Mg-Al-Cl LDH对磷的吸附性能及其机理

向速林, 龚聪远, 楚明航. Mg-Al-Cl− LDH对磷的吸附性能及其机理[J]. 环境工程学报, 2021, 15(12): 3865-3874. doi: 10.12030/j.cjee.202110035
引用本文: 向速林, 龚聪远, 楚明航. Mg-Al-Cl LDH对磷的吸附性能及其机理[J]. 环境工程学报, 2021, 15(12): 3865-3874. doi: 10.12030/j.cjee.202110035
XIANG Sulin, GONG Congyuan, CHU Minghang. Adsorption performance and mechanism of Mg-Al-Cl− LDH on phosphate[J]. Chinese Journal of Environmental Engineering, 2021, 15(12): 3865-3874. doi: 10.12030/j.cjee.202110035
Citation: XIANG Sulin, GONG Congyuan, CHU Minghang. Adsorption performance and mechanism of Mg-Al-Cl LDH on phosphate[J]. Chinese Journal of Environmental Engineering, 2021, 15(12): 3865-3874. doi: 10.12030/j.cjee.202110035

Mg-Al-Cl LDH对磷的吸附性能及其机理

    作者简介: 向速林(1978—),男,博士,副教授。研究方向:水资源与环境。E-mail:slxiang2001@163.com
    通讯作者: 向速林, E-mail: slxiang2001@163.com
  • 基金项目:
    国家自然科学基金资助项目(51768019)
  • 中图分类号: X703.1

Adsorption performance and mechanism of Mg-Al-Cl LDH on phosphate

    Corresponding author: XIANG Sulin, slxiang2001@163.com
  • 摘要: 通过成核/晶化隔离法制备了氯离子型镁铝层状双金属氢氧化物(Mg-Al-Cl LDH),并用于磷酸盐的吸附;借助扫描电镜(SEM)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、X射线光电子能谱(XPS)进行了表征,并探究其吸附磷酸盐的机理。结果表明:当pH为4~7时,Mg-Al-Cl LDH对磷的吸附效果较好,而在碱性条件下吸附量会下降;磷质量浓度为50 mg·L−1,当pH为5时,Mg-Al-Cl LDH投加量为2 g·L−1时,磷去除率可达到100%;共存离子CO23会对吸附产生一定影响,当CO23质量浓度为50 mg·L−1时,磷去除率由87%降低到63%。Mg-Al-Cl LDH对磷的吸附过程在前15 min迅速,90 min时达到平衡,符合准二级动力学和Sips吸附等温模型,说明主要吸附过程以化学吸附为主,理论最大吸附量为62.46 mg·g−1。表征结果表明,Mg-Al-Cl LDH为典型的六边形层片结构,吸附后依旧保持该结构。Mg-Al-Cl LDH对磷的吸附机理主要为静电吸引、层间阴离子交换、配体交换过程。
  • 纳米银颗粒(silver nanoparticle,AgNPs)因其抗菌广谱、高效和不易产生耐药性等特点,广泛应用于医药、个人护理、家纺和家电等行业[1]。包含AgNPs的产品在其生产、加工、储存、使用和废弃等过程中,不可避免地直接或间接释放到环境中。据估算,约有60%的AgNPs通过污水管网进入市政污水处理厂[2],因此,污水处理系统是AgNPs重要的环境归趋。HOQUE等[3]的研究结果表明,污水中AgNPs的质量浓度一般在100~200 ng·L−1;ZHOU等[4]检测到活性污泥系统污泥中Ag质量分数可达到1.6 mg·kg−1。随着含有AgNPs材料的广泛应用,进入市政污水处理厂的AgNPs浓度会不断增加。活性污泥工艺是目前应用最广泛的污水生物处理技术,该工艺利用活性污泥(微生物聚集体)去除水中的各种污染物[5-6],包含AgNPs的污水可对活性污泥微生物活性产生抑制作用、降低出水水质、给水生生态系统带来负面影响[7-8]

    微生物群体感应(quorum sensing,QS)是指细菌自发产生、释放一些特定的信号分子,并能感知细菌群体中细胞密度变化进行种内或种间信息交流,从而调节微生物的群体行为[9]。作为高菌群密度的生态系统,活性污泥细菌的群体感应对环境变化非常敏感,可参与调控外来污染物胁迫下的自身应激代谢反应[10-11]。在污水处理系统中,细菌可分泌和释放酰基高丝氨酸内酯类(acyl-homeserine lactones,AHLs)信号分子,诱导生物膜形成并促进生物脱氮等过程[12-16]。HAN等[17]的研究表明,活性污泥系统中假单胞菌属细菌分泌AHLs并参与胞外聚合物分泌、种间竞争与脱氮等过程。污水中氮的去除是污水处理厂运行的首要目标之一[18-19]。外源投加信号分子[20-22]和群感菌[23-24]是目前利用微生物群体感应现象强化污水生物脱氮的主要方法。DE CLIPPELEIR等[20]发现,向活性污泥系统中添加适量外源AHLs信号分子可提高氨氧化速率和污泥中氨氧化菌的丰度。目前,关于AgNPs胁迫下活性污泥污水处理系统中微生物分泌AHLs信号分子的变化,以及这种变化与改进系统污染物去除效率间的关系研究鲜有报道。

    因此,研究AgNPs胁迫下活性污泥污水生物处理系统的脱氮性能、AHLs对AgNPs胁迫的响应及外源添加AHLs对活性污泥脱氮效率恢复的调控,对阐明活性污泥系统中AgNPs对微生物的胁迫效应,采取可行的调控污泥微生物活性的生物措施具有重要意义。

