-
生态滤坝是指用砾石或碎石在河道中垒筑坝体,通过砾石碎石等的拦截吸附作用以及其表面形成生物膜的降解作用以降解水体氮、磷等营养物质。同时,滤坝还可以调节透过坝体径流量,从而实现径流拦截[1]和控制雨水径流等作用。滤坝技术作为一种新型的污染物拦截和水体生态修复技术,已成功应用于微污染水体[2-3]、山溪性河流[4-5]、雨水[6]和二级生化尾水[7]等不同水体的拦截净化。此外,水质跟踪监测结果表明,滤坝应用于水体治理均具有较为明显的净化效果[4,7-8]。传统的原位拦截技术,如人工湿地、生物滞留池、缓冲带等,虽具有技术成熟、去除效率高、运行稳定等优势,但对于人口和河网较为密集的区域存在工程量大和占地面积大[4]等局限性。滤坝则因具备占地面积小、操作简单、人工投入少等特点[9-11],在河网和人口密集区域有较好的应用潜力。
与人工湿地依靠水力负荷和基质孔隙率进行设计不同,滤坝理论设计主要依赖于渗流力学中的渗流方程和达西定律[1,8]。而滤坝基质的选择目前主要以人工湿地基质研究为基础,通常选择疏松多孔、有生物亲和性、廉价易得的材料[2,12],如沸石、火山石、炉渣和钢渣等。滤坝一方面可通过基质的挡隔作用减缓水流,促进营养物质发生沉降;另一方面,其基质可吸附水体营养物并在表面形成的生物膜,进而降解营养物质[13-16],从而达到净化水体的作用。此外,被修复水体还可利用滤坝前后的水位差增加水体扰动[4,8,17],促进水体复氧[18],提高水体自我修复能力[19]。
影响滤坝净化效果的主要因素有基质材料、坝体坡度、坝体厚度、基质组合配置等。基质材料一般选择疏松多孔、具有生物亲和性的材料。此外,在滤坝中构建原电池可显著提升净化效率。李阳阳[2]通过在普通滤坝中添加铁屑和活性炭,显著提升了滤坝的净化效果,尤其是微污染水体中化学需氧量去除率由20%提升至39%。坝体坡度可通过直接影响微生物载体基质量和渗流量而影响其净化效果。张文生等[19]通过构建3个坡度梯度的生态滤坝发现,20°坡度滤坝的基质量最多,其净化效率也最高;而25°坡度滤坝由于渗流量过大,生物膜容易脱落,因此净化效果最差。刘露等[20]通过构筑不同厚度的滤坝发现,基质厚度越大,基质量越多,其吸附能力和生物挂膜量也越多,因此,净化效果越好,防堵性能最佳。基质组合配置方式通常有2种:基质均匀混合模式和上下分层模式。于鲁冀等[3]通过构筑分层滤坝和普通混合滤坝净化清潩河河水,结果表明,基质均匀混合的模式显著地提高了滤坝净化效率。
在滤坝中,水流几乎与河道平行,但以往在大多数滤坝的研究中,基质多采用均匀混合[3,6,19]或上下分层[2]的模式,鲜有研究沿水流方向先后分布不同的基质对水质净化效果的影响。因此,本文通过构建3个室内滤坝小试系统,选用常用的且已被证实具有较好氨氮吸附效果的火山石[21-22]和具有较好总磷吸附效果的炉渣[2,23]为填料,采用水平方向进出水来探究了基质排布模式对滤坝净化效果的影响,并基于不同污染物的去除效果,提出了相应的基质组合建议。此外,基于对基质细菌群落的分析,初步探讨了相应的污染物净化机制。
滤坝基质排布方式对微污染水体净化效果的影响
Effect of the packing arrangement of filter dam on the purification of slightly-polluted water body
-
摘要: 采用吸附效果较好的火山石和炉渣作为填料,构筑了3个室内滤坝小试系统,研究了不同的基质组合配置对滤坝净化污染物的影响。3种不同的基质组配分别方式为:火山石和炉渣均匀混合、沿水流方向先火山石后炉渣和沿水流方向先炉渣后火山石。结果表明,3个滤坝系统对微污染水体具有明显的净化效果,总氮(TN)、总磷(TP)、氨氮(NH3-N)和化学需氧量(COD)去除率最高可达85.7%、46.5%、47.2%和53.4%。基质组合排布方式对COD和NH3-N的去除效果没有明显的影响,而火山石和炉渣均匀混合的配置方式有利于TP的去除,沿水流方向先炉渣后火山石的配置方式有利于TN的去除。微生物群落分析结果表明,在炉渣和火山石均匀混合的滤坝中,微生物优势菌为除磷优势菌——气单胞菌属,沿水流方向先后排布炉渣火山石的2个滤坝的优势菌为肠杆菌属,该细菌可以进行反硝化产生N2,这可能是沿水流方向先炉渣后火山石的滤坝TN去除效果较好的原因。Abstract: Three indoor filter dam mesocosms, filled with volcanic rock and slag with good adsorption capacity, were constructed to study the effects of different packing arrangements on the purification of slightly-polluted water. Accordingly, we set three different matrix combinations: uniform mixing of volcanic rock and slag, volcanic rock followed slag and slag followed volcanic rock along the water flow, respectively. The results showed that all three mesocosm systems had obvious purification effects on the simulated slightly- polluted water. The highest removal rates of total nitrogen (TN), total phosphorus (TP), ammonium nitrogen (NH3-N) and chemical oxygen demand (COD) were 85.7%, 46.5%, 47.2% and 53.4%, respectively. The packing arrangements had a limited effect on the removal of COD and NH3-N. However, the uniform mixing configuration mesocosm system had the best performance on TP removal, and the mesocosm system filled with slag followed volcanic rock along water flow showed the highest average TN removal rate. The dominant bacteria identified in the mesocosm system filled with mixed slag and volcanic rock were Aeromonas, which could contribute to TP removal. Meanwhile, the dominant bacteria Enterobacterium were found in the other two mesocosm systems. Enterobacterium can produce N2, which accounted for the better TN removal performance in the mesocosm system filled with slag followed volcanic rock along water flow.
