-
生态滤坝是指用砾石或碎石在河道中垒筑坝体,通过砾石碎石等的拦截吸附作用以及其表面形成生物膜的降解作用以降解水体氮、磷等营养物质。同时,滤坝还可以调节透过坝体径流量,从而实现径流拦截[1]和控制雨水径流等作用。滤坝技术作为一种新型的污染物拦截和水体生态修复技术,已成功应用于微污染水体[2-3]、山溪性河流[4-5]、雨水[6]和二级生化尾水[7]等不同水体的拦截净化。此外,水质跟踪监测结果表明,滤坝应用于水体治理均具有较为明显的净化效果[4,7-8]。传统的原位拦截技术,如人工湿地、生物滞留池、缓冲带等,虽具有技术成熟、去除效率高、运行稳定等优势,但对于人口和河网较为密集的区域存在工程量大和占地面积大[4]等局限性。滤坝则因具备占地面积小、操作简单、人工投入少等特点[9-11],在河网和人口密集区域有较好的应用潜力。
与人工湿地依靠水力负荷和基质孔隙率进行设计不同,滤坝理论设计主要依赖于渗流力学中的渗流方程和达西定律[1,8]。而滤坝基质的选择目前主要以人工湿地基质研究为基础,通常选择疏松多孔、有生物亲和性、廉价易得的材料[2,12],如沸石、火山石、炉渣和钢渣等。滤坝一方面可通过基质的挡隔作用减缓水流,促进营养物质发生沉降;另一方面,其基质可吸附水体营养物并在表面形成的生物膜,进而降解营养物质[13-16],从而达到净化水体的作用。此外,被修复水体还可利用滤坝前后的水位差增加水体扰动[4,8,17],促进水体复氧[18],提高水体自我修复能力[19]。
影响滤坝净化效果的主要因素有基质材料、坝体坡度、坝体厚度、基质组合配置等。基质材料一般选择疏松多孔、具有生物亲和性的材料。此外,在滤坝中构建原电池可显著提升净化效率。李阳阳[2]通过在普通滤坝中添加铁屑和活性炭,显著提升了滤坝的净化效果,尤其是微污染水体中化学需氧量去除率由20%提升至39%。坝体坡度可通过直接影响微生物载体基质量和渗流量而影响其净化效果。张文生等[19]通过构建3个坡度梯度的生态滤坝发现,20°坡度滤坝的基质量最多,其净化效率也最高;而25°坡度滤坝由于渗流量过大,生物膜容易脱落,因此净化效果最差。刘露等[20]通过构筑不同厚度的滤坝发现,基质厚度越大,基质量越多,其吸附能力和生物挂膜量也越多,因此,净化效果越好,防堵性能最佳。基质组合配置方式通常有2种:基质均匀混合模式和上下分层模式。于鲁冀等[3]通过构筑分层滤坝和普通混合滤坝净化清潩河河水,结果表明,基质均匀混合的模式显著地提高了滤坝净化效率。
在滤坝中,水流几乎与河道平行,但以往在大多数滤坝的研究中,基质多采用均匀混合[3,6,19]或上下分层[2]的模式,鲜有研究沿水流方向先后分布不同的基质对水质净化效果的影响。因此,本文通过构建3个室内滤坝小试系统,选用常用的且已被证实具有较好氨氮吸附效果的火山石[21-22]和具有较好总磷吸附效果的炉渣[2,23]为填料,采用水平方向进出水来探究了基质排布模式对滤坝净化效果的影响,并基于不同污染物的去除效果,提出了相应的基质组合建议。此外,基于对基质细菌群落的分析,初步探讨了相应的污染物净化机制。
-
实验装置由 10 mm 厚的有机玻璃制成,装置尺寸的长、宽、高分别为60、20、30 cm。装置内设配水区、基质区和出水区,3个区域的体积之比为 1∶4∶1,配水区与基质区和基质区与出水区均采用穿孔挡板分开,穿孔挡板为每隔1 cm2 分布1个孔,圆孔直径为 4 mm。滤坝装置尺寸与基质区如图1所示。
基质区填料火山石和炉渣均购自巩义市紫荆龙腾滤材经销部,粒径均为 10~20 mm,用去离子水清洗并浸泡 24 h,再用无水乙醇清洗并浸泡 24 h,用去离子水清洗后,于60 ℃烘干备用。滤坝基质区基质的排布方式分别为沿水流方向火山石和炉渣均匀混合(HL)、沿水流方向先火山石后炉渣(H-L)和沿水流方向先炉渣后火山石(L-H)。
-
实验所用水为模拟《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级标准A标准排水,自来水中加入分析纯级的葡萄糖(C6H12O6·H2O)、氯化铵(NH4Cl)、硝酸钠(NaNO3)和磷酸氢二钾(K2HPO4·3H2O),所得水样的目标质量浓度及实际质量浓度如表1所示。
-
运行方式为连续进水,参照以往研究,该实验水力停留时间设为8 h[8]。实验装置利用水泵、流量计控制滤坝进出水的流量和流速,由水泵抽取进水箱中的水进入进水区,经过基质区后,由出水区流出至出水箱中,滤坝装置的构建示意图如图2所示。实验期间,每隔48 h 清洗进出水管、进出水区和水箱,防止生物膜堵塞和污染。预运行时间为2019-12-03—2019-12-09,此期间实验用水为自来水,水力停留时间为8 h,目的是清洗填料以及装置中的有机物和氮磷等。正式运行时间为2019-12-10—2020-01-17,每2 d取1次进水水样和出水水样,进水水样采自进水水箱,出水水样采自出水水管。取样时间为当天9:00—11:00,水样用500 mL聚乙烯瓶收集,在24 h内进行分析。实验结束时共取样20次。
-
