-
我国很多城镇污水处理厂进水中碳氮比(C/N)较低,通常采用外加碳源以提高TN去除率,所采用的碳源分为传统碳源和新型碳源。其中:传统碳源包括甲醇、乙酸、乙酸钠、葡萄糖等[1-2];新型碳源包括天然固相碳源(果皮类、秸秆类、枝干类、贝类等)[3-4]、人工合成固相碳源(PHAs类多聚物、聚己内酯(PCL)、聚丁二酸丁二脂(PBS)等)[5-6]、液相碳源(食品工业废水、餐厨废弃物水解液等废液发酵副产品)[2,7]等。选择合适的碳源是目前处理低C/N污水的关键。
低C/N污水处理常应用移动床生物膜反应器(moving bed biofilm reactor,MBBR)和反硝化生物滤池(biofilters for denitrification,DNBF)等反硝化工艺。其中DNBF具有一定的过滤能力,但需要定期进行反冲洗。而MBBR是在曝气池中加入悬浮填料作为微生物载体,使好氧、缺氧和厌氧环境同时存在,无需污泥回流,可以实现同步硝化反硝化(simultaneous nitrification and denitrification,SND)[8-9],能有效去除COD和氮等污染物,降低废水处理成本。现有污水处理厂在提标改造中广泛采用MBBR处理技术,改造过程简单且成本较低,故MBBR技术具有较大的应用潜力。在MBBR中,悬浮填料的物理化学性质会影响生物膜的形成和污染物去除性能。LIU等利用添加表面改性复合填料的MBBR在低DO水平(0.6 ~ 0.8 mg·L−1)和低C/N (≤5)条件下,可实现对有机物和总氮的高效去除[10],COD和TN去除率分别为85.7%和75.9%。SONG等开发了一种以沸石粉基聚氨酯海绵为悬浮填料的MBBR,TN的去除效果比传统的海绵悬浮填料型MBBR高出近10%[11]。
我国是酒业大国。在酒类产品中,白酒所占的比例较高。白酒酿造的原料以谷粮为主,在白酒酿造与生产过程中会产生大量白酒废水,据统计,每生产1 t白酒即可产生20~40 t废水。白酒废水可分为低浓度和高浓度废水。高浓度白酒废水(high concentration Baijiu wastewater,HCBW)包含原料冲洗浸泡水、窖底水、锅底水等,约占白酒废水排放总量的5%,含有高浓度溶解性有机物,如多糖、有机酸、乙醇、甘油等[12],具有高COD、高BOD、高色度、呈酸性、低溶解氧、总氮浓度高等特征,处理难度大,可生化性好[13]。HCBW是食品工业排放的污染最严重的废水之一[14],未经充分处理的HCBW排放会导致藻类大量繁殖,水体溶解氧大量消耗,抑制生物的光合作用[15],使水生动植物无法正常生存,对水生态系统造成严重破坏。若废水渗入土壤中,则会抑制种子的萌芽、生长,导致植被枯竭,也能对陆生动物造成一定程度损害[16]。此外,还可能导致当地独特的微生物群落发生转变,对当地白酒行业造成损害[17]。
酿酒废水处理的常用方法为物化法、生物法、生态法和联用技术等。物化处理技术包括吸附、混凝沉淀、氧化、电解、热分解、膜分离等[18-22];生物处理技术包括好氧、厌氧[23-24]及藻类微生物降解等[25-26];生态处理技术主要是人工湿地处理系统[27];联用技术主要是多种技术结合,共同实现废水污染物去除[28]。单独的物化处理或生物处理对HCBW中污染物的去除效果不理想[29],采用多种方法联合应用可对HCBW实现达标处理,但处理难度大、运行管理费用较高[30],难以在中小型企业中进行推广应用。
基于以上研究,本研究采用MBBR技术,构建了高浓度白酒窖底废水与低C/N生活污水协同处理系统,使用改性海绵填料和流化床填料分别探究了HCBW作为反硝化外加碳源对低C/N污水处理的影响,并分析了微生物群落的变化,探究了白酒窖底废水作为反硝化外加碳源与低C/N生活污水协同处理技术的可行性及功能微生物,以期为HCBW的资源化利用提供参考。
基于MBBR技术的白酒窖底废水与低C/N生活污水协同处理系统的构建及功能微生物分析
Construction of a MBBR-based synergic treatment system for Baijiu pits bottom wastewater and low C/N domestic sewage and analysis on its functional microbes
-
摘要: 为解决低C/N污水和高浓度白酒废水(HCBW)处理所面临的问题,采用移动床生物膜反应器(MBBR),构建了白酒窖底废水与模拟低C/N生活污水协同处理系统,以改性海绵填料和流化床填料分别探究HCBW作为反硝化外加碳源对低C/N生活污水处理的影响。结果表明:海绵填料协同处理系统(A1)对COD、
${\rm{NH}}_4^+ $ -N、TN和色度的平均去除率分别为91.29%、99.08%、89.81%和80.66%,流化床填料系统(A2)的平均去除率分别为90.51%、98.58%、75.73%和76.07%,改性海绵填料的去除效果优于流化床填料;混合废水经过MBBR系统处理后,${\rm{NH}}_4^+ $ 和TN得到了有效去除,出水中的醇类、硫酸盐和磷酸盐物质的相对比例有一定程度增加;协同处理系统A1和A2的硝化优势菌属均为Nakamurella、Nitrospira,反硝化优势菌属均为Amaricoccus、Dokdonella和Thermomonas,可能参与有机物去除的优势功能菌属均为Micropruina。通过功能预测得出:协同处理系统A1、A2中的主要代谢通路均为氨基酸代谢、碳水化合物代谢和能量代谢,主要的环境信息处理通路均为复制与修复和转译,主要的遗传信息处理通路均为膜运输。以上研究结果可为HCBW的资源化利用、低C/N生活污水处理提供参考。Abstract: In order to solve the problems faced by low C/N sewage and Baijiu pits bottom wastewater, a mobile bed biofilm reactor (MBBR) was used to build a collaborative treatment system for the liquor pits bottom wastewater and simulated low C/N sewage. Effect of HCLW as denitrification plus carbon source on low C/N wastewater treatment was investigated by using modified sponge filler or fluidized bed filler. The results showed the average removal rates of COD, ammonia nitrogen, total nitrogen and chroma by the modified sponge packing system (A1) were 91.29%, 99.08%, 89.81% and 80.66%, respectively; and by the fluidized bed packing system (A2) were 90.51%, 98.58%, 75.73% and 76.07%, respectively. The removal effect of the modified sponge filler was better