    以序批式反应器(sequencing batch reactors,SBRs)模拟活性污泥污水处理系统。SBRs有效容积为1.6 L,曝气系统包括空气泵和曝气头,空气流速为2.0 L·min−1。SBRs每日运行2个周期,每周期5 h,包括进水15 min、搅拌90 min、曝气90 min、静置90 min和排水15 min,非运行期的SBRs处于静置状态。SBRs启动第20 天,污泥浓度(mixed liquor suspended solids,MLSS) 和污泥容积指数(sludge volume index,SVI)分别达到(6 503±39) mg·L−1和(52.6±0.8) mL·g−1,活性污泥系统运行稳定。这时在进水中分别添加AgNPs和Ag+,开始实验。SBRs中活性污泥混合液在一个运行周期内的溶解氧(dissolved oxygen,DO)和pH分别为0.2~7.0 mg·L−1和7.5~8.4,每个运行周期内均有厌氧-好氧-缺氧交替的生境,有利于SBRs对有机物、氮、磷等污染物的去除[25]。预备实验结果表明,在1 mg·L−1 AgNPs胁迫下,AHLs在SBRs泥水混合液中的浓度常常低于文中所用UPLC-MS/MS的检测限。为了准确检测AgNPs胁迫下微生物分泌AHLs的变动,实验进水中分别添加了10 mg·L−1和20 mg·L−1的AgNPs。活性污泥系统分为5组,每组SBRs设置3个重复,5组SBRs分别为CK(进水中不添加AgNPs,也不添加Ag+),进水中分别添加10 mg·L−1和20 mg·L−1 AgNPs,进水中分别添加3 mg·L−1和6 mg·L−1 Ag+ (对应10 mg·L−1和20 mg·L−1 AgNPs溶解释放的Ag+浓度)。活性污泥系统运行周期内换水率为50%。

    实验用AgNPs溶液购自北京德科岛金科技有限公司,AgNPs颗粒表面包被聚乙烯吡咯烷酮(polyvinyl pyrrolidone,PVP),平均粒径为10~12 nm。AgNPs经超声仪(KQ-700DE,昆山市超声仪器公司)(100 W,40 kHz)超声5 min后,加入SBRs进水中。反应器进水中添加的Ag+以AgNO3配制(进水中的NO3-N进行相应扣减),AgNPs在纯水中溶解释放的Ag+浓度依照孙秀玥采用超滤法测得的结果[26]

    实验中,采用南京某市政污水处理厂浓缩池污泥作为接种污泥。实验所用污水为人工模拟中等强度的城市污水,统一用纯水配置,具体组成参见孙秀玥的研究论文[26]。配制污水所用试剂购于阿拉丁(上海)有限公司,均为分析纯。

    根据《水和废水监测分析方法》[27],水质指标NH+4-N、NO3-N、NO2-N和TN采用可见-紫外分光光度计(Shimadzu,UV-1800,Japan)测定。DO和pH分别使用便携式溶解氧仪(JPB-607A,上海雷磁仪器厂)和pH测定仪(PB-10,赛多利斯科学仪器(北京)有限公司)测定。泥水混合液MLSS和SVI采用水和废水标准监测方法测定[28]。化学需氧量(chemical oxygen demand,COD)采用HACH COD 快速测定仪(HACH,DR1010,USA)测定。

    将活性污泥混合液分为污水(水相)和污泥(泥相)2个部分,分别测定污水和污泥中的Ag浓度。取曝气结束前30 min的泥水混合物,利用低温高速离心机(Centrifuge 5810R,Eppendorf,Germany)在4 ℃和20 000 r·min−1条件下离心30 min,过0.45 μm 醋酸纤维滤膜(Whatman,USA),滤液即为污水。将剩余部分即污泥置于110 ℃烘箱中烘干至恒重,冷却至室温后研磨,过100目筛后备用[29]。在污泥中加入4 mL浓盐酸和1 mL浓硝酸,采用石墨炉消煮仪(SH220,上海海能仪器股份有限公司)消解。消煮残渣置于20 mL体积分数为50%的氨水中浸泡。污泥中的Ag浓度为消煮污泥中Ag浓度与消煮残渣的浸泡液Ag浓度之和。采用ICP-MS/MS (NexION 300,PerkinElmer,USA)测定污水和污泥中Ag浓度,加标回收率在96%以上。

    采用DNA提取试剂盒(MoBIO Laboratories,Inc,USA)提取活性污泥中细菌DNA,提取成功后涡旋混匀,用微量分光光度计(Thermo,NanoDrop 2000c,USA)测定DNA浓度(核酸纯度A260/A280>1.8),DNA样品保存于-20 ℃冰箱。

    活性污泥DNA样品由MiSeq平台进行Illumina高通量测序(上海凌恩生物科技有限公司)。PCR扩增通用引物为515F(GTGCCAGCMGCCGCGG)和907R(CCGTCAATTCMTTTRAGTTT)。使用QIIME(quantitative insights in microbial ecology)软件对所得序列进行生物信息学处理。利用UCLUST分类器对有效序列进行聚类,将相似性高于97%的序列归为一个分类单元(operational taxonomic units,OTU)。OTU采用贝叶斯算法(http://rdp.cme.msu.edu/)与Silva(SSU123)核糖体数据库进行对比进行聚类分析和物种分类学分析,利用R Studio进行分析并作图。

    将SBRs中的泥水混合物于4 ℃和20 000 r·min−1下离心30 min,收集50 mL上清液,过0.45 μm醋酸纤维滤膜,采用固相萃取(solid-phase extraction,SPE)对上清液AHLs进行提纯和富集[30]。具体步骤为:依次向Oasis HLB固相萃取柱(Waters,上海)加入5 mL甲醇和5 mL超纯水活化萃取柱;50 mL过膜(0.45 μm)后的上清液以<1 mL·min−1的流速过柱;采用5 mL体积分数为10%的甲醇水溶液淋洗萃取柱;氮气吹干;最后加入5 mL乙腈洗脱,收集洗脱液,氮气吹洗脱液至近干,加入1 mL乙腈重新溶解,洗脱液过0.22 μm有机滤膜后,密封遮光保存于−20 ℃冰箱,用于后续检测分析。

    采用UPLC-MS/MS超高效液相色谱串联质谱仪(Xevo TQ-Smicro,Waters,USA)定量检测活性污泥混合液水相中N-丁酰基-高丝氨酸内酯(N-butanoyl-L-homoserine lactone,C4-HSL)、N-己酰基-高丝氨酸内酯 (N- hexanoyl -L -homoserine lactone,C6-HSL)、N-辛酰基-高丝氨酸内酯 (N- octanoyl -L -homoserine lactone,C8-HSL)、N-癸酰基-高丝氨酸内酯(N- decanoyl -L -homoserine lactone,C10-HSL)、N-十二烷酰基-高丝氨酸内酯 (N- dodecanoyl -L -homoserine lactone,C12-HSL)和N-十四烷酰基-高丝氨酸内酯 (N- tetradecanoyl -L -homoserine lactone,C14-HSL) 6种信号分子。液相色谱柱BEH C18(2.1 mm×100 mm,1.7μm;Waters),运行时间为4 min,柱温为40 ℃,流动相A为含甲酸的超纯水(体积分数0.1%),B为含甲酸的乙腈(体积分数0.1%),采用梯度洗脱,流速为300 μL·min−1。质谱采用双通道多反应检测模式,离子源采用正离子模式,去溶剂气体为氮气,流量为992.0 L·h−1,锥孔气体为氩气,流量为1.0 L·h−1,离子源温度为149 ℃,去溶剂化温度为497 ℃,进样量为3 μL。活性污泥混合液中6种信号分子的加标回收率为51.22%~137.71%。