测定指标为总氮(total nitrogen, TN)、总磷(total phosphorus, TP)和氨氮(ammonium nitrogen, NH3-N)、重铬酸盐指数(dichromate oxidizability, COD)。TN采用碱性过硫酸钾消解紫外分光光度法(HJ 626-2012);TP采用过硫酸钾消解一钼酸铵分光光度法(GB 11893-1989);NH3-N采用纳氏试剂分光光度法(HJ 636-2012);三者测定仪器均为多波长紫外可见分光光度计(GENESYS-180型,赛默飞世尔科技(中国)有限公司)。COD采用快速消解分光光度法(HJ/T 399-2007),消解仪器为COD消解仪(DRB200-30型,哈希水质分析仪器上海有限公司),测定仪器为紫外分光光度计(UV-1200型,上海美谱达仪器有限公司)。实验结束时,分别从3个滤坝中距离水面0~5 cm处采集炉渣和火山石,每个滤坝均采用梅花点法采集5个点,混合均匀后放入−80 ℃冰箱保存。HL滤坝中所采集的炉渣和火山石样品标记为HL_L和HL_H,H-L滤坝中所采集的炉渣和火山石分别标记H-L_L和H-L_H,L-H滤坝中所采集样品的炉渣和火山石分别标记为L-H_L和L-H_H,将此6个样品送往生工生物工程(上海)股份有限公司进行微生物宏基因组测序及微生物多样性分析。实验数据的处理使用Microsoft Excel 2019,图表的绘制使用Origin 2018、Microsoft PowerPoint 2019和Microsoft Word 2019,方差分析采用SPSS 24。去除率根据式(1)和式(2)进行计算。
式中:
Ri 为单日的去除率,%;¯R 为平均去除率,%;C 为出水质量浓度,mg·L−1;C0 为进水质量浓度,mg·L−1;n 为实验周期,d;i 为取样日期,d。 -
3个滤坝装置进出水的TN质量浓度变化见图3。由图3可知,TN进水质量浓度为11.3~19.0 mg·L−1时,HL、H-L和L-H系统的出水质量浓度分别为(3.96±2.10)、(2.02±1.00)和(4.48±1.73) mg·L−1。系统运行前2 d,TN的出水质量浓度迅速降低。在20 ℃下,生物膜的形成至少需要5 d,因此,此时系统对无机氮(氨氮和硝态氮)的去除主要依靠填料的吸附作用[24-26]。在运行14 d以后,出水质量浓度趋于稳定,且对TN具有良好的去除效果,表明此时系统已经形成生物膜。当系统运行至第6周时,进出水质量浓度均有所升高,这可能是因为生物膜累积过厚,老旧生物膜脱落,释放污染物造成二次污染水体。在柴宏祥等[17]的研究中,也观察到类似情况。此外,TN出水质量浓度会随着进水质量浓度升高而升高。在实验的前5周,L-H滤坝TN平均去除率高达85.7%,显著高于其他2组(P < 0.05);而HL滤坝和H-L滤坝无显著差异,TN去除率分别为70.3%和69.3%。这表明基质的排布方式可显著影响滤坝对TN的去除效果,且L-H排布模式优于其他2种排布模式。因此,对于TN质量浓度较高的水体,可优先采用L-H排布模式。但需要注意的是,在HL排布模式中,TN的出水质量浓度波动比其他2组要大,出水质量浓度不太稳定。此外,本实验中TN的去除率高于以往的研究结果[3-5,8,19,27-28]。其原因可归为2点:首先,滤坝内水体流速极为缓慢,而且滤坝中基质区较厚, 基质的堆积有利于扩充系统内的缺氧区[20],硝态氮的去除依赖于系统中反硝化菌在缺氧环境中的反硝化作用以及系统填料的吸附作用,从而可促进反硝化菌大量繁殖和硝态氮的去除;其次,系统的水力停留时间比较长,也使得反硝化进行地比较充分。
-
3个滤坝装置进出水的TP质量浓度变化见图4。由图4可知,TP进水质量浓度为0.474~0.700 mg·L−1,HL、H-L和L-H系统的出水质量浓度分别为(0.328±0.0546)、(0.354±0.0667)和(0.415±0.0558) mg·L−1。滤坝中TP的去除主要依赖于微生物除磷和填料的吸附作用[29],TP的出水质量浓度在前2 d迅速降低主要是依赖于火山石和炉渣对TP的吸附作用,而当填料达到吸附饱和之后,则去除能力缓慢降低。第5周时,TP去除率缓慢提升,此时微生物膜形成且稳定,有利于TP的去除。SPSS数据统计结果表明,在HL系统中,TP平均去除率高达46.7%,显著高于另外2组(P < 0.05),其余2组的去除率分别为42.3%(HL)和32.7%(L-H)。以上结果表明,基质的排布方式可显著影响滤坝对TP的去除效果,且HL排布模式比其他2种模式更有优势。因此,对于TP浓度较高的水体时,可优先采用HL排布模式。但HL系统出水质量浓度相较于其他2个系统波动较大,且稳定期较长。第12天时,H-L滤坝和L-H滤坝达到稳定,但在第18天时,HL滤坝才达到稳定。
-
3个滤坝装置进出水的NH3-N质量浓度变化见图5。由图5可知,NH3-N进水质量浓度为4.79~6.97 mg·L−1,HL、H-L和L-H系统的出水质量浓度分别为(2.88±0.474)、(3.02±0.807)、(3.37±0.823) mg·L−1。NH3-N的平均去除率分别为47.2%(HL)>44.6%(H-L)>38.8%(L-H),但3种排布模式下的NH3-N去除率差异不显著 (P<0.05)。以上结果表明,基质的排布方式不会影响滤坝对NH3-N的去除效果,因此,若针对氨氮含量较高的水体,采用3种基质排布模式并无显著差异。装置运行第2天时,NH3-N出水质量浓度迅速降低至整个运行期间的最小值,由于此时还未形成成熟的生物膜,由此可推测,此时系统以基质的吸附为主要作用。而后,由于基质中的铵根离子不断向水体中释放,NH3-N出水质量浓度不断升高,由于系统中微生物的繁殖,生物膜不断形成,NH3-N去除率则不断升高,并在运行第18天后,NH3-N出水质量浓度趋于稳定,并且维持较高的去除率。此外,在HL排布系统中,整个阶段的NH3-N平均去除效率最高,出水质量浓度也相较于其他2个系统稳定。整体而言,3个滤坝装置的NH3-N去除率呈现先逐渐升高后缓慢降低的趋势。因为基质上的吸附位点随着系统的运行而不断减少,故吸附速率变缓,导致出水中NH3-N的浓度缓慢上升[30-31]。另外,装置内水体流动较为缓慢,水体中溶解氧有限,因此也限制了NH3-N向亚硝酸盐和硝酸盐转化,造成了出水质量浓度在后期缓慢上升。
