-
随着大量重金属铬污染事件的发生[1-2],水体铬污染治理成为国内外的重点关注的领域之一。由于重金属铬具有稳定性和难降解性[3-4],会给环境质量和人体健康带来威胁[5-7]。在水环境中,铬主要以Cr(Ⅵ)和Cr(Ⅲ) 2种氧化态存在。其中Cr(Ⅵ)剧毒且致癌、易迁移、在生物体内发生蓄积作用;而Cr(Ⅲ)低毒或无毒,主要以沉淀形式存在,且少量的Cr(Ⅲ)是人体所必需的微量元素[8]。因此,将Cr(Ⅵ)还原为Cr(Ⅲ)可有效降低水体铬污染风险。还原方法主要包括化学还原稳定技术、微生物还原修复技术、电化学还原技术。其中,化学还原稳定法具有高效、快速、经济性等优势,应用最为广泛[9]。常用的化学还原剂包括硫系还原剂和铁系还原剂[10]。多硫化钙、硫代硫酸钠、硫化氢等硫化物具有优异的Cr(Ⅵ)还原能力和较高的还原效率,但硫化物还原Cr(Ⅵ)所生成的Cr(Ⅲ)易被再氧化成Cr(Ⅵ),造成二次污染[11]。与硫化物相比,零价铁、亚铁盐、含铁矿物等铁系还原剂对Cr(Ⅵ)的还原效率要低得多,但其还原产物较稳定,主要以难溶性铬铁氢氧化物共沉淀物(CrxFe1-x(OH)3)存在,可有效避免二次氧化过程的发生[12]。由此可见,将硫化物与铁系材料进行联用有望实现高效且稳定的修复效果。
JACOBS等[13]发现多硫化钙(CaSx)可成功将Cr(Ⅵ)还原成Cr(Ⅲ),其中
${\rm{S}}_x^{2-} $ (x=2~7,主要为5)为直链结构,具有强还原性,还原效果优于相同剂量下其他还原剂[14],对Cr6+、Zn2+、Cu2+、Cd2+等多种重金属均表现出良好的还原修复效果[15-16],使其在重金属修复领域得到快速发展。但大量工程实践结果[17-19]表明,经CaSx修复后的污染场地均表现为强碱性(pH>12),在一定程度上对污染场地造成了碱性破坏,且在1年内均保持高碱性(pH>9),严重影响土壤及地下水的利用。相反,同样常用于Cr(Ⅵ)污染修复的硫酸亚铁(FeSO4)会使修复体系pH显著降低[20-21]。因此,为实现对铬污染水体的修复,本研究考虑将多硫化钙与硫酸亚铁联用进行铬污染修复,探究了还原剂单用和联用对污染水体中铬的去除效果和环境扰动,考察了药剂投加比例、pH、温度、常规阴阳离子等因素对联用药剂去除Cr(Ⅵ)的影响,并分析了联用药剂对Cr(Ⅵ)的去除机理,以期为废水中Cr(Ⅵ)去除提供参考。
多硫化钙与亚铁盐联用去除工业废水中的Cr(Ⅵ)
Removing hexavalent chromium from industrial wastewater by combined use of calcium polysulfide and ferrous sulfate
-
摘要: 还原稳定化修复技术是当前重金属污染修复领域的主要技术,其中,重金属去除率和环境扰动是评价修复效果的重要指标。以不同pH重铬酸钾溶液模拟Cr(Ⅵ)污染水体,分别研究了多硫化钙、硫酸亚铁和二者联用对水体重金属Cr(Ⅵ)的还原稳定性,同时考察了环境因素对药剂联用的影响并探究各药剂对Cr(Ⅵ)的去除机理。结果表明:当多硫化钙与硫酸亚铁投加比例为1∶2时,药剂联用对Cr(Ⅵ)和总Cr的去除效果均优于单独施加药剂时的去除效果且还原产物较稳定,对体系扰动作用相对较小;低pH和较高温度有利于联用药剂对Cr(Ⅵ)的去除,
${\rm{HCO}}_3^{-} $ 、Cl−、Mn2+的加入有利于去除Cr(Ⅵ),Fe3+对Cr(Ⅵ)去除表现为低浓度抑制、高浓度促进;经反应产物成分分析,多硫化钙与硫酸亚铁反应生成了具有催化效果的FeS,提高了修复效果。以上研究结果可为后期Cr(Ⅵ)污染水体的控制和修复提供参考。Abstract: Reduction and stabilization remediation is a type of main technology in the field of heavy metal pollution remediation. Heavy metal removal rate and environmental disturbance are the important indicators to evaluate remediation effect. In this study, potassium dichromate solution with different pH was used to simulate Cr(Ⅵ) polluted water body, and the reduction stability of heavy metal Cr(Ⅵ) in water body was investigated by calcium polysulfide, ferrous sulfate and their combination, respectively, as well as the effects of environmental factors on the combination and Cr(Ⅵ) removal mechanisms by these chemicals. The results show that when the dosage ratio of calcium polysulfide and ferrous sulfate was 1∶2, the removal effect of Cr(Ⅵ) and total Cr by these two chemicals combination was better than that by single chemical, then more stable reduction products and lower environmental disturbance occurred. When calcium polysulfide and ferrous sulfate were used alone to remove Cr(Ⅵ) in polluted water body, low pH value, relatively high temperature and the addition of${\rm{HCO}}_3^{-} $ 、Cl−、Mn2+ were conducive to Cr(Ⅵ) removal by these chemicals combination, while Fe3+ had an inhibitory effect at low content and a promotion effect at high content. The component analysis of reaction product shows that calcium polysulfide reacted with ferrous sulfate to form FeS with catalytic effect, which could improve the repair effect. The results can provide theoretical basis for the control and restoration of Cr(Ⅵ) polluted water body afterwards.-
