[1] |
PANG Y M, WANG J L. Various electron donors for biological nitrate removal: A review[J]. Science of the Total Environment, 2021, 794: 148699. doi: 10.1016/j.scitotenv.2021.148699
|
[2] |
WANG H S, CHEN N, FENG C P, et al. Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources[J]. Science of the Total Environment, 2021, 780: 146521. doi: 10.1016/j.scitotenv.2021.146521
|
[3] |
WANG H S, CHEN N, FENG C P, et al. Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: Performance, microbial behavior and dissolved organic matter evolution[J]. Chemosphere, 2020, 253: 126693. doi: 10.1016/j.chemosphere.2020.126693
|
[4] |
HU R T, ZHENG X L, ZHENG T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management, 2019, 246: 832-839.
|
[5] |
ZHANG F F, MA C J, HUANG X F, et al. Research progress in solid carbon source–based denitrification technologies for different target water bodies[J]. Science of the Total Environment, 2021, 782: 146669. doi: 10.1016/j.scitotenv.2021.146669
|
[6] |
FENG L J, YANG J Y, YU H, et al. Response of denitrifying community, denitrification genes and antibiotic resistance genes to oxytetracycline stress in polycaprolactone supported solid-phase denitrification reactor[J]. Bioresource Technology, 2020, 308: 123274. doi: 10.1016/j.biortech.2020.123274
|
[7] |
TANG J L, WANG X C, HU Y S, et al. Nutrients removal performance and sludge properties using anaerobic fermentation slurry from food waste as an external carbon source for wastewater treatment[J]. Bioresource Technology, 2018, 271: 125-135.
|
[8] |
CHAI H X, XIANG Y, CHEN R, et al. Enhanced simultaneous nitrification and denitrification in treating low carbon-to-nitrogen ratio wastewater: Treatment performance and nitrogen removal pathway[J]. Bioresource Technology, 2019, 280: 51-58. doi: 10.1016/j.biortech.2019.02.022
|
[9] |
WU H, ZHANG Q, CHEN X, et al. Effect of HRT and BDPs types on nitrogen removal and microbial community of solid carbon source SND process treating low carbon/nitrogen domestic wastewater[J]. Journal of Water Process Engineering, 2021, 40: 101854. doi: 10.1016/j.jwpe.2020.101854
|
[10] |
LIU T, HE X L, JIA G Y, et al. Simultaneous nitrification and denitrification process using novel surface-modified suspended carriers for the treatment of real domestic wastewater[J]. Chemosphere, 2020, 247: 125831. doi: 10.1016/j.chemosphere.2020.125831
|
[11] |
SONG Z, ZHANG X B, NGO H H, et al. Zeolite powder based polyurethane sponges as biocarriers in moving bed biofilm reactor for improving nitrogen removal of municipal wastewater.[J]. Science of the Total Environment, 2019, 651: 1078-1086. doi: 10.1016/j.scitotenv.2018.09.173
|
[12] |
ZHENG Y X, ZHANG T Y, LU Y, et al. Monascus pilosus YX-1125: An efficient digester for directly treating ultra-high-strength liquor wastewater and producing short-chain fatty acids under multiple-stress conditions[J]. Bioresource Technology, 2021, 331: 125050. doi: 10.1016/j.biortech.2021.125050
|
[13] |
万金保, 付煜, 刘峰, 等. 混凝-UASB-两级A/O工艺处理白酒废水[J]. 中国给水排水, 2017, 33(24): 114-117.
|
[14] |
罗景阳, 操家顺, 谢坤, 等. 分段进水两级A/O工艺对白酒废水的强化处理效果[J]. 环境科学研究, 2018, 31(9): 1612-1619.