-
3个滤坝装置进出水的耗氧有机污染物的质量浓度(以COD计)变化情况见图6。由图6可知,3个滤坝系统进水COD值为39.4~55.6 mg·L−1,HL、H-L和L-H系统的出水COD值分别为(24.3±6.74)、(23.7±5.03)和(23.2±6.20) mg·L−1。在整个正式运行期间,3个滤坝系统对COD的平均去除率分别为53.4%(L-H)>52.3%(H-L)>51.2%(HL),但系统间差异不显著(P<0.05)。此结果表明,对于COD较高的水体,3种排布模式下净化效率无明显差异。实验结束时,3个系统的出水COD均值均达到了《地表水环境质量标准》(GB 3838-2002)Ⅳ类水。滤坝正式运行第1周,出水COD值迅速降低;第8天时,H-L滤坝出水COD值高于运行刚开始阶段,这可能是因为填料吸附的有机物向水体释放导致水体耗氧有机污染物质量浓度升高。在3个系统运行到第18天时,出水COD值均趋于稳定,表明此时3个滤坝系统已经稳定运行。以往统计结果[32]表明,滤坝对COD的去除率为10%~20%。而本研究的COD去除率远高于这一值,这是因为相对于实际可生化性较低的水体,本实验水体中耗氧有机污染物(以COD计)来源为葡萄糖,更有利于微生物降解。
-
滤坝排布方式对细菌多样性并没有显著的影响,但改变了细菌在属水平上的相对丰度,细菌在属水平上的丰度见图7。由图7可知,在HL滤坝中,火山石和炉渣的微生物优势菌种均为气单胞菌属(Aeromonas),占比分别为53.8%和51.4%。周岳溪等[33]的研究表明,气单胞菌属为除磷微生物的优势种属。在HL滤坝中,TP的去除效率明显高于其他2个系统,可能与该系统中气单胞菌属的相对丰度较高有关。H-L滤坝和L-H滤坝优势种均发生了改变,4个样品的优势菌均为肠杆菌属(Enterobacter)。在H-L滤坝中,火山石(H-L_H)的肠杆菌属占比为66.6%,其次为假单胞菌属(Pseudomonas),占比为8.83%;炉渣(H-L_L)的肠杆菌属占比为49.9%,气单胞菌属占比为8.1%。在L-H滤坝中,火山石(L-H_H)的肠杆菌属占比为64.3%,气单胞菌属占比为9.69%;炉渣(L-H_L)的肠杆菌属占比为53.9%,其次假单胞菌属占比为18.8%。肠杆菌属可发酵葡萄糖,产酸产气,可将硝酸盐还原至亚硝酸盐[34],最后产生N2[35],这可能是L-H滤坝TN的去除率明显高于HL滤坝的原因。此外,这2个系统中接触进水端的基质(H-L_H、L-H_L)假单胞菌属的相对丰度均较高。这与本研究中进水端的进水管和水面之间有7 cm距离有关,水位差造成了一定的扰动,增加进水区的溶解氧,因为假单胞菌是一类具有硝化和反硝化、可降解多种有机物的能力的严格好氧细菌[36-40],溶解氧浓度越高,越有利于假单胞菌属的繁殖。
-
1)当水力停留时间为8 h时,采用水平方向进出水的火山石和炉渣填料滤坝对TN、TP、NH3-N、COD具有良好的去除效果,但在不同的基质排布模式间仅TN和TP的去除率差异显著。
2)对于TN污染程度相对较高的水体,可优先采取沿水流方向先炉渣后火山石的排布模式;而对于TP指标较高的水体来说,炉渣和火山石均匀混合的模式更有利于TP的去除。
3)沿水流方向炉渣火山石均匀混合滤坝的优势菌种为气单胞菌属,这可能是导致该系统TP去除效果较好的原因;而沿水流方向先炉渣后火山石的滤坝TN去除效果相对较好,这与该系统的优势菌种为可反硝化产N2的肠杆菌属有关。此外,在沿水流方向先后排布炉渣和火山石的2个系统中,进水端基质中好氧菌-假单胞菌属相对丰度比出水端高,主要是因为水体扰动造成进水端溶解氧浓度较高。
滤坝基质排布方式对微污染水体净化效果的影响
Effect of the packing arrangement of filter dam on the purification of slightly-polluted water body
-
摘要: 采用吸附效果较好的火山石和炉渣作为填料,构筑了3个室内滤坝小试系统,研究了不同的基质组合配置对滤坝净化污染物的影响。3种不同的基质组配分别方式为:火山石和炉渣均匀混合、沿水流方向先火山石后炉渣和沿水流方向先炉渣后火山石。结果表明,3个滤坝系统对微污染水体具有明显的净化效果,总氮(TN)、总磷(TP)、氨氮(NH3-N)和化学需氧量(COD)去除率最高可达85.7%、46.5%、47.2%和53.4%。基质组合排布方式对COD和NH3-N的去除效果没有明显的影响,而火山石和炉渣均匀混合的配置方式有利于TP的去除,沿水流方向先炉渣后火山石的配置方式有利于TN的去除。微生物群落分析结果表明,在炉渣和火山石均匀混合的滤坝中,微生物优势菌为除磷优势菌——气单胞菌属,沿水流方向先后排布炉渣火山石的2个滤坝的优势菌为肠杆菌属,该细菌可以进行反硝化产生N2,这可能是沿水流方向先炉渣后火山石的滤坝TN去除效果较好的原因。