than that of the fluidized bed filler. Ammonia nitrogen and total nitrogen could be effectively removed from the mixed wastewater after MBBR treatment, with a certain increase of alcohols, sulfate and phosphate contents in the effluent. Analysis results of 16S rRNA high-throughput sequencing technology showed that in the synergistic systems of A1 and A2, the dominant nitrifying bacteria were Nakamurella and Nitrospira; the dominant denitrifying bacteria were Amaricoccus, Dokdonella and Thermomonas; and the dominant functional bacteria for organic matter removal were Micropruina. Function prediction indicated that in the system A1 and A2, Amino Acid Metabolism, Carbohydrate Metabolism and Energy Metabolism were the top three metabolic pathways. Replication and Repair as well as Translation processed major environmental information. Membrane Transport was primarily responsible for the genetic information processing pathways. It was supposed to provide a technical support and theoretical basis for resource utilization of high-concentration Baijiu wastewater and treatment of low C/N domestic sewage. -
表 1 填料物理参数
Table 1. Filler physical parameters
填料类型 材质 规格尺寸/
mm比表面积/ (m2·m−3) 孔隙率/
%密度/
(kg·m−3)海绵填料 改性亲水
聚氨酯10×10×10 >90 000 >96 15~20 流化床
填料聚乙烯 Φ10×10 >500 >95 >960 表 2 实验用水水质参数
Table 2. Parameters of test water
实验用水 氮磷及好氧有机物质量浓度/(mg·L−1) 色度 COD -N TN TP${\rm{NH}}_4^+ $
协同组进水(A) 350±20 37.5 40 4 200±20 未协同组进水(B) 65±10 35 35 2 10~20 窖底水 270 000 2500 6 500 2 400 150 000 表 3 各组系统出水的pH、DO、温度
Table 3. pH, DO and temperature of the effluent of each system
反应器 pH DO/(mg·L−1) 温度/℃ 协同海绵组(A1) 7.54±0.44 3.25±1.35 27±2 协同流化床组(A2) 6.99±0.99 3.15±1.38 27±2 未协同海绵组(B1) 6.06±1.52 3.03±1.45 27±2 未协同流化床组(B2) 5.88±1.6 3.06±1.54 27±2 -
[1] PANG Y M, WANG J L. Various electron donors for biological nitrate removal: A review[J]. Science of the Total Environment, 2021, 794: 148699. doi: 10.1016/j.scitotenv.2021.148699 [2] WANG H S, CHEN N, FENG C P, et al. Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources[J]. Science of the Total Environment, 2021, 780: 146521. doi: 10.1016/j.scitotenv.2021.146521 [3] WANG H S, CHEN N, FENG C P, et al. Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: Performance, microbial behavior and dissolved organic matter evolution[J]. Chemosphere, 2020, 253: 126693. doi: 10.1016/j.chemosphere.2020.126693 [4] HU R T, ZHENG X L, ZHENG T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management, 2019, 246: 832-839. [5] ZHANG F F, MA C J, HUANG X F, et al. Research progress in solid carbon source–based denitrification technologies for different target water bodies[J]. Science of the Total Environment, 2021, 782: 146669. doi: 10.1016/j.scitotenv.2021.146669 [6] FENG L J, YANG J Y, YU H, et al. Response of denitrifying community, denitrification genes and antibiotic resistance genes to oxytetracycline stress in polycaprolactone supported solid-phase denitrification reactor[J]. Bioresource Technology, 2020, 308: 123274. doi: 10.1016/j.biortech.2020.123274 [7] TANG J L, WANG X C, HU Y S, et al. Nutrients removal performance and sludge properties using anaerobic fermentation slurry from food waste as an external carbon source for wastewater