Key words:
- calcium polysulfide /
- ferrous sulfate /
- hexavalent chromium /
- removal effect /
- repair mechanism
-
表 1 药剂联用投加比例实验设计
Table 1. Experimental design of dosage ratio for reagents combination
实验组 n(药剂)∶n(Cr(VI)) 修复条件 多硫化钙 硫酸亚铁 药剂联用 1 1∶1 1∶1 0.5:0.5:1 25 ℃
150 r·min−1
1 h2 1∶1 1.5∶1 0.5∶0.75∶1 3 1∶1 2∶1 0.5∶1∶1 4 1∶1 2.5∶1 0.5∶1.25∶1 表 2 联用药剂投加量对Cr(VI)去除效果
Table 2. Removal effect of Cr(VI) at different combined chemical dosages
投加比 投加量/(mg·L−1) n(CaSx)∶n(FeSO4)∶n(Cr(VI)) Cr(VI)/ (mg·L−1) Cr(VI)去除率/% 终止pH CaSx FeSO4 1.0 42.75 54.47 0.50∶1.0∶1 0.708 4 92.92 7.06 1.1 47.03 59.91 0.55∶1.1∶1 0.483 3 95.17 7.03 1.2 51.30 65.36 0.60∶1.2∶1 0.224 5 97.75 6.98 1.3 55.58 70.81 0.65∶1.3∶1 0.057 6 99.42 6.97 1.4 59.85 76.26 0.70∶1.4∶1 0 100 6.95 1.5 64.13 81.71 0.75∶1.5∶1 0 100 6.93 -
[1] XUE W N, PENG Y B, JIANG A X, et al. The spatial distribution, contamination status and contributing factors of heavy metals in cropland soils of twelve cities in Shandong Province, China[J]. Applied Sciences, 2020, 10(6): 1963. doi: 10.3390/app10061963 [2] 王宏镔, 束文圣, 蓝崇钰. 重金属污染生态学研究现状与展望[J]. 生态学报, 2005, 25(3): 596-605. doi: 10.3321/j.issn:1000-0933.2005.03.029 [3] YEH G, HOANG H G, LIN C, et al. Assessment of heavy metal contamination and adverse biological effects of an industrially affected river[J]. Environmental Science and Pollution Research, 2020, 27(28): 34770-34780. doi: 10.1007/s11356-020-07737-0 [4] YANG S C, LIU J L, BI X Y, et al. Risks related to heavy metal pollution in urban construction dust fall of fast-developing Chinese cities[J]. Ecotoxicology and Environmental Safety, 2020, 197: 110628. doi: 10.1016/j.ecoenv.2020.110628 [5] 张厚坚, 王兴润, 陈春云, 等. 典型铬渣污染场地健康风险评价及修复指导限值[J]. 环境科学学报, 2010, 30(7): 1445-1450. [6] SHI Y F, LI Y, YUAN X L, et al. Environmental and human health risk evaluation of heavy metals in ceramsites from municipal solid waste incineration fly ash[J]. Environmental Geochemistry and Health, 2020, 42(11): 3779-3794. doi: 10.1007/s10653-020-00639-7 [7] LI W H, SUN Y J, HUANG Y M, et al. Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash[J]. Waste Management, 2019, 87: 407-416. doi: 10.1016/j.wasman.2019.02.033 [8] 胡月, 赵勇胜, 沈勇, 等. 不同因素对多硫化钙处理地下水中Cr(VI)效果影响[J]. 生态环境学报, 2015, 24(2): 294-299. [9] 孙朋成, 黄占斌, 唐可, 等. 土壤重金属污染治理的化学固化研究进展[J]. 环境工程, 2014, 32(1): 158-161. [10] 杨文晓, 张丽, 毕学, 等. 六价铬污染场地土壤稳定化修复材料研究进展[J]. 环境工程, 2020, 38(6): 16-23. [11] DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review[J]. Journal of Hazardous Materials, 2013, 250-251(30): 272-291. [12] KUO S, LAI M S, LIN C W. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils[J]. Environmental Pollution, 2006, 144(3): 918-925. doi: 10.1016/j.envpol.2006.02.001 [13] JACOBS J, HARDISON R L, ROUSE J V. In-situ remediation of heavy metals using sulfur-based treatment technologies[R/OL]. [2021-08-25]. America: The Pennsylvania State University, 2001. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.525.380. [14] DAHLAWI S M, SIDDIQUI S. Calcium polysulphide, its applications and emerging risk of environmental pollution: A review article[J]. Environmental Science and Pollution Research, 2017, 24(1): 92-102. doi: 10.1007/s11356-016-7842-3 [15] GRAHAM M C, FARMER J G, ANDERSON P, et al. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue[J]. Science of the Total Environment, 2006, 364(1): 32-44. [16] MOON D H, WAZNE M, JAGUPILLA S C, et al. Particle size and pH effects on remediation of chromite ore processing residue using calcium polysulfide (CaS5)[J]. Science of the Total Environment, 2008, 399(1): 2-10. [17] CHRYSOCHOOU M, JOHNSTON C P, DAHAL G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2012, 201: 33-42. [18] CHRYSOCHOOU M, TING A. A kinetic study of Cr(VI) reduction by calcium polysulfide[J]. Science of the Total Environment, 2011, 409(19): 4072-4077. doi: 10.1016/j.scitotenv.2011.06.015 [19] 刘馥雯, 罗启仕, 卢鑫, 等. 多硫化钙对铬污染土壤处理效果的长期稳定性研究[J]. 环境科学学报, 2018, 38(5): 1999-2007. [20] JAGUPILLA S C, MOON D H, WAZNE M, et al. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate[J]. Journal of Hazardous Materials, 2009, 168(1): 121-128. doi: 10.1016/j.jhazmat.2009.02.012 [21] DI P L, GUEYE M T, PETRUCCI E. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron[J]. Journal of Hazardous Materials, 2015, 281: 70-76. doi: 10.1016/j.jhazmat.2014.07.058 [22] MPOURAS T, PAPASSIOPI N, LAGKOUVARDOS K, et al. Evaluation of calcium polysulfide as a reducing agent for the restoration of a Cr(VI)-contaminated aquifer[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 106(3): 435-440. [23] ZHANG T, WANG T, WANG W Y, et al. Reduction and stabilization of Cr(VI) in soil by using calcium polysulfide: Catalysis of natural iron oxides[J]. Environmental Research, 2020, 190: 109992. doi: 10.1016/j.envres.2020.109992 [24] LI Y Y, LIANG J L, YANG Z H, et al. Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS2[J]. Science of the Total Environment, 2019, 658: 315-323. doi: 10.1016/j.scitotenv.2018.12.042 [25] ZHANG R R, LI D H, SUN J, et al. In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution[J]. Frontiers of Environmental Science & Engineering, 2020, 14(4): 68. [26] GONG Y Y, GAI L S, TANG J C, et al. Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles[J]. Science of the Total Environment, 2017, 595: 743-751. doi: 10.1016/j.scitotenv.2017.03.282 [27] LI Q, ZHANG Y Y, LIAO Y G, et al. Removal of hexavalent chromium using biogenic mackinawite (FeS)-deposited kaolinite[J]. Journal of Colloid and Interface Science, 2020, 572: 236-245. doi: 10.1016/j.jcis.2020.03.077 [28] SU M, YIN W Z, LIU L, et al. Enhanced Cr(VI) stabilization in soil by carboxymethyl cellulose-stabilized nanosized Fe0(CMC-nFe0) and mixed anaerobic microorganisms[J]. Journal of Environmental Management, 2020, 257: 109951. doi: 10.1016/j.jenvman.2019.109951 [29] 王旌, 罗启仕, 张长波, 等. 