Abstract: Three indoor filter dam mesocosms, filled with volcanic rock and slag with good adsorption capacity, were constructed to study the effects of different packing arrangements on the purification of slightly-polluted water. Accordingly, we set three different matrix combinations: uniform mixing of volcanic rock and slag, volcanic rock followed slag and slag followed volcanic rock along the water flow, respectively. The results showed that all three mesocosm systems had obvious purification effects on the simulated slightly- polluted water. The highest removal rates of total nitrogen (TN), total phosphorus (TP), ammonium nitrogen (NH3-N) and chemical oxygen demand (COD) were 85.7%, 46.5%, 47.2% and 53.4%, respectively. The packing arrangements had a limited effect on the removal of COD and NH3-N. However, the uniform mixing configuration mesocosm system had the best performance on TP removal, and the mesocosm system filled with slag followed volcanic rock along water flow showed the highest average TN removal rate. The dominant bacteria identified in the mesocosm system filled with mixed slag and volcanic rock were Aeromonas, which could contribute to TP removal. Meanwhile, the dominant bacteria Enterobacterium were found in the other two mesocosm systems. Enterobacterium can produce N2, which accounted for the better TN removal performance in the mesocosm system filled with slag followed volcanic rock along water flow.
-
Key words:
- filter dam /
- packing arrangement /
- slightly polluted water /
- microbial diversity
-
近年来,土壤及地下水污染事件频发,其污染问题逐渐受到重视。土壤和地下水污染具有隐蔽性和滞后性,除了传统土壤和地下水采样分析,数值模拟方法是定量刻画土壤和地下水中污染物的运移的主要手段。通过数值模拟方法可以科学、可靠地预测土壤和地下水污染趋势,为污染防治工作提供技术支撑。
目前,土壤和地下水数值模拟研究分别形成成熟的研究方法和配套软件,取得了大量研究成果,在工程实践中广为运用。但已有研究大多数仅考虑单独介质开展数值模拟研究,少有研究将土壤和地下水作为一个整体看待。大量研究表明,土壤和地下水两者联系紧密,地表污染源通常在淋滤作用下通过土壤进而污染地下水含水层,土壤污染极易导致地下水污染,但土壤和地下水耦合数值模拟研究进展缓慢,对土壤和地下水交界面的污染物运移情况尚未摸清。本文对现有土壤和地下水水流及污染物运移的耦合模拟进展进行总结,旨在为进一步开展相关研究提供科学依据,为我国早日实现土壤与地下水污染协同防治奠定理论科学基础。
1. 土壤和地下水数值模拟方法
开展土壤和地下水数值模拟目的在于预测水流及污染物运移趋势,为提出相应的防控治理措施提供定量依据。数值模拟的基本步骤是构建水文地质概念模型、建立数学模型,通过解析解或数值方法求解描述水流及污染物状态的偏微分方程,常用的数值求解方法为限差分法、有限单元法、边界元法等,计算机模拟软件的发展也使大规模数值处理成为可能[1]。目前,土壤和地下水中水流与污染物迁移预测模拟方法不同,大部分研究是分别基于两套模拟预测系统开展的。而我国土壤和地下水模拟预测研究基础薄弱,受整体技术水平发展滞后和基础资料不完善的影响,针对土壤与地下水污染评估与风险预测相关研究,主要集中在基于采样结果的土壤或地下水现状评估,尚未建立基于模拟预测结果的动态风险预测系统。
1.1 土壤水分和污染物运移数值模拟