-
Key words:
- filter dam /
- packing arrangement /
- slightly polluted water /
- microbial diversity
-
表 1 配制进水目标质量浓度及实际质量浓度
Table 1. Target and actual concentration of influent water
mg·L−1 配水 COD TN TP NH3-N 目标配水 50 15 0.5 5 实际配水 39.4~55.6 11.3~19.0 0.474~0.700 4.79~6.97 -
[1] 田猛, 张永春, 张龙江. 透水坝渗流流量计算模型的选择[J]. 中国给水排水, 2006, 22(13): 22-25. doi: 10.3321/j.issn:1000-4602.2006.13.006 [2] 李阳阳. 复合悬浮生态岛和生态滤坝对微污染河水(清潩河)净化研究[D]. 郑州: 郑州大学, 2017. [3] 于鲁冀, 吕晓燕, 李阳阳, 等. 生态滤坝处理微污染河水实验研究[J]. 水处理技术, 2018, 44(5): 88-92. [4] 董慧峪, 王为东, 强志民. 透水坝原位净化山溪性污染河流[J]. 环境工程学报, 2014, 8(10): 4249-4253. [5] 陈欣, 马建, 史奕, 等. 一种净化山地小流域水体的多级生态透水坝: CN102211817. A[P]. 2011-10-12. [6] 骆其金, 周昭阳, 黎京士, 等. 滤坝系统对城市初期雨水的净化效果[J]. 环境工程技术学报, 2019, 9(3): 282-285. doi: 10.12153/j.issn.1674-991X.2018.11.300 [7] 宋德生, 于鲁冀, 曾科, 等. 原位生态净化集成系统对二级生化尾水的处理效果[J]. 环境工程, 2018, 36(12): 1-5. [8] 田猛, 张永春. 用于控制太湖流域农村面源污染的透水坝技术试验研究[J]. 环境科学学报, 2006, 26(10): 1665-1670. doi: 10.3321/j.issn:0253-2468.2006.10.014 [9] 陈甜甜. 河道水环境治理工程中多方位原位生态修复技术的应用: 以合肥滨湖新区塘西河水质治理工程为例[J]. 清洗世界, 2021, 37(3): 62-63. doi: 10.3969/j.issn.1671-8909.2021.03.030 [10] 王佳, 李玉臣, 顾永钢, 等. 受污染河道原位修复技术研究进展[J]. 北京水务, 2020(4): 40-44. [11] ATEIA M, YOSHIMURA C, NASR M. In-situ biological water treatment technologies for environmental remediation: A review[J]. Journal of Bioremediation & Biodegradation, 2016 , 7(3): 1-5. [12] 赵倩, 庄林岚, 盛芹等. 潜流人工湿地中基质在污水净化中的作用机制与选择原理[J/OL]. 环境工程: 1-12 [2021-09-11]. http://kns.cnki.net/kcms/detail/11.2097.X.20210429.1419.004.html. [13] NI Z F, WU X G, LI L F. Pollution control and in situ bioremediation for lake aquaculture using an ecological dam[J]. Journal of Cleaner Production, 2018, 172: 2256-2265. [14] 葛媛. 潜流人工湿地中的基质作用及污染物去除机理研究[D]. 西安: 西安建筑科技大学, 2017. [15] 叶建锋. 垂直潜流人工湿地中污染物去除机理研究[D]. 上海: 同济大学, 2007. [16] 卢少勇, 金相灿, 余刚. 人工湿地的氮去除机理[J]. 生态学报, 2006, 26(8): 2670-2677. doi: 10.3321/j.issn:1000-0933.2006.08.033 [17] 柴宏祥, 鲍燕荣, 林华东, 等. 山地城市次级河流人工强化自然复氧技术与措施[J]. 中国给水排水, 2013, 29(14): 9-12. doi: 10.3969/j.issn.1000-4602.2013.14.003 [18] 施卫明, 薛利红, 王建国, 等. 农村面源污染治理的“4R”理论与工程实践: 生态拦截技术[J]. 农业环境科学学报, 2013, 32(9): 1697-1704. doi: 10.11654/jaes.2013.09.001 [19] 张文生, 于鲁冀, 吕晓燕, 等. 