|
[15] |
RAY S G, GHANGREKAR M M. Comprehensive review on treatment of high-strength distillery wastewater in advanced physico-chemical and biological degradation pathways[J]. International Journal of Environmental Science and Technology, 2019, 16(1): 527-546. doi: 10.1007/s13762-018-1786-8
|
[16] |
CHOWDHARY P, RAJ A, BHARAGAVA R N. Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review[J]. Chemosphere, 2018, 194: 229-246. doi: 10.1016/j.chemosphere.2017.11.163
|
[17] |
DAI Y J, TIAN Z G, MENG W N, et al. Microbial diversity and physicochemical characteristics of the Maotai-flavored liquor fermentation process[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(7): 4097-4109. doi: 10.1166/jnn.2020.17522
|
[18] |
MOUSAZADEH M, NIARAGH E K, USMAN M, et al. A critical review of state-of-the-art electrocoagulation technique applied to COD-rich industrial wastewaters.[J]. Environmental Science and Pollution Research International, 2021, 28(32): 43143-43172. doi: 10.1007/s11356-021-14631-w
|
[19] |
CASTRO-MUNOZ R, GONZALEZ-MELGOZA L L, GARCIA-DEPRAECT O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water.[J]. Chemosphere, 2021, 270: 129421. doi: 10.1016/j.chemosphere.2020.129421
|
[20] |
WAGH M P, NEMADE P D, SENGUPTA A. Augmentation with ozone-assisted electrochemical degradation of distillery spent wash for the removal of color and chemical oxygen demand[J]. International Journal of Environmental Science and Technology, 2021, 18(3): 619-630. doi: 10.1007/s13762-020-02837-3
|
[21] |
CHIAVOLA A, BONGIROLAMI S, Di FRANCESCO G. Technical-economic comparison of chemical precipitation and ion exchange processes for the removal of phosphorus from wastewater[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2020, 81(7): 1329-1335. doi: 10.2166/wst.2020.023
|
[22] |
SHARMA D, PRAJAPATI A K, CHOUDHARY R, et al. Preparation and characterization of CuO catalyst for the thermolysis treatment of distillery wastewater.[J]. Environmental Technology, 2018, 39(20): 2604-2612. doi: 10.1080/09593330.2017.1362476
|
[23] |
RIPOLL V, AGABO-GARCIA C, SOLERA R, et al. Modelling of the anaerobic semi-continuous co-digestion of sewage sludge and wine distillery wastewater[J]. Environmental Science-Water Research & Technology, 2020, 6(7): 1880-1889.
|
[24] |
DIONISI D, RASHEED A A. Maximisation of the organic load rate and minimisation of oxygen consumption in aerobic biological wastewater treatment processes by manipulation of the hydraulic and solids residence time[J]. Journal of Water Process Engineering, 2018, 22: 138-146. doi: 10.1016/j.jwpe.2018.02.002
|
[25] |
ROBATI S M S, NOSRATI M, GHANATI F, et al. Increase in lipid productivity and photosynthetic activities during distillery wastewater decolorization by Chlorella vulgaris cultures[J]. Applied Microbiology and Biotechnology, 2021, 105(8): 3339-3351. doi: 10.1007/s00253-021-11233-x
|
[26] |
AMENORFENYO D K, HUANG X H, LI C L, et al. A review of microalgae and other treatment methods of distillery wastewater[J]. Water and Environment Journal, 2020, 34: 988-1002. doi: 10.1111/wej.12552
|
[27] |
SANCHEZ M, GONZALO O G, YANEZ S, et al. Influence of nutrients and pH on the efficiency of vertical flow constructed wetlands treating winery wastewater[J]. Journal of Water Process Engineering, 2021, 42: 102103. doi: 10.1016/j.jwpe.2021.102103
|
[28] |
AZIZ A R A, ASAITHAMBI P, DAUD W M A B. Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent[J]. Process Safety and Environmental Protection, 2016, 99: 227-235. doi: 10.1016/j.psep.2015.11.010
|
[29] |
ASAITHAMBI P, GOVINDARAJAN R, YESUF M B, et al. Investigation of direct and alternating current-electrocoagulation process for the treatment of distillery industrial effluent: Studies on operating parameters[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104811.
|
[30] |
RATNA S, RASTOGI S, KUMAR R. Current trends for distillery wastewater management and its emerging applications for sustainable environment[J]. Journal of Environmental Management, 2021, 290: 112544. doi: 10.1016/j.jenvman.2021.112544
|
[31] |
吉芳英, 杨琴, 罗固源. 实验室自配HACH-COD替代试剂研究[J]. 给水排水, 2003, 29(1): 17-20. doi: 10.3969/j.issn.1002-8471.2003.01.006
|
[32] |
刘冰, 郑煜铭, 陈燕敏, 等. 臭氧-活性炭处理高浓度制药废水作用机制研究[J]. 环境科学与技术, 2021, 44(2): 122-130.
|
[33] |
FANG D X, ZHAO G, XU X Y, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology, 2018, 249: 684-693. doi: 10.1016/j.biortech.2017.10.063
|
[34] |
李彦澄, 杨娅男, 刘邓平, 等. 基于好氧甲烷氧化菌的反硝化效能及微生物群落研究[J]. 中国环境科学, 2019, 39(10): 4387-4393. doi: 10.3969/j.issn.1000-6923.2019.10.043
|
[35] |
汪传新, 龚灵潇, 彭永臻. 低温下MBBR处理低碳氮质量比生活污水的同步硝化反硝化特性[J]. 中南大学学报(自然科学版), 2014, 45(8): 2920-2927.