treatment[J]. Bioresource Technology, 2018, 271: 125-135. [8] CHAI H X, XIANG Y, CHEN R, et al. Enhanced simultaneous nitrification and denitrification in treating low carbon-to-nitrogen ratio wastewater: Treatment performance and nitrogen removal pathway[J]. Bioresource Technology, 2019, 280: 51-58. doi: 10.1016/j.biortech.2019.02.022 [9] WU H, ZHANG Q, CHEN X, et al. Effect of HRT and BDPs types on nitrogen removal and microbial community of solid carbon source SND process treating low carbon/nitrogen domestic wastewater[J]. Journal of Water Process Engineering, 2021, 40: 101854. doi: 10.1016/j.jwpe.2020.101854 [10] LIU T, HE X L, JIA G Y, et al. Simultaneous nitrification and denitrification process using novel surface-modified suspended carriers for the treatment of real domestic wastewater[J]. Chemosphere, 2020, 247: 125831. doi: 10.1016/j.chemosphere.2020.125831 [11] SONG Z, ZHANG X B, NGO H H, et al. Zeolite powder based polyurethane sponges as biocarriers in moving bed biofilm reactor for improving nitrogen removal of municipal wastewater.[J]. Science of the Total Environment, 2019, 651: 1078-1086. doi: 10.1016/j.scitotenv.2018.09.173 [12] ZHENG Y X, ZHANG T Y, LU Y, et al. Monascus pilosus YX-1125: An efficient digester for directly treating ultra-high-strength liquor wastewater and producing short-chain fatty acids under multiple-stress conditions[J]. Bioresource Technology, 2021, 331: 125050. doi: 10.1016/j.biortech.2021.125050 [13] 万金保, 付煜, 刘峰, 等. 混凝-UASB-两级A/O工艺处理白酒废水[J]. 中国给水排水, 2017, 33(24): 114-117. [14] 罗景阳, 操家顺, 谢坤, 等. 分段进水两级A/O工艺对白酒废水的强化处理效果[J]. 环境科学研究, 2018, 31(9): 1612-1619. [15] RAY S G, GHANGREKAR M M. Comprehensive review on treatment of high-strength distillery wastewater in advanced physico-chemical and biological degradation pathways[J]. International Journal of Environmental Science and Technology, 2019, 16(1): 527-546. doi: 10.1007/s13762-018-1786-8 [16] CHOWDHARY P, RAJ A, BHARAGAVA R N. Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review[J]. Chemosphere, 2018, 194: 229-246. doi: 10.1016/j.chemosphere.2017.11.163 [17] DAI Y J, TIAN Z G, MENG W N, et al. Microbial diversity and physicochemical characteristics of the Maotai-flavored liquor fermentation process[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(7): 4097-4109. doi: 10.1166/jnn.2020.17522 [18] MOUSAZADEH M, NIARAGH E K, USMAN M, et al. A critical review of state-of-the-art electrocoagulation technique applied to COD-rich industrial wastewaters.[J]. Environmental Science and Pollution Research International, 2021, 28(32): 43143-43172. doi: 10.1007/s11356-021-14631-w [19] CASTRO-MUNOZ R, GONZALEZ-MELGOZA L L, GARCIA-DEPRAECT O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water.[J]. Chemosphere, 2021, 270: 129421. doi: 10.1016/j.chemosphere.2020.129421 [20] WAGH M P, NEMADE P D, SENGUPTA A. Augmentation with ozone-assisted electrochemical degradation of distillery spent wash for the removal of color and chemical oxygen demand[J]. International Journal of Environmental Science and Technology, 2021, 18(3): 619-630. doi: 10.1007/s13762-020-02837-3 [21] CHIAVOLA A, BONGIROLAMI S, Di FRANCESCO G. Technical-economic comparison of chemical precipitation and ion exchange processes for the removal of phosphorus from wastewater[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2020, 81(7): 1329-1335. doi: 10.2166/wst.2020.023 [22] SHARMA D, PRAJAPATI A K, CHOUDHARY R, et al. Preparation and characterization of CuO catalyst for the thermolysis treatment of distillery wastewater.