生态滤坝坡度对水体污染物去除效率的影响[J]. 环境工程, 2018, 36(8): 30-34. [20] 刘露, 于鲁冀, 李廷梅, 等. 基质厚度对生态滤坝净化水体效果及机理的研究[J]. 华北水利水电大学学报(自然科学版), 2019, 40(5): 13-17. [21] 卢少勇, 万正芬, 李锋民, 等. 29种湿地填料对氨氮的吸附解吸性能比较[J]. 环境科学研究, 2016, 29(8): 1187-1194. [22] 刘莹, 刘晓晖, 张亚茹, 等. 三种人工湿地填料对低浓度氨氮废水的吸附特性[J]. 环境化学, 2018, 37(5): 1118-1127. [23] 李丽, 王全金, 李忠卫. 四种填料对总磷的静态吸附试验研究[J]. 华东交通大学学报, 2009, 26(4): 39-43. doi: 10.3969/j.issn.1005-0523.2009.04.008 [24] 樊凯. 陶粒—炉渣双层填料生物滤池处理生活污水的试验研究[D]. 兰州: 兰州理工大学, 2007. [25] 单连斌, 王允妹, 王英健. 散水滤床法处理生活污水的研究[J]. 环境保护科学, 2000, 26(1): 14-15. [26] 陈宁, 王亚军, 贾怀宏. 生物过滤系统填料动态快速挂膜速度实验研究[J]. 甘肃科技纵横, 2020, 49(8): 41-43. doi: 10.3969/j.issn.1672-6375.2020.08.013 [27] 陈众, 田丰, 董俊. 太湖流域河网水体负荷削减技术应用及效果分析[J]. 环境化学, 2013, 32(10): 1995-1996. doi: 10.7524/j.issn.0254-6108.2013.10.027 [28] 吕哲, 倪志凡, 肖德茂, 等. 生态坝对阳澄湖养殖水体的原位修复研究[J]. 中国给水排水, 2015, 31(1): 22-26. [29] BRIX H, ARIAS C A, BUBBA M D. Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands[J]. Water Science and Technology, 2001, 40(11): 47-54. [30] 江子建, 陈秀荣, 赵建国. 沸石、钢渣组合填料对氨氮和磷的定量去除研究[J]. 环境科学与技术, 2016, 39(2): 133-138. [31] 张修稳, 李锋民, 卢伦, 等. 10种人工湿地填料对磷的吸附特性比较[J]. 水处理技术, 2014, 40(3): 49-52. [32] 张瑞斌. 苏南地区河道低污染水生态修复技术研究[J]. 中国环保产业, 2015, 208(10): 46-48. doi: 10.3969/j.issn.1006-5377.2015.10.009 [33] 周岳溪, 钱易, 顾夏声, 等. 废水生物除磷机理的研究: 循序间歇式生物脱氮除磷处理系统中微生物的组成[J]. 环境科学, 1992, 13(4): 2-4. [34] 中公教育医疗卫生系统考试研究院. 医学检验专业知识[M]. 北京: 世界图书北京出版公司, 2014: 268-270. [35] 马放, 王春丽, 王立立. 高效反硝化聚磷菌株的筛选及其生物学特性[J]. 哈尔滨工程大学学报, 2007, 127(6): 631-635. doi: 10.3969/j.issn.1006-7043.2007.06.006 [36] 李雪, 刘思彤, 陈倩. 一株好氧反硝化菌的鉴定及脱氮特性研究[J]. 北京大学学报(自然科学版), 2018, 54(6): 1276-1282. [37] 李军冲, 齐树亭, 石玉新, 等. 一株假单胞菌降解溶解有机氮条件探讨[J]. 食品研究与开发, 2010, 31(5): 151-153. doi: 10.3969/j.issn.1005-6521.2010.05.045 [38] 张培玉, 曲洋, 于德爽, 等. 菌株qy37的异养硝化/好氧反硝化机制比较及氨氮加速降解特性研究[J]. 环境科学, 2010, 31(8): 1819-1826. [39] BARANIECKI C A, AISLABIE J, FOGHT J M. Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from aromatic soil[J]. Microbial Ecology, 2002, 43(1): 44-54. doi: 10.1007/s00248-001-1019-3 [40] 李辉, 徐新阳, 李培军, 等. 人工湿地中氨化细菌去除有机氮的效果[J]. 环境工程学报, 2008, 2(8): 1044-1047.