    在反应器运行第65 天,向5组反应器中分别一次性加入浓度均为10 nmol·L−1的C6-HSL、C8-HSL和C12-HSL混合溶液,并以1.1节中相同的运行方法继续运行SBRs。

    所有数据均采用3次重复的平均值±标准偏差来表示。数据统计和分析使用Excel 2016,采用Origin 9.2软件绘图。

    1) SBRs泥水混合液中水相和泥相中Ag浓度的比较分析。取CK及进水中分别添加10 mg·L−1和20 mg·L−1 AgNPs,3 mg·L−1和6 mg·L−1 Ag+的SBRs第1、5、10、20、30、40、50和60 天曝气阶段的泥水混合物,分别测定水相和泥相中Ag质量浓度,减去CK反应器泥水混合液中水相和泥相Ag质量浓度,结果如图1所示。SBRs运行初期,各反应器水相中Ag质量浓度分别为(636.59±1.59)、(1 120.54±66.78)、(8.13±0.60)和(11.81±1.75) μg·L−1(图1(a)),运行期间,各反应器水相中Ag质量浓度呈下降趋势。SBRs运行至第60 天,进水中分别添加10 mg·L−1 AgNPs,3 mg·L−1和6 mg·L−1 Ag+,反应器中水相平均Ag质量浓度均降至0.25 μg·L−1以下,进水中添加20 mg·L−1 AgNPs的反应器中水相平均Ag质量浓度降至17.40 μg·L−1

    图 1  SBRs中水相和泥相Ag质量浓度
    Figure 1.  Ag concentrations in supernatant and sludge of SBRs

    图1(b)可知,进水中分别添加10 mg·L−1和20 mg·L−1 AgNPs,3 mg·L−1和6 mg·L−1 Ag+的反应器污泥中Ag质量浓度运行期内较稳定,分别为8 418.88~9 806.72、16 966.49~20 118.67、2 829.25~3 002.99、5 747.96~6 140.47 μg·L−1,SBRs污泥中Ag质量浓度与理论Ag添加量相近。由此可推断,进入活性污泥系统的AgNPs和Ag+主要存在泥相中[26]

    2) AgNPs和Ag+对SBRs中氮去除效率的影响。SBRs连续运行60 d后,NH+4-N、NO3-N和TN去除率以及出水NO2-N质量浓度变化如图2所示。由图2(a)可知,进水中分别添加10 mg·L−1和20 mg·L−1 AgNPs的SBRs在运行期间,NH+4-N平均去除率与CK相比分别降低了5.51%~19.62%和8.23%~36.91%;而进水中分别添加3 mg·L−1和6 mg·L−1 Ag+的反应器与CK相比,NH+4-N平均去除率没有显著差异,均高于84.73%。这说明AgNPs对活性污泥硝化反应的抑制作用比其溶解释放出的Ag+作用更显著。其他研究者也有类似发现,如ZHANG等[18]发现,进水中分别添加1 mg·L−1和10 mg·L−1 AgNPs导致SBRs对NH+4-N的去除率由98.8%分别降低至71.2%和49.0%,AgNPs对NH+4-N去除有显著抑制作用。LIANG等[31]发现,1 mg·L−1 AgNPs和1 mg·L−1 Ag+使SBRs中活性污泥的比耗氧速率硝化作用(活性污泥混合液中添加NH+4-N为底物,分别测定1 mg·L−1 AgNPs和1 mg·L−1 Ag+胁迫下活性污泥的比好氧速率,以此来代表硝化作用)分别降低了41.4%和13.5%,在相同的Ag浓度下,AgNPs对硝化作用的胁迫效应高于Ag+

    图 2  AgNPs与Ag+对SBRs出水NH+4-N、NO3-N和TN去除率及NO2N质量浓度的影响
    Figure 2.  Effects of AgNPs and Ag+ on the removal rates of NH+4-N and NO3-N and TN and NO2-N concentrations in effluent

    图2(b)可知,与CK相比,进水中分别添加3 mg·L−1和6 mg·L−1 Ag+的SBRs对NO3-N平均去除率分别降低了2.03%~8.55%和9.17%~12.73%;而与CK相比,进水中分别添加10 mg·L−1和20 mg·L−1 AgNPs的反应器对NO3-N的去除率无显著差异。自第10 天后,5组SBRs的出水NO2-N平均质量浓度均低于0.49 mg·L−1,结果见图2(c)。由图2(d)可知,与CK相比,运行至第10 天后,进水中分别添加10 mg·L−1和20 mg·L−1 AgNPs,3 mg·L−1和6 mg·L−1 Ag+的SBRs中,TN平均去除率分别下降了0.93%~9.22%、3.34%~8.36%、1.87%~6.05% 和1.95%~9.14%。在60 d的运行期间内,进水中添加20 mg·L−1 AgNPs的反应器对TN去除率显著低于CK。SBRs运行至第60 天时,CK与进水中分别添加10 mg·L−1和20 mg·L−1 AgNPs,3 mg·L−1和6 mg·L−1 Ag+的活性污泥系统对COD的平均去除率分别为93.93%、71.84%、47.25%、93.49%和92.07%。从实验结果来看,进水中添加AgNPs对活性污泥微生物硝化作用的抑制影响更明显,导致NH+4-N去除率下降,因而转化成NO3-N的比例降低;Ag+对活性污泥微生物反硝化作用的抑制效应较明显,但很有可能因为AgNPs抑制NH+4-N转化为NO3-N,使得微生物反硝化作用的底物减少,从而导致表观上外源添加AgNPs对NO3-N去除率的抑制影响低于Ag+;AgNPs对活性污泥微生物去除有机碳的抑制效应明显高于其溶解释放的Ag+