非饱和水流和溶质运移研究是土壤水分和污染物运移的基础研究内容。在达西定律的基础上,1907年Buckingham考虑土壤基质势、含水量等因素,修正达西定律得到白金汉-达西定律;通过将白金汉-达西定律带入连续方程可以得到Richards方程[2]。目前,土壤非饱和带模拟预测主要是基于Richards方程构建水流模型和对流-弥散方程构建的溶质运移模型开展研究[2-3],而Hydrus系列软件是非饱和带水流和溶质运移的主要模拟工具,方程求解采用伽辽金线性有限元法,综合考虑了非饱和带中植物根茎吸收、溶质在液态下的对流-弥散现象和气态下的扩散现象、固液态和气液态转化、合成和降解等情况[4]。徐丽萍等[5]对室内有机玻璃箱滴灌条件下土壤水分运动进行了模拟,证明Hydrus能够以较高的精度模拟土壤水分运移。杨洋等[6]利用HYDRUS-1D模拟垃圾填埋场渗滤液中的氨氮在不同包气带结构和不同污染源特征下的迁移转化规律,预测场地污染物污染程度。
大量研究证明土壤固体颗粒的吸附解析作用对溶质运移产生影响。彭盼盼等[7]在对天津市某区域未来30年污染物六价铬在浅层土壤中运移规律进行数值模拟和分析预测,发现在降雨入渗淋洗和土壤颗粒吸附作用下,土壤中六价铬含量将处于较低状态,不造成污染。尹芝华等[8]则利用HYDRUS-2D软件构建土壤水分运动和溶质运移模型,模拟三氮在该场地非饱和带垂向以及向下游地表水体的迁移转化过程,发现非饱和带介质是氮污染负荷的有效缓冲区,但对硝态氮的吸附能力相对较弱,因此硝态氮为主要污染物。
除HYDRUS外,还有SWAP、COMSOL等成熟商业软件可用于模拟非饱和带水流和溶质运移。总体来看,单独针对土壤介质的水流和溶质运移研究已较为成熟,商用软件可以涵盖运移过程中可能发生的各种反应,取得了大量研究结果。
1.2 地下水渗流和污染物运移数值模拟
在现阶段地下水污染模拟预测模型的研究中,利用达西定律、质量守恒方程和水流连续性方程建立地下水水流模型、利用溶质运移理论构建地下水污染预测模型,是地下水模拟研究人员使用的主要方式。
美国材料与试验协会(ASTM)在地下水模拟预测的不同阶段制定了行业系列标准[9-11],如《场地问题地下水水流模拟应用标准指南》(ASTM D5447 - 04(2010))《地下水水流与溶质运移建模标准指南》(ASTM D5880 - 95(2006))《污染场地概念模型创建标准指南》(ASTM E1689 - 95(2008))等。英国环保署对地下水模拟预测工作制定了不同尺度的规范,分别颁布了针对大尺度地下水模拟的《地下水资源模拟导则》(2002)[12]、针对污染场地和污染物迁移模拟制定的《概念模型创建及数学模型选择与应用实用指南》(2001)[13]等。中国也于2014年发布《地下水污染模拟预测评估工作指南》,奠定了我国地下水污染模拟预测评估工作的基础。地下水模拟预测行业制度要求严,标准高,未来该学科的研究将逐渐细分,并呈现多学科融合的趋势。
目前最广为运用的三维地下水水流模拟软件是MODFLOW,采用网格中心点有限差分法求解,可以模拟各种条件下水流在地下含水层中的运动,同时允许用户开发外部程序强化主程序功能[14-15]。在MODFLOW模型基础上,综合三维地下水溶质运移数值模拟软件MT3DMS等开发的Visual MODFLOW可模拟地下水中水流和污染物的物理迁移和化学反应过程,展现三维可视化地下水水流模型[1,10]。魏亚强等[16]采用MODFLOW中的SEAWAT模块,对压裂液突破页岩储层以多点状同时进入地层的情形进行了变密度流的模拟,并分析了不同渗漏点与断层底部距离、不同断层倾角对压裂液运移的影响。陈喜等[17]用MODFLOW和水平衡模型对美国某地区地下水位进行了模拟,并分析了含水层补排水量,河流与地下水补排关系以及区域水平衡过程,揭示了独特沙丘地形和土壤特性对地下水补排量的影响。克热木·阿布都米吉提等[18]模拟某垃圾填埋场在无控制措施、防渗墙和抽水井单独及同时运用时的地下水渗滤液运移过程,给出抽水井和防渗墙最佳布设方位建议。饶磊等[19]利用Visual MODFLOW建立地下水流概念模型,以化学需氧量(COD)和氨氮质量浓度做为污染物运移模拟研究的主要指标,对污水处理站发生泄漏后进入地下水中的主要污染物进行溶质运移模拟,发现7 300 d后污染物将进入长江。但MODFLOW不考虑非饱和带模拟预测,无法准确表现饱和带与非饱和带的水流运动关系[20]。
除MODFLOW之外,常用的软件平台还有Feflow、GMS、Visual Groundwater等[1]。GMS综合Modflow、MT3DMS、Modpath等软件主要计算模块和PEST、UCODE、MAP等辅助模块,功能齐全,可以概念化建立水文地质概念模型,前、后处理功能更强大,能用来模拟绝大部分地下水水流和溶质运移[21]。
2. 耦合数值模拟研究进展
随着将土壤和地下水作为一个整体看待的意识增强,关于土壤和地下水耦合模拟的研究成为近年来的热门话题,截止目前,针对土壤和地下水中水流运动耦合方法研究较多,而污染物运移研究还处于初步阶段。
2.1 水流耦合数值模拟
针对土壤和地下水中水流运动的耦合方法研究大多关注地下水埋深和入渗补给关系。孟宪萌[22]分别对河流和地下水建模,通过动态水量交换机制实现耦合,对地块进行水均衡分析。韩双平等[23]通过人为控制潜水埋深开展农作物实验,发现包气带-潜水系统水分转化率均衡临界深度对土壤水-潜水转化系统起主导作用,进而决定了土壤水和潜水对农作物需水的调节作用。牛赟等[24]分析降水-土壤水和地下水相关性,构建回归模型,表明5 cm土壤体积含水量和地下水埋深高度相关。邓洁等[25]则总结了河渠与地下水相互转化耦合模型研究进展,分析了国外典型数值模拟软件在模拟河渠与地下水相互转化的特点。