铬污染土壤的稳定化处理及其长期稳定性研究[J]. 环境科学, 2013, 34(10): 4036-4041. [30] LEUPIN O X, HUG S J. Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron[J]. Water Research, 2005, 39(9): 1729-1740. doi: 10.1016/j.watres.2005.02.012 [31] 李培中, 吕晓健, 王海见, 等. 某电镀厂六价铬污染土壤还原稳定化试剂筛选与过程监测[J]. 环境科学, 2017, 38(1): 368-373. [32] CHRYSOCHOOU M, FERREIRA D R, JOHNSTON C P. Calcium polysulfide treatment of Cr(Ⅵ) contaminated soil[J]. Journal of Hazardous Materials, 2010, 179(1): 650-657. [33] CHEN J B, YANG R J, ZHANG Z Y, et al. Removal of fluoride from water using aluminum hydroxide-loaded zeolite synthesized from coal fly ash[J]. Journal of Hazardous Materials, 2021, 421: 126817. [34] 朱艳, 汪家权, 陈少华, 等. 氯离子对氨氮电化学氧化的影响[J]. 环境工程学报, 2013, 7(7): 2619-2623. [35] 邵跃宗, 黄廷林, 史昕欣, 等. 地下水中二价锰对成熟石英砂滤层去除氨氮的影响[J]. 环境工程学报, 2016, 10(12): 6893-6897. doi: 10.12030/j.cjee.201507121 [36] MULLET M, DEMOISSON F, HUMBERT B, et al. Aqueous Cr(VI) reduction by pyrite: Speciation and characterisation of the solid phases by X-ray photoelectron, Raman and X-ray absorption spectroscopies[J]. Geochimica et Cosmochimica Acta, 2006, 71(13): 3257-3271. [37] YANG Z W, KANG M L, MA B, et al. Inhibition of U(VI) reduction by synthetic and natural pyrite[J]. Environmental Science & Technology, 2014, 48(18): 10716-10724. [38] WANG T, WANG W Y, LIU Y Y, et al. Roles of natural iron oxides in the promoted sequestration of chromate using calcium polysulfide: pH effect and mechanisms[J]. Separation and Purification Technology, 2020, 237: 116350. doi: 10.1016/j.seppur.2019.116350 [39] YUAN W Y, XU W T, ZHANG Z W, et al. Rapid Cr(VI) reduction and immobilization in contaminated soil by mechanochemical treatment with calcium polysulfide[J]. Chemosphere, 2019, 227: 657-661. doi: 10.1016/j.chemosphere.2019.04.108 [40] ZHANG W J, LIN M F. Influence of redox potential on leaching behavior of a solidified chromium contaminated soil[J]. Science of the Total Environment, 2020, 733: 139410. doi: 10.1016/j.scitotenv.2020.139410 [41] REN L M, WANG R Y, QIN B, et al. Enhanced remediation efficiency of Cr(VI)-contaminated heterogeneous aquifers: Improved sweeping efficiency using shear-thinning fluids[J]. Chemosphere, 2021, 273: 139410. [42] YAO Y R, MI N, HE C, et al. A novel colloid composited with polyacrylate and nano ferrous sulfide and its efficiency and mechanism of removal of Cr(VI) from Water[J]. Journal of Hazardous Materials, 2020, 399: 123082. doi: 10.1016/j.jhazmat.2020.123082 [43] LI Y Y, TIAN X Y, LIANG J L, et al. Remediation of hexavalent chromium in contaminated soil using amorphous iron pyrite: Effect on leachability, bioaccessibility, phytotoxicity and long-term stability[J]. Environmental Pollution, 2020, 264: 114804. doi: 10.1016/j.envpol.2020.114804