    为了研究AgNPs及其释放出的Ag+对SBRs脱氮效率影响的原因,采用16S rDNA高通量测序法分析了活性污泥微生物群落结构。图3为反应器运行至第60 天时,相对丰度>0.010%的典型硝化和反硝化细菌属水平热图。CK与进水中添加20 mg·L−1 AgNPs的SBRs中亚硝酸菌属Nitrosomonas[32]的平均相对丰度分别为0.160%和0.070%;进水中分别添加10 mg·L−1和20 mg·L−1 AgNPs的SBRs中具有硝化功能的Novosphingobium[33]的平均相对丰度从CK反应器的0.034%下降到0.005%和0.002%,AgNPs对活性污泥硝化菌的胁迫作用与浓度有关;进水中分别添加3 mg·L−1和6 mg·L−1 Ag+的反应器与CK相比,反硝化菌DechloromonasCaldilineaceae[34]的平均相对丰度分别由6.100%和0.270%下降到4.700%和4.700%,0.180%和0.110%。动胶菌属zoogloea可以硝酸盐作为电子受体进行反硝化反应[35],进水中分别添加3 mg·L−1和6 mg·L−1 Ag+的反应器中zoogloea平均相对丰度从CK反应器的0.220%下降到0.090%和0.090%。AgNPs及其释放出的Ag+可以通过影响硝化菌和反硝化菌的相对丰度,从而影响活性污泥系统的脱氮效率。

    图 3  SBRs运行第60天活性污泥中部分硝化和反硝化细菌属水平上分布热图
    Figure 3.  Richness heat map of bacteria genera associated with nitrification and denitrification in the activated sludge fed with different concentrations of AgNPs and Ag+ on the 60th day

    采用UPLC-MS/MS分别检测运行至第60天时的CK与进水中添加10 mg·L−1 AgNPs反应器中活性污泥微生物分泌的6种AHLs信号分子的浓度,结果如图4所示。CK中C4-HSL、C6-HSL、C8-HSL、C10-HSL、C12-HSL和C14-HSL的浓度分别为(2.00±0.08)、(0.27±0.06)、(0.41±0.06)、(0.81±0.02)、(2.02±0.06)和(1.45±0.21) nmol·L−1。WANG等[36]检测离心后生物膜中C4-HSL和C12-HSL的最高浓度为0.6 nmol·g−1;SUN等[37]检测到活性污泥中含量最高的AHLs信号分子为C8-HSL,浓度达1.3 nmol·L−1。进水中添加10 mg·L−1 AgNPs反应器中只检测到C4-HSL、C6-HSL和C10-HSL 3种信号分子,其平均浓度分别为CK反应器中的1.7、0.8和1.1倍。因而,10 mg·L−1 AgNPs添加于SBRs进水中可导致活性污泥微生物分泌AHLs信号分子的数量发生变化,C4-HSL平均浓度显著增高,也可导致AHLs信号分子种类减少,其中C8-HSL、C12-HSL和C14-HSL均未检出。

    图 4  进水中添加10 mg·L−1 AgNPs反应器活性污泥中AHLs浓度
    Figure 4.  AHLs concentrations in activated sludge of SBRs fed with 10 mg·L−1 AgNPs

    反应器运行至第65天时,外源加入混合AHLs。与加入前(第60 天)相比,CK与进水中分别添加10 mg·L−1和20 mg·L−1 AgNPs,3 mg·L−1和6 mg·L−1 Ag+的反应器对NH+4-N平均去除率分别降低了24.52%、28.04%、5.01%、20.73%和16.76%;对NO3-N平均去除率分别增加了13.33%、11.41%、5.82%、18.25%和8.06%;各反应器出水NO2-N浓度均有所降低,降低幅度最大的SBRs(进水分别添加3 mg·L−1和6 mg·L−1 Ag+)中出水NO2-N平均质量浓度降低了0.21 mg·L−1。外源加入AHLs后,进水分别添加10 mg·L−1和20 mg·L−1 AgNPs的反应器中的TN平均去除率升高,运行至第70 天时,TN平均去除率达到最大值,分别为93.01%和89.82%(图5)。综合上述结果可知,外源加入混合AHLs可在5~10 d内导致AgNPs和Ag+胁迫下反应器对NH+4-N平均去除率降低,对NO3-N的平均去除率升高,且可显著提高AgNPs胁迫下反应器对TN的平均去除率。朱颖楠等[38]指出,C6-HSL可调控生物膜修复和强化脱氮。张向晖等[39]发现,外源添加0.5 g·L−1的C6-HSL和C8-HSL会抑制厌氧氨氧化菌群生长,但能提高活性污泥的脱氮性能。外源加入混合AHLs的种类、数量对其调控污水处理反应器中微生物的脱氮性能都有影响。

    图 5  添加AHLs对AgNPs与Ag+胁迫下SBRs出水NH+4-N、NO3-N和TN去除率及NO2-N质量浓度的影响
    Figure 5.  Effects of AgNPs and Ag+ on the removal rates of NH+4-N and NO3-N and TN and NO2-N concentrations in effluent

    1)进入活性污泥系统中的AgNPs及其释放的Ag+主要存在污泥中,可影响活性污泥中硝化细菌和反硝化细菌相对丰度,抑制活性污泥微生物硝化和反硝化作用,从而降低活性污泥对TN的去除效率。

    2) AgNPs胁迫影响活性污泥微生物分泌AHLs信号分子的数量和种类。10 mg·L−1 AgNPs胁迫下反应器中C4-HSL平均浓度与CK相比显著提升1.7倍,而C8-HSL、C12-HSL和C14-HSL 3种信号分子浓度则低于检测限。

    3) 10 mg·L−1 AgNPs胁迫下的活性污泥反应器在外源加入混合AHLs 5 d后TN平均去除率由69.41%提高至93.04%,但AHLs的调节作用受种类、数量等因素影响,需要进一步开展研究。