综上,已有水流模拟数值耦合方法研究主要关注水分在包气带和潜水带中的水分运移转化关系以及地下水埋深在两个系统中的同步性,模拟耦合过程中需要考虑的参数包括土壤含水量、渗透系数、潜水埋深、水流通量等。
2.2 污染物运移耦合数值模拟
虽然关于水流在包气带和潜水带之间运动的模拟研究已较为成熟,但对于其中的污染物运移研究还处于初步阶段,相关研究主要集中于表明土壤和地下水对污染物的运移存在耦合作用,目前常见于国外文献,国内较少见。KEESSTRA et al[26]通过大量案例表明土壤优先流(指土壤在整个入流边界上接受补给,但水分和溶质绕过土壤基质,只通过少部分土壤体的快速运移)中溶解的污染物对地下水有显著影响,同时土壤也对可能迁移至地下水的污染物起到过滤和缓冲作用,但土壤污染物迁移模型有待进一步研究。曾献奎[27]构建凌海市地下水-地表水耦合数值模拟,基于HydroGeoSphere进行求解,分析总氮迁移规律。ARIAS-ESTEVEZ et al[28]指出污染物从土壤迁移至地下水主要是由于土壤优先流和胶态共输的作用,土壤和污染物的理化性质均对迁移速率起到重要作用,但目前地下水脆弱性仅考虑了土壤而未考虑污染物类型,对土壤和地下水的关联关系考虑不充分。WANG et al[29]发现天然有机物(NOM)对土壤中砷元素的移动性有重要影响,进而影响地下水砷污染的可能性。HOSSAIN et al[30] 通过大数据挖掘,运用二分树法构建土壤理化性质与地下水砷污染浓度关系模型,较准确的预测了孟加拉国地下水砷浓度分布。
土壤和地下水中污染物运移模拟大多数还停留在定性研究上,有待进一步开展针对包气带和潜水带渗透系数、理化性质等差异及其对土壤水中污染物在迁移进入地下水过程中的过滤、缓冲、稀释和转化作用的影响的定量研究。模拟耦合过程中需要考虑的参数包括土壤和污染物理化性质、污染物浓度等,特别应注意在介质交界面上参数的瞬时变化对污染物迁移路径和性质的影响。
2.3 HYDRUS for MODFLOW的发展
目前已有部分软件可以针对土壤和地下水开展水流和溶质运移耦合数值模拟。Feflow采用有限元法进行非稳定水流和污染物运移三维模拟,对非承压含水层采用变动上边界的办法,根据水文地质条件生成有限单元网格,视具体情况定义所有边界条件及其限制条件、渗透系数、补排量等为常数或者变量,可用于模拟饱和带和非饱和带地下水流场变化和污染物在地下水中的迁移过程及其时间空间分布模式[31]。SUTRA是用于饱和带或非饱和带水流、溶质和能量运移的三维专业模型,广泛应用于模拟海水入侵过程[1]。下面主要以HYDRUS Package for MODFLOW(以下称HPM)为例介绍土壤和地下水耦合模拟过程。
HPM是较成熟的土壤和地下水中水流和溶质运移模拟耦合模块,由BEEGUM et al[32]自2007年起研发,于2008年正式向大众开放下载应用,并于2018年更新。张旭洋等[33]结合HPM软件和GIS技术,构建大沽河流域土壤水和地下水耦合模型,较好地预测了土壤水和地下水的时空变化状况和地下水补给量。
HPM将非饱和带Hydrus模块与饱和带MODFLOW模型关联,在MODFLOW中,整个区域被分为若干个单元格,整个模拟周期被分为若干个时段,在每个时段内,单元格遭受的外界影响被假设是恒定的[34]。HYDRUS则采用不同的分段方法,通常分段时长小于MODFLOW[32]。考虑耦合过程,HYDRUS将MODFLOW上一个时段计算得到的地下水埋深值H作为下个时段的底部边界条件,而Modflow则将Hydrus该时段计算得到的底部渗流量作为下个时段的补给量。模型流程见图1[33]。
该耦合方法的缺陷在于它假设每个MODFLOW时段土壤剖面底部水头压力是恒定的,忽略了时段中水流通过包气带到达饱和带带来的水头变化,可能导致土壤剖面底部产生突然的水流通量,使总通量计算结果不准确[32]。这个缺陷可以通过调整水头高度算法改善,新算法下的水头高度剖面示意图见图2。
2018年,HPM升级到可模拟包气带和潜水带中污染物溶质运移。耦合过程中,HYDRUS模拟包气带中的水流和溶质运移情况,计算得到的土壤底部水流和溶质浓度通量被分别作为Modflow的地下水补给量和MT3DMS的入渗浓度[34]。但该模型对污染物在土壤和地下水界面的转换、过滤、稀释和缓冲关系未予考虑,有待进一步研究。
2.4 拓展耦合数值模拟
除了对水流和污染物溶质运移进行耦合模拟,已有研究和软件关注土壤和地下水耦合过程中热、压力等其他性质的变化和对水循环系统的影响以提高系统模拟精度。GSFLOW在MODFLOW的基础上,考虑天气、用地、补给等因素,可以综合模拟地下水和地表水径流。Parflow是伯克利劳伦斯实验室开发的地球水循环系统模拟预测软件,集成地下水和地表水、生态水,考虑水流与土壤、大气之间的联系,通过将陆面-底层包气带模型替换为地下水-顶层包气带模型耦合通用陆面模型(Common Land Model,土壤含水量单位时间变化率考虑光照、温度、水在液态和固态间的转化率、水的密度、蒸发量等)和地下水径流模型,更加真实地模拟了地球水活动[35]。MAXWELL et al [35]运用Parflow对比了耦合条件和非耦合条件下对某场地降雨量、径流量、热通量和蒸发量的模拟结果,发现耦合模型预测结果更加准确。这些拓展性质及参数对土壤和地下水系统的影响应在耦合过程给予适当的考虑,同时在数值模拟的过程当中应考虑流场、浓度场、温度场、应力场等多场耦合的复杂交互作用。
3. 结论和发展趋势
