[1] |
OCKO I B, SUN T Y, SHINDELL D, et al. Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming[J]. Environmental Research Letters, 2021, 16(5): 054042. doi: 10.1088/1748-9326/abf9c8
|
[2] |
SHEN L, LIU S, ZHU Q, et al. Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River[J]. Environmental Microbiology, 2014, 67(2): 341-349.
|
[3] |
刘洋, 陈永娟, 王晓燕, 等. 水库与河流沉积物中好氧甲烷氧化菌群落差异性研究[J]. 中国环境科学, 2018, 38(5): 1844-1854. doi: 10.3969/j.issn.1000-6923.2018.05.030
|
[4] |
KIRSCHKE S, BOUSQUET P, CIAIS P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6(10): 813-823. doi: 10.1038/ngeo1955
|
[5] |
ROLAND F A, DARCHAMBEAU F, MORANA C, et al. Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium)[J]. Chemosphere, 2017, 168: 756-764. doi: 10.1016/j.chemosphere.2016.10.138
|
[6] |
孙志禹, 陈永柏, 李翀, 等. 中国水库温室气体研究(2009—2019): 回顾与展望[J]. 水利学报, 2020, 51(3): 253-267.
|
[7] |
GUÉRIN F, ABRIL G, RICHARD S, et al. Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers[J]. Geophysical Research Letters, 2006, 33(21): 493-495.
|
[8] |
ROSA L P, SANTOS M A D, MATVIENKO B, et al. Scientific errors in the Fearnside comments on greenhouse gas emissions (GHG) from hydroelectric dams and response to his political claiming[J]. Climatic Change, 2006, 75(1/2): 91-102.
|
[9] |
秦宇, 张渝阳, 李哲, 等. 三峡澎溪河水华期间水体CH4浓度及其通量变化特征初探[J]. 环境科学, 2018, 39(4): 1578-1588.
|
[10] |
唐千, 薛校风, 王惠, 等. 湖泊生态系统产甲烷与甲烷氧化微生物研究进展[J]. 湖泊科学, 2018, 30(3): 597-610. doi: 10.18307/2018.0302
|
[11] |
LEI D, LIU J, ZHANG J W. Methane oxidation in the water column of Xiangxi Bay, Three Gorges Reservoir[J]. Clean—Soil, Air, Water, 2019, 47(9): 1-9.
|
[12] |
卓海华, 吴云丽, 刘旻璇, 等. 三峡水库水质变化趋势研究[J]. 长江流域资源与环境, 2017, 26(6): 925-936. doi: 10.11870/cjlyzyyhj201706015
|
[13] |
李哲, 姚骁, 何萍, 等. 三峡水库澎溪河水-气界面CO2、CH4扩散通量昼夜动态初探[J]. 湖泊科学, 2014, 26(4): 576-584. doi: 10.18307/2014.0412
|
[14] |
李哲, 张呈, 刘靓, 等. 三峡水库澎溪河CO2、CH4气泡释放通量初探[J]. 湖泊科学, 2014, 26(5): 789-798. doi: 10.18307/2014.0518
|
[15] |
秦宇, 杨博逍, 李哲, 等. 夏季金沙江下游水-气界面CO2、CH4通量特征初探[J]. 湖泊科学, 2017, 29(4): 991-999.
|
[16] |
B. JÄHNE, P. LIBNER, R. FISCHER, et al. Investigating the transfer processes across the free aqueous viscous boundary layer by the controlled flux method[J]. Tellus B, 1989, 41B(2): 177-195. doi: 10.1111/j.1600-0889.1989.tb00135.x
|
[17] |
MACINTYRE S, WANNINKHOF R, CHANTON J P. Trace gas exchange across the air-water interface in freshwater and coastal marine environments[J]. New York:P. A. Matson and Harriss Blackwell Science, 1995: 52-97.
|
[18] |
MOREL, F M M. Principles of aquatic chemistry[J]. Limnology and Oceanography, 1985, 30(2): 450-450. doi: 10.4319/lo.1985.30.2.0450
|
[19] |
ROEHM C L, PRAIRIE Y T, DEL GIORGIO P A. The p(CO2)dynamics in lakes in the boreal region of northern Québec, Canada[J]. Global Biogeochemical Cycles, 2009, 23(3): 7-10.
|
[20] |
ANDERSEN C B. Understanding carbonate equilibria by measuring alkalinity in experimental and natural systems[J]. Journal of Geoscience Education, 2002, 50(4): 389-403. doi: 10.5408/1089-9995-50.4.389
|
[21] |
张曦. 三峡库区万州段沉积物细菌群落对CH4排放的影响[D]. 重庆: 重庆交通大学, 2020.
|
[22] |
秦宇, 王紫薇, 李哲, 等. 三峡水库澎溪河水-气界面CO2与CH4通量特征及影响因素初探[J]. 地球环境学报, 2019, 10(2): 177-189.
|
[23] |
赵登忠, 谭德宝, 汪朝辉, 等. 清江流域水布垭水库温室气体交换通量监测与分析研究[J]. 长江科学院院报, 2011, 28(10): 197-204. doi: 10.3969/j.issn.1001-5485.2011.10.035
|
[24] |
谌佳伟, 葛继稳, 冯亮, 等. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系[J]. 地球科学, 2020, 45(3): 1082-1092.
|
[25] |
赵登忠, 程学军, 汪朝辉, 等. 清江流域典型发电水库甲烷源汇时空变化规律研究[J]. 水力发电学报, 2014, 33(5): 128-137.