  • 图 1  pH对Mg-Al-Cl LDH吸附磷的影响

    Figure 1.  Effect of pH on phosphate adsorption by Mg-Al-Cl LDH

    图 2  投加量对Mg-Al-Cl LDH吸附磷的影响

    Figure 2.  Effect of dosage on phosphate adsorption by Mg-Al-Cl LDH

    图 3  共存离子对Mg-Al-Cl LDH吸附效果的影响

    Figure 3.  Effect of coexisting anions on phosphate adsorption by Mg-Al-Cl LDH

    图 4  Mg-Al-Cl LDH吸附动力学

    Figure 4.  Adsorption kinetics of Mg-Al-Cl LDH

    图 5  Mg-Al-Cl LDH吸附等温线

    Figure 5.  Adsorption isotherms of Mg-Al-Cl LDH

    图 6  Mg-Al-Cl LDH吸附前后SEM-EDS图

    Figure 6.  SEM-EDS images of Mg-Al-Cl LDH before and after adsorption

    图 7  Mg-Al-Cl LDH吸附前后XRD图

    Figure 7.  XRD patterns of Mg-Al-Cl LDH before and after adsorption

    图 8  Mg-Al-Cl LDH吸附前后FTIR图

    Figure 8.  FTIR spectra of Mg-Al-Cl LDH before and after adsorption

    图 9  Mg-Al-Cl LDH吸附前后XPS全谱图

    Figure 9.  XPS spectra of Mg-Al-Cl LDH before and after adsorption

    图 10  Mg-Al-Cl LDH吸附前后O1s、P2p、Al2p、Mg1s图谱

    Figure 10.  O1s, P2p, Al2P, Mg1s spectra of Mg-Al-Cl LDH before and after adsorption

    表 1  吸附动力学拟合参数

    Table 1.  Adsorption kinetics fitting parameters

    准一级动力学准二级动力学颗粒内扩散
    qe(cal)/(mg·g−1)k1/min−1R2qe(cal)/(mg·g−1)k2/(g·(mg·min)−1)R2k1/(g·(mg·min0.5)−1)R12k2/(g·(mg·min0.5)−1)R22k3/(g·mg·min0.5)−1) R32
    41.4760.3570.81943.4600.0140.9667.5960.9611.0680.9790.0760.564
    准一级动力学准二级动力学颗粒内扩散
    qe(cal)/(mg·g−1)k1/min−1R2qe(cal)/(mg·g−1)k2/(g·(mg·min)−1)R2k1/(g·(mg·min0.5)−1)R12k2/(g·(mg·min0.5)−1)R22k3/(g·mg·min0.5)−1) R32
    41.4760.3570.81943.4600.0140.9667.5960.9611.0680.9790.0760.564
    下载: 导出CSV

    表 2  吸附等温线拟合参数

    Table 2.  Adsorption isotherm fitting parameters

    温度/KLangmuirFreundlichSips
    qm /(mg·g−1)KL /(L·mg−1)R21/nKFR2qm /(mg·g−1)Ks /(L·mg−1)NR2
    29854.5241.1940.8900.13429.5630.92962.4600.8760.4700.989
    温度/KLangmuirFreundlichSips
    qm /(mg·g−1)KL /(L·mg−1)R21/nKFR2qm /(mg·g−1)Ks /(L·mg−1)NR2
    29854.5241.1940.8900.13429.5630.92962.4600.8760.4700.989
    下载: 导出CSV