目前对于土壤和地下水的数值预测模拟研究均过于独立,耦合系统研究大多关注水分运移,也考虑了土壤和地下水污染的同步性,关于污染物在土壤和地下水交界面的迁移转化研究较少,未建立成熟的土壤和地下水耦合数值模拟方法。当下我国土壤和地下水存在大量同步污染的情景,在土壤和地下水污染协同防治的新时代管理模式的背景下,对二者的耦合研究显得尤为重要,本文对土壤和地下水耦合数值模拟研究的发展方向进行了展望。
1)将数值模拟与大数据结合,利用统计学方法和人工智能技术确定不同类型场地土壤和地下水污染的关键参数,并分析关键参数对污染物空间分布规律的影响,剖析不同类型土壤和地下水污染中污染物的分布情况,探索污染物在土壤和地下水中分布的一致性和差异性,有助于进一步明确耦合作用关系。
2)在现有耦合方法的基础上,进一步分析土壤和地下水渗透系数、理化性质等差异对水流和溶质运移的影响,考虑耦合过程中污染物在包气带和潜水带交界面上复杂的输移转化关系,更精细地描绘污染物在运移过程中的浓度和路径变化,提高土壤和地下水耦合水流和溶质运移方法的准确性。
3)完善土壤和地下水耦合数值模拟系统。随着土壤和地下水耦合方法研究的进展,完善污染物在土壤和地下水耦合系统中的迁移模型,考虑整个土壤-地下水系统的输入-响应关系,整合现有模拟软件的部分功能,开发土壤-地下水耦合数值预测模拟系统,实现水流和溶质在土壤-地下水系统中的全路径动态模拟,同时配合污染评估和风险预测模块,形成基于模拟预测结果的动态污染评估和风险预测系统。
-
表 1 配制进水目标质量浓度及实际质量浓度
Table 1. Target and actual concentration of influent water
mg·L−1 配水 COD TN TP NH3-N 目标配水 50 15 0.5 5 实际配水 39.4~55.6 11.3~19.0 0.474~0.700 4.79~6.97 -
[1] 田猛, 张永春, 张龙江. 透水坝渗流流量计算模型的选择[J]. 中国给水排水, 2006, 22(13): 22-25. doi: 10.3321/j.issn:1000-4602.2006.13.006 [2] 李阳阳. 复合悬浮生态岛和生态滤坝对微污染河水(清潩河)净化研究[D]. 郑州: 郑州大学, 2017. [3] 于鲁冀, 吕晓燕, 李阳阳, 等. 生态滤坝处理微污染河水实验研究[J]. 水处理技术, 2018, 44(5): 88-92. [4] 董慧峪, 王为东, 强志民. 透水坝原位净化山溪性污染河流[J]. 环境工程学报, 2014, 8(10): 4249-4253. [5] 陈欣, 马建, 史奕, 等. 一种净化山地小流域水体的多级生态透水坝: CN102211817. A[P]. 2011-10-12. [6] 骆其金, 周昭阳, 黎京士, 等. 滤坝系统对城市初期雨水的净化效果[J]. 环境工程技术学报, 2019, 9(3): 282-285. doi: 10.12153/j.issn.1674-991X.2018.11.300 [7] 宋德生, 于鲁冀, 曾科, 等. 原位生态净化集成系统对二级生化尾水的处理效果[J]. 环境工程, 2018, 36(12): 1-5. [8] 田猛, 张永春. 用于控制太湖流域农村面源污染的透水坝技术试验研究[J]. 环境科学学报, 2006, 26(10): 1665-1670. doi: 10.3321/j.issn:0253-2468.2006.10.014 [9] 陈甜甜. 河道水环境治理工程中多方位原位生态修复技术的应用: 以合肥滨湖新区塘西河水质治理工程为例[J]. 清洗世界, 2021, 37(3): 62-63. doi: 10.3969/j.issn.1671-8909.2021.03.030 [10] 王佳, 李玉臣, 顾永钢, 等. 受污染河道原位修复技术研究进展[J]. 北京水务, 2020(4): 40-44. [11] ATEIA M, YOSHIMURA C, NASR M. In-situ biological water treatment technologies for environmental remediation: A review[J]. Journal of Bioremediation & Biodegradation, 2016 , 7(3): 1-5. [12] 赵倩, 庄林岚, 盛芹等. 潜流人工湿地中基质在污水净化中的作用机制与选择原理[J/OL]. 环境工程: 1-12 [2021-09-11]. http://kns.cnki.net/kcms/detail/11.2097.X.20210429.1419.004.html. [13] NI Z F, WU X G, LI L F. Pollution control and in situ bioremediation for lake aquaculture using an ecological dam[J]. Journal of Cleaner Production, 2018, 172: 2256-2265. [14] 葛媛. 潜流人工湿地中的基质作用及污染物去除机理研究[D]. 西安: 西安建筑科技大学, 2017. [15] 叶建锋. 垂直潜流人工湿地中污染物去除机理研究[D]. 上海: 同济大学, 2007. [16] 卢少勇, 金相灿, 余刚. 人工湿地的氮去除机理[J]. 