|
[36] |
CHEN S, CHENG X, ZHANG X, et al. Influence of surface modification of polyethylene biocarriers on biofilm properties and wastewater treatment efficiency in moving-bed biofilm reactors[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2012, 65(6): 1021-1026. doi: 10.2166/wst.2012.915
|
[37] |
田双超, 吕淑清, 董立新, 等. 不同填料的挂膜试验研究: [A]. 见: 2019 中国环境科学学会科学技术年会论文集(第二卷)[C] 北京: 中国环境科学学会, 2019.
|
[38] |
FENG Q, WANG Y X, WANG T M, et al. Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors[J]. Bioresource Technology, 2012, 117: 201-207. doi: 10.1016/j.biortech.2012.04.076
|
[39] |
ZHANG X B, CHEN X, ZHANG C Q, et al. Effect of filling fraction on the performance of sponge-based moving bed biofilm reactor[J]. Bioresource Technology, 2016, 219: 762-767. doi: 10.1016/j.biortech.2016.08.031
|
[40] |
PUZNAVA N, PAYRAUDEAU M, THORNBERG D. Simultaneous nitrification and denitrification in biofilters with real time aeration control[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2001, 43(1): 269-76. doi: 10.2166/wst.2001.0057
|
[41] |
翁诗甫. 傅里叶变换红外光谱分析[J]. 北京市东城区青年湖南街13号:化学工业出版社, 2010: 1-389.
|
[42] |
SCHNEIDER D, ZUHLKE D, POEHLEIN A, et al. Metagenome-assembled genome sequences from different wastewater treatment stages in Germany[J]. Microbiology resource announcements, 2021, 10(27): e0050421.
|
[43] |
YAN W Z, WANG N, WEI D, et al. Bacterial community compositions and nitrogen metabolism function in a cattle farm wastewater treatment plant revealed by Illumina high-throughput sequencing.[J]. Environmental Science and Pollution Research International, 2021, 28(30): 40895-40907. doi: 10.1007/s11356-021-13570-w
|
[44] |
KIM D, NGUYEN L N, OH S. Ecological impact of the antibiotic ciprofloxacin on microbial community of aerobic activated sludge[J]. Environmental Geochemistry and Health:Official Journal of the Society for Environmental Geochemistry and Health, 2020, 42(6): 1531-1541.
|
[45] |
SHU D T, HE Y L, YUE H, et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technology, 2015, 186: 163-172. doi: 10.1016/j.biortech.2015.03.072
|
[46] |
张哲妍. 复合生物滤池深度处理城镇污水厂尾水的工艺研究[D]. 杭州: 浙江大学, 2020.
|
[47] |
TANIKAWA D, YAMASHITA S, KATAOKA T, et al. Non-aerated single-stage nitrogen removal using a down-flow hanging sponge reactor as post-treatment for nitrogen-rich wastewater treatment[J]. Chemosphere, 2019, 233: 645-651. doi: 10.1016/j.chemosphere.2019.06.012
|
[48] |
马英, 钱鲁闽, 王永胜, 等. 硝化细菌分子生态学研究进展[J]. 中国水产科学, 2007(05): 872-879. doi: 10.3321/j.issn:1005-8737.2007.05.025
|
[49] |
唐义, 马邕文, 万金泉, 等. 外加固体缓释碳源的两段反硝化工艺脱氮性能[J]. 环境科学, 2021, 42(07): 3392-3399.
|
[50] |
PISHGAR R, DOMINIC J A, SHENG Z Y, et al. Denitrification performance and microbial versatility in response to different selection pressures[J]. Bioresource Technology, 2019, 281: 72-83. doi: 10.1016/j.biortech.2019.02.061
|
[51] |
TICE H, MAYILRAJ S, SIMS D, et al. Complete genome sequence of Nakamurella multipartita type strain (Y-104T)[J]. Standards in Genomic Sciences, 2010, 2(2): 168-175. doi: 10.4056/sigs.721316
|
[52] |
HE S, DING L L, PAN Y, et al. Nitrogen loading effects on nitrification and denitrification with functional gene quantity/transcription analysis in biochar packed reactors at 5 °C.[J]. Scientific reports, 2018, 8(1): 9844. doi: 10.1038/s41598-018-28305-0
|
[53] |
TIAN L, WANG L. A meta-analysis of microbial community structures and associated metabolic potential of municipal wastewater treatment plants in global scope[J]. Environmental Pollution, 2020, 263: 114598. doi: 10.1016/j.envpol.2020.114598
|