    表 3  不同吸附剂对水中磷的吸附

    Table 3.  Adsorption of phosphate in water by various adsorbents

    吸附剂饱和吸附量/(mg·g−1)来源
    LaMZ52.25[19]
    互穿网络水凝胶19.68[20]
    MgO/果胶72.50[21]
    Ce-BC77.70[22]
    Zr-CaMs22.37[23]
    Mg-Al-Cl LDH62.46本研究
    吸附剂饱和吸附量/(mg·g−1)来源
    LaMZ52.25[19]
    互穿网络水凝胶19.68[20]
    MgO/果胶72.50[21]
    Ce-BC77.70[22]
    Zr-CaMs22.37[23]
    Mg-Al-Cl LDH62.46本研究
    下载: 导出CSV
  • [1] 赵鹏, 苏子龙, 何剑伟, 等. DSB+CPB复合改性膨润土对磷酸盐的吸附[J]. 环境工程学报, 2020, 14(4): 906-916. doi: 10.12030/j.cjee.201909035
    [2] 王乐阳, 许骐, 周琴, 等. 镧铝/壳聚糖复合小球对水中磷的吸附及机理[J]. 环境工程学报, 2018, 12(9): 2490-2501. doi: 10.12030/j.cjee.201803229
    [3] NAKARMI A, BOURDO S E, RUHL L, et al. Benign zinc oxide betaine-modified biochar nanocomposites for phosphate removal from aqueous solutions[J]. Journal of Environmental Management, 2020, 272: 111048. doi: 10.1016/j.jenvman.2020.111048
    [4] JUNG K, LEE S Y, CHOI J, et al. Synthesis of Mg-Al layered double hydroxides-functionalized hydrochar composite via an in situ one-pot hydrothermal method for arsenate and phosphate removal: Structural characterization and adsorption performance[J]. Chemical Engineering Journal, 2021, 420: 129775. doi: 10.1016/j.cej.2021.129775
    [5] SHARMA R, ARIZAGA G G C, SAINI A K, et al. Layered double hydroxide as multifunctional materials for environmental remediation: From chemical pollutants to microorganisms[J]. Sustainable Materials and Technologies, 2021, 29: e319.
    [6] 吕维扬, 孙继安, 姚玉元, 等. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
    [7] EDAÑOL Y D G, POBLADOR J A O, TALUSAN T J E, et al. Co-precipitation synthesis of Mg-Al-CO3 layered double hydroxides and its adsorption kinetics with phosphate(V) ions[J]. Materials Today: Proceedings, 2020, 33: 1809-1813. doi: 10.1016/j.matpr.2020.05.059
    [8] AHMED S, ASHIQ M N, LI D, et al. Recent progress on adsorption materials for phosphate removal[J]. Recent Patents on Nanotechnology, 2019, 13(1): 3-16. doi: 10.2174/1872210513666190306155245
    [9] 张倩. 层状双金属氢氧化物除磷材料及氨基酸插层改性性能研究[D]. 重庆: 重庆大学, 2018.
    [10] TANG Q, SHI C, SHI W, et al. Preferable phosphate removal by nano-La(Ⅲ) hydroxides modified mesoporous rice husk biochars: Role of the host pore structure and point of zero charge[J]. Science of the Total Environment, 2019, 662: 511-520.
    [11] ZHOU H, TAN Y, YANG Y, et al. Application of FeMgMn layered double hydroxides for phosphate anions adsorptive removal from water[J]. Applied Clay Science, 2020, 200: 105903.
    [12] MIYATA S. Anion-exchange properties of hydrotalcite-like compounds[J]. Clays and Clay Minerals, 1983, 31(4): 305-311. doi: 10.1346/CCMN.1983.0310409
    [13] SAADAT S, RA EI E, TALEBBEYDOKHTI N. Enhanced removal of phosphate from aqueous solutions using a modified sludge derived biochar: Comparative study of various modifying cations and RSM based optimization of pyrolysis parameters[J]. Journal of Environmental Management, 2018, 225: 75-83.
    [14] LEE S Y, CHOI J, SONG K G, et al. Adsorption and mechanistic study for phosphate removal by rice husk-derived biochar functionalized with Mg/Al-calcined layered double hydroxides via co-pyrolysis[J]. Composites Part B:Engineering, 2019, 176: 107209. doi: 10.1016/j.compositesb.2019.107209
    [15] 张兴枝. 类花状水滑石材料的制备及其对水体中磷的吸附再利用性能研究[D]. 杭州: 浙江理工大学, 2020.
    [16] ZHU N, YAN T, QIAO J, et al. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization[J]. Chemosphere, 2016, 164: 32-40. doi: 10.1016/j.chemosphere.2016.08.036
    [17] 刘泽珺. 壳聚糖基半互穿网络水凝胶的制备及其对水中腐殖酸的吸附性能[D]. 广州: 华南理工大学, 2018.
    [18] ZHANG Z, YAN L, YU H, et al. Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: Fast removal and mechanistic studies[J]. Bioresource Technology, 2019, 284: 65-71. doi: 10.1016/j.biortech.2019.03.113
    [19] LI X D, KUANG Y, CHEN J B, et al. Competitive adsorption of phosphate and dissolved organic carbon on lanthanum modified zeolite[J]. Journal of Colloid and Interface Science, 2020, 574: 197-206. doi: 10.1016/j.jcis.2020.04.050
    [20] 万骏. 基于功能设计的水凝胶对水中磷酸盐去除研究[D]. 武汉: 华中科技大学, 2018.
    [21] 郑力. 氧化镁/果胶复合除磷剂的制备及其除磷机理研究[D]. 武汉: 华中科技大学, 2017.
    [22] WANG Y, XIE X, CHEN X, et al. Biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles for phosphate adsorption[J]. Journal of Hazardous Materials, 2020, 396: 122626. doi: 10.1016/j.jhazmat.2020.122626
    [23] ZOU Y, ZHANG R, WANG L, et al. Strong adsorption of phosphate from aqueous solution by zirconium-loaded Ca-montmorillonite[J]. Applied Clay Science, 2020, 192: 105638. doi: 10.1016/j.clay.2020.105638
    [24] LAFI R, CHARRADI K, DJEBBI M A, et al. Adsorption study of congo red dye from aqueous solution to Mg-Al-ayered double hydroxide[J]. Advanced Powder Technology, 2016, 27(1): 232-237. doi: 10.1016/j.apt.2015.12.004
    [25] LEE S Y, CHOI J W, SONG K G, et al. Adsorption and mechanistic study for phosphate removal by rice husk-derived biochar functionalized with Mg/Al-calcined layered double hydroxides via co-pyrolysis[J]. Composites Part B:Engineering, 2019, 176: 107209.1-107209.15.
    [26] HE H, KANG H, MA S, et al. High adsorption selectivity of ZnAl layered double hydroxides and the calcined materials toward phosphate[J]. Journal of Colloid and Interface Science, 2010, 343(1): 225-231. doi: 10.1016/j.jcis.2009.11.004
    [27] 何天旭. 铁改性镁铝水滑石吸附剂制备及其对水中磷的吸附研究[D]. 武汉: 华中科技大学, 2019.
    [28] JIA Z, ZENG W, XU H, et al. Adsorption removal and reuse of phosphate from wastewater using a novel adsorbent of lanthanum-modified platanus biochar[J]. Process Safety and Environmental Protection, 2020, 140: 221-232. doi: 10.1016/j.psep.2020.05.017
    [29] 程福龙, 李超, 陈娟, 等. Zr4+掺杂对Mg/Al水滑石磷酸根吸附行为的影响[J]. 精细化工, 2019, 36(10): 2122-2127.
    [30] LING Z, QI Z, JIANYONG L, et al. Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber[J]. Chemical Engineering Journal, 2012, 185-186: 160-167. doi: 10.1016/j.cej.2012.01.066
    [31] BUI T H, HONG S P, YOON J. Development of nanoscale zirconium molybdate embedded anion exchange resin for selective removal of phosphate[J]. Water Research, 2018, 134: 22-31. doi: 10.1016/j.watres.2018.01.061
    [32] YANG F, ZHANG S S, SUN Y Q, et al. Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery[J]. Journal of Hazardous Materials, 2019, 365: 665-673. doi: 10.1016/j.jhazmat.2018.11.047
    [33] 刘晨, 张美一, 潘纲. 超薄水滑石纳米片除磷效果与机理[J]. 环境工程学报, 2018, 12(9): 2446-2456. doi: 10.12030/j.cjee.201803195
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.7 %DOWNLOAD: 2.7 %HTML全文: 85.6 %HTML全文: 85.6 %摘要: 11.7 %摘要: 11.7 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 86.8 %其他: 86.8 %Baoshan Qu: 0.1 %Baoshan Qu: 0.1 %Beijing: 5.0 %Beijing: 5.0 %Chang'an: 0.0 %Chang'an: 0.0 %Changping: 0.0 %Changping: 0.0 %Chengdu: 0.1 %Chengdu: 0.1 %Chicago: 0.1 %Chicago: 0.1 %Chongqing: 0.1 %Chongqing: 0.1 %Fengtai: 0.0 %Fengtai: 0.0 %Fenyang: 0.0 %Fenyang: 0.0 %Gulan: 0.0 %Gulan: 0.0 %Hangzhou: 0.8 %Hangzhou: 0.8 %Hefei: 0.1 %Hefei: 0.1 %Hyderabad: 0.1 %Hyderabad: 0.1 %Jinrongjie: 0.5 %Jinrongjie: 0.5 %Kunshan: 0.0 %Kunshan: 0.0 %Mountain View: 0.1 %Mountain View: 0.1 %Nanchang: 0.0 %Nanchang: 0.0 %Nanqiao: 0.1 %Nanqiao: 0.1 %Putuo Qu: 0.1 %Putuo Qu: 0.1 %Shanghai: 0.4 %Shanghai: 0.4 %Shenyang: 0.1 %Shenyang: 0.1 %Shenzhen: 0.0 %Shenzhen: 0.0 %Suzhou: 0.1 %Suzhou: 0.1 %Tongchuanshi: 0.1 %Tongchuanshi: 0.1 %Xi'an: 0.1 %Xi'an: 0.1 %XX: 2.6 %XX: 2.6 %Yingtan: 0.0 %Yingtan: 0.0 %Yuncheng: 0.2 %Yuncheng: 0.2 %上海: 0.0 %上海: 0.0 %东莞: 0.0 %东莞: 0.0 %保定: 0.0 %保定: 0.0 %北京: 0.4 %北京: 0.4 %北海: 0.0 %北海: 0.0 %合肥: 0.0 %合肥: 0.0 %天津: 0.0 %天津: 0.0 %曲靖: 0.0 %曲靖: 0.0 %杭州: 0.0 %杭州: 0.0 %武汉: 0.0 %武汉: 0.0 %汉中: 0.0 %汉中: 0.0 %洛阳: 0.0 %洛阳: 0.0 %深圳: 0.0 %深圳: 0.0 %福州: 0.0 %福州: 0.0 %西安: 0.0 %西安: 0.0 %贵阳: 0.0 %贵阳: 0.0 %运城: 0.0 %运城: 0.0 %郑州: 0.6 %郑州: 0.6 %长治: 0.0 %长治: 0.0 %其他Baoshan QuBeijingChang'anChangpingChengduChicagoChongqingFengtaiFenyangGulanHangzhouHefeiHyderabadJinrongjieKunshanMountain ViewNanchangNanqiaoPutuo QuShanghaiShenyangShenzhenSuzhouTongchuanshiXi'anXXYingtanYuncheng上海东莞保定北京北海合肥天津曲靖杭州武汉汉中洛阳深圳福州西安贵阳运城郑州长治Highcharts.com
图( 10) 表( 3)
计量
  • 文章访问数:  6596
  • HTML全文浏览数:  6596
  • PDF下载数:  127
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-11
  • 录用日期:  2021-11-03
  • 刊出日期:  2021-12-10
向速林, 龚聪远, 楚明航. Mg-Al-Cl− LDH对磷的吸附性能及其机理[J]. 环境工程学报, 2021, 15(12): 3865-3874. doi: 10.12030/j.cjee.202110035
引用本文: 向速林, 龚聪远, 楚明航. Mg-Al-Cl LDH对磷的吸附性能及其机理[J]. 环境工程学报, 2021, 15(12): 3865-3874. doi: 10.12030/j.cjee.202110035
XIANG Sulin, GONG Congyuan, CHU Minghang. Adsorption performance and mechanism of Mg-Al-Cl− LDH on phosphate[J]. Chinese Journal of Environmental Engineering, 2021, 15(12): 3865-3874. doi: 10.12030/j.cjee.202110035
Citation: XIANG Sulin, GONG Congyuan, CHU Minghang. Adsorption performance and mechanism of Mg-Al-Cl LDH on phosphate[J]. Chinese Journal of Environmental Engineering, 2021, 15(12): 3865-3874. doi: 10.12030/j.cjee.202110035