[J]. Environmental Technology, 2018, 39(20): 2604-2612. doi: 10.1080/09593330.2017.1362476 [23] RIPOLL V, AGABO-GARCIA C, SOLERA R, et al. Modelling of the anaerobic semi-continuous co-digestion of sewage sludge and wine distillery wastewater[J]. Environmental Science-Water Research & Technology, 2020, 6(7): 1880-1889. [24] DIONISI D, RASHEED A A. Maximisation of the organic load rate and minimisation of oxygen consumption in aerobic biological wastewater treatment processes by manipulation of the hydraulic and solids residence time[J]. Journal of Water Process Engineering, 2018, 22: 138-146. doi: 10.1016/j.jwpe.2018.02.002 [25] ROBATI S M S, NOSRATI M, GHANATI F, et al. Increase in lipid productivity and photosynthetic activities during distillery wastewater decolorization by Chlorella vulgaris cultures[J]. Applied Microbiology and Biotechnology, 2021, 105(8): 3339-3351. doi: 10.1007/s00253-021-11233-x [26] AMENORFENYO D K, HUANG X H, LI C L, et al. A review of microalgae and other treatment methods of distillery wastewater[J]. Water and Environment Journal, 2020, 34: 988-1002. doi: 10.1111/wej.12552 [27] SANCHEZ M, GONZALO O G, YANEZ S, et al. Influence of nutrients and pH on the efficiency of vertical flow constructed wetlands treating winery wastewater[J]. Journal of Water Process Engineering, 2021, 42: 102103. doi: 10.1016/j.jwpe.2021.102103 [28] AZIZ A R A, ASAITHAMBI P, DAUD W M A B. Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent[J]. Process Safety and Environmental Protection, 2016, 99: 227-235. doi: 10.1016/j.psep.2015.11.010 [29] ASAITHAMBI P, GOVINDARAJAN R, YESUF M B, et al. Investigation of direct and alternating current-electrocoagulation process for the treatment of distillery industrial effluent: Studies on operating parameters[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104811. [30] RATNA S, RASTOGI S, KUMAR R. Current trends for distillery wastewater management and its emerging applications for sustainable environment[J]. Journal of Environmental Management, 2021, 290: 112544. doi: 10.1016/j.jenvman.2021.112544 [31] 吉芳英, 杨琴, 罗固源. 实验室自配HACH-COD替代试剂研究[J]. 给水排水, 2003, 29(1): 17-20. doi: 10.3969/j.issn.1002-8471.2003.01.006 [32] 刘冰, 郑煜铭, 陈燕敏, 等. 臭氧-活性炭处理高浓度制药废水作用机制研究[J]. 环境科学与技术, 2021, 44(2): 122-130. [33] FANG D X, ZHAO G, XU X Y, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology, 2018, 249: 684-693. doi: 10.1016/j.biortech.2017.10.063 [34] 李彦澄, 杨娅男, 刘邓平, 等. 基于好氧甲烷氧化菌的反硝化效能及微生物群落研究[J]. 中国环境科学, 2019, 39(10): 4387-4393. doi: 10.3969/j.issn.1000-6923.2019.10.043 [35] 汪传新, 龚灵潇, 彭永臻. 低温下MBBR处理低碳氮质量比生活污水的同步硝化反硝化特性[J]. 中南大学学报(自然科学版), 2014, 45(8): 2920-2927. [36] CHEN S, CHENG X, ZHANG X, et al. Influence of surface modification of polyethylene biocarriers on biofilm properties and wastewater treatment efficiency in moving-bed biofilm reactors[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2012, 65(6): 1021-1026. doi: 10.2166/wst.2012.915 [37] 田双超, 吕淑清, 董立新, 等. 