生态学报, 2006, 26(8): 2670-2677. doi: 10.3321/j.issn:1000-0933.2006.08.033 [17] 柴宏祥, 鲍燕荣, 林华东, 等. 山地城市次级河流人工强化自然复氧技术与措施[J]. 中国给水排水, 2013, 29(14): 9-12. doi: 10.3969/j.issn.1000-4602.2013.14.003 [18] 施卫明, 薛利红, 王建国, 等. 农村面源污染治理的“4R”理论与工程实践: 生态拦截技术[J]. 农业环境科学学报, 2013, 32(9): 1697-1704. doi: 10.11654/jaes.2013.09.001 [19] 张文生, 于鲁冀, 吕晓燕, 等. 生态滤坝坡度对水体污染物去除效率的影响[J]. 环境工程, 2018, 36(8): 30-34. [20] 刘露, 于鲁冀, 李廷梅, 等. 基质厚度对生态滤坝净化水体效果及机理的研究[J]. 华北水利水电大学学报(自然科学版), 2019, 40(5): 13-17. [21] 卢少勇, 万正芬, 李锋民, 等. 29种湿地填料对氨氮的吸附解吸性能比较[J]. 环境科学研究, 2016, 29(8): 1187-1194. [22] 刘莹, 刘晓晖, 张亚茹, 等. 三种人工湿地填料对低浓度氨氮废水的吸附特性[J]. 环境化学, 2018, 37(5): 1118-1127. [23] 李丽, 王全金, 李忠卫. 四种填料对总磷的静态吸附试验研究[J]. 华东交通大学学报, 2009, 26(4): 39-43. doi: 10.3969/j.issn.1005-0523.2009.04.008 [24] 樊凯. 陶粒—炉渣双层填料生物滤池处理生活污水的试验研究[D]. 兰州: 兰州理工大学, 2007. [25] 单连斌, 王允妹, 王英健. 散水滤床法处理生活污水的研究[J]. 环境保护科学, 2000, 26(1): 14-15. [26] 陈宁, 王亚军, 贾怀宏. 生物过滤系统填料动态快速挂膜速度实验研究[J]. 甘肃科技纵横, 2020, 49(8): 41-43. doi: 10.3969/j.issn.1672-6375.2020.08.013 [27] 陈众, 田丰, 董俊. 太湖流域河网水体负荷削减技术应用及效果分析[J]. 环境化学, 2013, 32(10): 1995-1996. doi: 10.7524/j.issn.0254-6108.2013.10.027 [28] 吕哲, 倪志凡, 肖德茂, 等. 生态坝对阳澄湖养殖水体的原位修复研究[J]. 中国给水排水, 2015, 31(1): 22-26. [29] BRIX H, ARIAS C A, BUBBA M D. Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands[J]. Water Science and Technology, 2001, 40(11): 47-54. [30] 江子建, 陈秀荣, 赵建国. 沸石、钢渣组合填料对氨氮和磷的定量去除研究[J]. 环境科学与技术, 2016, 39(2): 133-138. [31] 张修稳, 李锋民, 卢伦, 等. 10种人工湿地填料对磷的吸附特性比较[J]. 水处理技术, 2014, 40(3): 49-52. [32] 张瑞斌. 苏南地区河道低污染水生态修复技术研究[J]. 中国环保产业, 2015, 208(10): 46-48. doi: 10.3969/j.issn.1006-5377.2015.10.009 [33] 周岳溪, 钱易, 顾夏声, 等. 废水生物除磷机理的研究: 循序间歇式生物脱氮除磷处理系统中微生物的组成[J]. 环境科学, 1992, 13(4): 2-4. [34] 中公教育医疗卫生系统考试研究院. 医学检验专业知识[M]. 北京: 世界图书北京出版公司, 2014: 268-270. [35] 马放, 王春丽, 王立立. 高效反硝化聚磷菌株的筛选及其生物学特性[J]. 哈尔滨工程大学学报, 2007, 127(6): 631-635. doi: 10.3969/j.issn.1006-7043.2007.06.006 [36] 李雪, 刘思彤, 陈倩. 一株好氧反硝化菌的鉴定及脱氮特性研究[J]. 北京大学学报(自然科学版), 2018, 54(6): 1276-1282. [37] 李军冲, 齐树亭, 石玉新, 等. 一株假单胞菌降解溶解有机氮条件探讨[J]. 食品研究与开发, 2010, 31(5): 151-153. doi: 10.3969/j.issn.1005-6521.2010.05.045 [38] 张培玉, 曲洋, 于德爽, 等. 菌株qy37的异养硝化/好氧反硝化机制比较及氨氮加速降解特性研究[J]. 环境科学, 2010, 31(8): 1819-1826. [39] BARANIECKI C A, AISLABIE J, FOGHT J M. Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from aromatic soil[J]. Microbial Ecology, 2002, 43(1): 44-54. doi: 10.1007/s00248-001-1019-3 [40] 李辉, 徐新阳, 李培军, 等. 人工湿地中氨化细菌去除有机氮的效果[J]. 环境工程学报, 2008, 2(8): 1044-1047. -