程研究进展[J]. 湖泊科学, 2021, 33(4): 1004-1017. [44] YUN J L, ZHUANG G Q, MA A Z, et al. Community structure, abundance, and activity of methanotrophs in the Zoige wetland of the Tibetan Plateau.[J]. Microbial ecology, 2012, 63(4): 835-843. doi: 10.1007/s00248-011-9981-x [45] LIU Y, ZHANG J X, ZHAO L, et al. Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau[J]. Applied Microbiology and Biotechnology, 2015, 99(5): 2371-2381. doi: 10.1007/s00253-014-6141-5 [46] CORINNE B P, DIDIER J, ERIC D B, et al. Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake[J]. FEMS Microbiology Ecology, 2011, 77(3): 533-545. doi: 10.1111/j.1574-6941.2011.01134.x [47] OSWALD K, MILUCKA J, BRAND B, et al. Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes[J]. PLoS ONE, 2017, 10(7). [48] KADNIKOV V V, SAVVICHEV A S, MARDANOV A V, et al. Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe[J]. Antonie van Leeuwenhoek, 2019, 112(12): 1801-1814. doi: 10.1007/s10482-019-01308-1 [49] BLEES J, NIEMANN H, WENK C B, et al. Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland)[J]. Limnology and Oceanography, 2014, 59(2): 311-324. doi: 10.4319/lo.2014.59.2.0311