不同填料的挂膜试验研究: [A]. 见: 2019 中国环境科学学会科学技术年会论文集(第二卷)[C] 北京: 中国环境科学学会, 2019. [38] FENG Q, WANG Y X, WANG T M, et al. Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors[J]. Bioresource Technology, 2012, 117: 201-207. doi: 10.1016/j.biortech.2012.04.076 [39] ZHANG X B, CHEN X, ZHANG C Q, et al. Effect of filling fraction on the performance of sponge-based moving bed biofilm reactor[J]. Bioresource Technology, 2016, 219: 762-767. doi: 10.1016/j.biortech.2016.08.031 [40] PUZNAVA N, PAYRAUDEAU M, THORNBERG D. Simultaneous nitrification and denitrification in biofilters with real time aeration control[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2001, 43(1): 269-76. doi: 10.2166/wst.2001.0057 [41] 翁诗甫. 傅里叶变换红外光谱分析[J]. 北京市东城区青年湖南街13号:化学工业出版社, 2010: 1-389. [42] SCHNEIDER D, ZUHLKE D, POEHLEIN A, et al. Metagenome-assembled genome sequences from different wastewater treatment stages in Germany[J]. Microbiology resource announcements, 2021, 10(27): e0050421. [43] YAN W Z, WANG N, WEI D, et al. Bacterial community compositions and nitrogen metabolism function in a cattle farm wastewater treatment plant revealed by Illumina high-throughput sequencing.[J]. Environmental Science and Pollution Research International, 2021, 28(30): 40895-40907. doi: 10.1007/s11356-021-13570-w [44] KIM D, NGUYEN L N, OH S. Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge[J]. Environmental Geochemistry and Health:Official Journal of the Society for Environmental Geochemistry and Health, 2020, 42(6): 1531-1541. [45] SHU D T, HE Y L, YUE H, et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technology, 2015, 186: 163-172. doi: 10.1016/j.biortech.2015.03.072 [46] 张哲妍. 复合生物滤池深度处理城镇污水厂尾水的工艺研究[D]. 杭州: 浙江大学, 2020. [47] TANIKAWA D, YAMASHITA S, KATAOKA T, et al. Non-aerated single-stage nitrogen removal using a down-flow hanging sponge reactor as post-treatment for nitrogen-rich wastewater treatment[J]. Chemosphere, 2019, 233: 645-651. doi: 10.1016/j.chemosphere.2019.06.012 [48] 马英, 钱鲁闽, 王永胜, 等. 硝化细菌分子生态学研究进展[J]. 中国水产科学, 2007(05): 872-879. doi: 10.3321/j.issn:1005-8737.2007.05.025 [49] 唐义, 马邕文, 万金泉, 等. 外加固体缓释碳源的两段反硝化工艺脱氮性能[J]. 环境科学, 2021, 42(07): 3392-3399. [50] PISHGAR R, DOMINIC J A, SHENG Z Y, et al. Denitrification performance and microbial versatility in response to different selection pressures[J]. Bioresource Technology, 2019, 281: 72-83. doi: 10.1016/j.biortech.2019.02.061 [51] TICE H, MAYILRAJ S, SIMS D, et al. Complete genome sequence of Nakamurella multipartita type strain (Y-104T)[J]. Standards in Genomic Sciences, 2010, 2(2): 168-175. doi: 10.4056/sigs.721316 [52] HE S, DING L L, PAN Y, et al. Nitrogen loading effects on nitrification and denitrification with functional gene quantity/transcription analysis in biochar packed reactors at 5 °C.[J]. Scientific reports, 2018, 8(1): 9844. doi: 10.1038/s41598-018-28305-0 [53] TIAN L, WANG L. A meta-analysis of microbial community structures and associated metabolic potential of municipal wastewater treatment plants in global scope[J]. Environmental Pollution, 2020, 263: 114598. doi: 10.1016/j.envpol.2020.114598