|
[26] |
赵炎, 曾源, 吴炳方, 等. 三峡水库香溪河支流水域温室气体排放通量观测[J]. 水科学进展, 2011, 22(4): 546-553.
|
[27] |
吴学谦, 操满, 傅家楠, 等. 三峡水库夏季干流、支流(草堂河)水体的二氧化碳分压及扩散通量[J]. 上海大学学报(自然科学版), 2015, 21(3): 311-318.
|
[28] |
李哲, 方芳, 郭劲松, 等. 三峡小江(澎溪河)藻类功能分组及其季节演替特点[J]. 环境科学, 2011, 32(2): 392-400.
|
[29] |
赵玮, 朱孔贤, 黄文敏, 等. 三峡水库湖北段甲烷排放通量时空特征及其影响因素分析[J]. 水生生物学报, 2013, 37(4): 776-781. doi: 10.7541/2013.95
|
[30] |
WATANABE T, KIMURA M, ASAKAWA S. Distinct members of a stable methanogenic archaeal community transcribe mcrA genes under flooded and drained conditions in Japanese paddy field soil[J]. Soil Biology and Biochemistry, 2008, 40(1): 276-285.
|
[31] |
IMACHI H, AOI K, TASUMI E, et al. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor[J]. The ISME Journal:Multidisciplinary Journal of Microbial Ecology, 2011, 5(12): 1913-1925.
|
[32] |
李思琦, 臧昆鹏, 宋伦. 湿地甲烷代谢微生物产甲烷菌和甲烷氧化菌的研究进展[J]. 海洋环境科学, 2020, 39(3): 488-496. doi: 10.12111/j.mes20200325
|
[33] |
LIU Y, WANG P, CROWLEY D, et al. Methanogenic abundance and changes in community structure along a rice soil chronosequence from east China[J]. European Journal of Soil Science, 2016, 67(4): 443-455. doi: 10.1111/ejss.12348
|
[34] |
CONRAD R, ERKEL C, LIESACK W. Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil[J]. Current Opinion in Biotechnology, 2006, 17(3): 262-267. doi: 10.1016/j.copbio.2006.04.002
|
[35] |
ZHUANG G C, HEUER V B, LAZAR C S, et al. Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea[J]. Geochimica Et Cosmochimica Acta, 2018, 224: 171-186. doi: 10.1016/j.gca.2017.12.024
|
[36] |
沈李东. 湿地亚硝酸盐型厌氧氨氧化和厌氧甲烷氧化微生物生态学研究[D]. 浙江: 浙江大学, 2014.
|
[37] |
MER J L, ROGER P. Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 2001, 37(1): 25-50. doi: 10.1016/S1164-5563(01)01067-6
|
[38] |
王晓琳, 曹爱新, 周传斌, 等. 垃圾填埋场甲烷氧化菌及甲烷减排的研究进展[J]. 生物技术通报, 2016, 32(5): 16-25.
|
[39] |
贠娟莉, 王艳芬, 张洪勋. 好氧甲烷氧化菌生态学研究进展[J]. 生态学报, 2013, 33(21): 6774-6785.
|
[40] |
马若潺, 魏晓梦, 何若. 低氧生境中好氧甲烷氧化菌的缺氧耐受机理及种群结构研究进展[J]. 应用生态学报, 2017, 28(6): 2047-2054.
|
[41] |
YANG Y Y, CHEN J F, TONG T L, et al. Eutrophication influences methanotrophic activity, abundance and community structure in freshwater lakes[J]. Science of the Total Environment, 2019, 662: 863-872. doi: 10.1016/j.scitotenv.2019.01.307
|
[42] |
OSWALD K, MILUCKA J, BRAND A, et al. Aerobic gammaproteobacterial methanotrophs mitigate methane emissions from oxic and anoxic lake waters[J]. Limnology and Oceanography, 2016, 61(S1): S101-S118. doi: 10.1002/lno.10312
|
[43] |
秦宇, 黄璜, 李哲, 等. 内陆水体好氧甲烷氧化过程研究进展[J]. 湖泊科学, 2021, 33(4): 1004-1017.
|
[44] |
YUN J L, ZHUANG G Q, MA A Z, et al. Community structure, abundance, and activity of methanotrophs in the Zoige wetland of the Tibetan Plateau.[J]. Microbial ecology, 2012, 63(4): 835-843. doi: 10.1007/s00248-011-9981-x
|
[45] |
LIU Y, ZHANG J X, ZHAO L, et al. Aerobic and nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater lakes on the Yunnan Plateau[J]. Applied Microbiology and Biotechnology, 2015, 99(5): 2371-2381. doi: 10.1007/s00253-014-6141-5
|
[46] |
CORINNE B P, DIDIER J, ERIC D B, et al. Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake[J]. FEMS Microbiology Ecology, 2011, 77(3): 533-545. doi: 10.1111/j.1574-6941.2011.01134.x
|
[47] |
OSWALD K, MILUCKA J, BRAND B, et al. Light-dependent aerobic methane oxidation reduces methane emissions from seasonally stratified lakes[J]. PLoS ONE, 2017, 10(7).
|
[48] |
KADNIKOV V V, SAVVICHEV A S, MARDANOV A V, et al. Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe[J]. Antonie van Leeuwenhoek, 2019, 112(12): 1801-1814. doi: 10.1007/s10482-019-01308-1
|
[49] |
BLEES J, NIEMANN H, WENK C B, et al. Micro-aerobic bacterial methane oxidation in the chemocline and anoxic water column of deep south-Alpine Lake Lugano (Switzerland)[J]. Limnology and Oceanography, 2014, 59(2): 311-324. doi: 10.4319/lo.2014.59.2.0311
|