Mg-Al-Cl LDH对磷的吸附性能及其机理

    通讯作者: 向速林, E-mail: slxiang2001@163.com
    作者简介: 向速林(1978—),男,博士,副教授。研究方向:水资源与环境。E-mail:slxiang2001@163.com
  • 华东交通大学土木建筑学院,南昌 330013
基金项目:
国家自然科学基金资助项目(51768019)

摘要: 通过成核/晶化隔离法制备了氯离子型镁铝层状双金属氢氧化物(Mg-Al-Cl LDH),并用于磷酸盐的吸附;借助扫描电镜(SEM)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、X射线光电子能谱(XPS)进行了表征,并探究其吸附磷酸盐的机理。结果表明:当pH为4~7时,Mg-Al-Cl LDH对磷的吸附效果较好,而在碱性条件下吸附量会下降;磷质量浓度为50 mg·L−1,当pH为5时,Mg-Al-Cl LDH投加量为2 g·L−1时,磷去除率可达到100%;共存离子CO23会对吸附产生一定影响,当CO23质量浓度为50 mg·L−1时,磷去除率由87%降低到63%。Mg-Al-Cl LDH对磷的吸附过程在前15 min迅速,90 min时达到平衡,符合准二级动力学和Sips吸附等温模型,说明主要吸附过程以化学吸附为主,理论最大吸附量为62.46 mg·g−1。表征结果表明,Mg-Al-Cl LDH为典型的六边形层片结构,吸附后依旧保持该结构。Mg-Al-Cl LDH对磷的吸附机理主要为静电吸引、层间阴离子交换、配体交换过程。

English Abstract

  • 随着我国城市化和工业化的迅速发展,大量的含磷废水未经有效处理排入水环境中,导致河道和湖泊的水质急剧恶化,出现水体黑臭现象[1]。过量的磷是引起水体富营养化的主要原因[2],水体富营养化会导致藻类过度生长,降低水质,严重危害水生态系统及人类健康[3]。因此,开发经济高效的除磷技术成为研究的重点。目前,污水除磷技术主要包括化学沉淀法、生物处理法、膜处理法、吸附法等。与其他方法相比,吸附法具有操作简单,经济效益好,灵活性高等优点,使其在水处理中得到广泛研究和应用[4]

    近年来,层状双金属氢氧化物(layered double hydroxides, LDH)作为一种新兴材料得到研究人员的广泛关注,其特殊的层状结构相比其他常规吸附剂具有更好的阴离子交换能力及更高的吸附容量,同时其具有制备简单、成本廉价的优点[5]。但在以前的报道中,所制备LDH大多为CO23-LDH,而对于Cl-LDH吸附磷的研究较少。由于CO23的离子交换性能要强于H2PO4[6]CO23不易与磷酸根进行离子交换,限制了其对磷的吸附性能。例如,EDAÑOL等[7]采用共沉淀法合成Mg-Al-CO23 LDH,其对磷的吸附量仅为23.792 mg·L−1

    由于Mg、Al元素在地壳中丰度高,采用Mg、Al作为原料可减少成本,相对其他金属,对环境也更友好[8]。因此,本研究以Cl-作为层间阴离子以及Mg、Al为金属前体,通过成核/晶化隔离法制备了Mg-Al-Cl LDH,通过表征手段对吸附剂吸附前后的结构形貌进行分析,且考察了其对磷的吸附性能,探究了可能的吸附机理,以期为Mg-Al-Cl LDH吸附除磷提供参考。

    • 主要试剂:抗坏血酸、酒石酸锑钾、磷酸二氢钾、钼酸铵、盐酸、氢氧化钠、六水合氯化镁、六水合氯化铝,均为分析纯,均购置于西陇化工集团有限公司。

      主要仪器:Bruke D8X 射线衍射仪、Nicolet 6700傅里叶变换红外光谱仪、Zeiss Gemini 300扫描电子显微镜、UV-1801紫外可见分光光度计、SHA-B恒温振荡器(上海力辰邦西仪器科技有限公司)。

    • 采用成核/晶化隔离法制备,即成核和晶化分开,以去离子水为溶剂。首先,按照Mg:Al摩尔比为2∶1称取一定量的MgCl2·6H2O与AlCl3·6H2O溶于100 mL去离子水中,超声处理15 min使其充分溶解混合,标记为溶液A。同时,配置一定量的3 mol·L−1 NaOH溶液作为沉淀剂,标记为溶液B。在60 ℃下同时将A、B 2种溶液滴入盛有50 mL去离子水的烧杯中并伴随高转速搅拌,整个体系pH维持在10左右。随后,将浆液置入聚四氟乙烯内衬反应釜中,在150 ℃下晶化12 h,将晶化产物离心,再洗涤至上清液pH为中性,将所得白色膏体置于鼓风干燥箱中以80 ℃恒温干燥至恒重后研磨过100目筛,得到白色粉末即为Mg-Al-Cl LDH。

    • 通过静态吸附实验研究Mg-Al-Cl LDH对磷的吸附,考察溶液pH、吸附剂投加量、共存离子等因素对磷的吸附效果影响。取50 mL已知浓度的KH2PO4溶液于50 mL具塞三角瓶中,用0.1 mol·L−1的NaOH和HCl调节至所需pH,投加一定量的Mg-Al-Cl LDH,置于25 ℃、180 r·min−1恒温水浴振荡箱中振荡一定时间后取上清液经0.45 μm滤膜过滤,根据(GB 11893-1989)钼酸铵分光光度法测定滤液中的剩余磷质量浓度。按照式(1)和式(2)计算磷吸附量和去除率。

      式中:qe为平衡吸附量,mg·g−1ƞ为磷去除率,%;C0为吸附前溶液中磷的初始质量浓度,mg·L−1Ce为吸附后溶液中的剩余磷质量浓度,mg·L−1V为溶液体积,L;m为吸附剂投加量,g。

      1)吸附动力学实验。分别在1、3、5、10、15、30、45、60、75、90、120、150 min取样测定磷质量浓度,计算吸附量,pH为5,磷的初始质量浓度为50 mg·L−1,Mg-Al-Cl LDH投加量为1 g·L−1。采用准一级(式(3))、准二级(式(4))和颗粒内扩散(式(5))动力学模型对数据进行拟合。

      式中:qe为平衡吸附量,mg·g−1qt为时间为t时的吸附量,mg·g−1t为吸附时间,min;k1为准一级动力学方程常数,min−1k2为准一级动力学方程常数,g·(mg·min)−1ki颗粒内扩散速率常数,g·(mg·min0.5)−1C为与边界层厚度有关的参数。

      2)吸附等温线实验。分别在磷质量浓度为20、30、50、100、150、200、250 mg·L−1的条件下测定吸附后的剩余磷质量浓度,计算吸附量,pH为5,磷的初始质量浓度为50 mg·L−1,Mg-Al-Cl LDH投加量为1 g·L−1,吸附时间为150 min。采用Langmuir(式(6))、Freundlich(式(7))和Sips(式(8))吸附等温模型对数据进行拟合。

      式中:qeqm分别为平衡吸附量、吸附剂的最大吸附量,mg·g−1KL为Langmuir 吸附常数,L·mg−1Ce为溶液剩余磷质量浓度,mg·L−1KF为Freundlich 等温吸附常数,(mg·g−1)·(mg·L−1)nn为吸附常数;Ks为Sips吸附参数,L·mg−1N为非均一系数。

      3) pH对吸附的影响。调节溶液pH为3~11,Mg-Al-Cl- LDH投加量为1 g·L−1,磷的初始质量浓度为50 mg·L−1,吸附时间为150 min,吸附后测定剩余磷质量浓度,计算吸附量。

      4)吸附剂投加量对吸附的影响。改变Mg-Al-Cl LDH投加量,使其投加量分别为0.4、0.8、1、1.2、1.6、2 g·L−1,pH为5,磷的初始质量浓度为50 mg·L−1,吸附时间为150 min,吸附后测定剩余磷质量浓度,计算吸附量。

      5)共存离子对吸附的影响。向溶液中分别加入质量浓度为50 mg·L−1CO23SO24NO3、Cl,Mg-Al-Cl LDH投加量为1 g·L−1,磷的初始质量浓度为50 mg·L−1,吸附时间为150 min,吸附后测定剩余磷质量浓度,计算吸附量。

    • 1) pH对吸附性能的影响。不同pH下,Mg-Al-Cl LDH对磷的吸附效果如图1所示。当体系pH在3~10时,Mg-Al-Cl LDH对磷的吸附量表现为先升高后降低,在pH为4~7的条件下的吸附效果最佳。由于LDH的等电点普遍较高,因此,根据吸附材料的零点电荷性质,在较低pH范围内,pH<pHpzc,Mg-Al-Cl LDH层板上的M—OH发生质子化得到带正电荷的M—OH+,可通过静电引力吸附H2PO4HPO24。磷在不同pH中的存在形式也不同(式(9))[9]

      式中:pK1=2.12,pK2=7.21,pK3=12.67。

      当pH为3~11时,磷酸盐主要以H2PO4HPO24的形式存在;随着pH的逐渐增加,H2PO4所占比例先升高后降低,随后逐渐转化为HPO24。由于H2PO4的吸附自由能低于HPO24H2PO4HPO24更容易被吸附[10],且HPO24与LDH形成络合相比H2PO4需要占据更多的吸附位点,形成的络合物覆盖了吸附位点也可能导致吸附效率的降低[11]。因此,当pH>7之后,H2PO4逐渐转化为HPO24,吸附量开始下降。随着pH的继续增大,当pH>pHpzc后,Mg-Al-Cl LDH表面呈现电负性,静电斥力导致磷酸盐离子难以吸附到其表面,同时溶液中的OH含量也逐渐增加,会与磷酸盐竞争吸附位点,因此吸附量持续下降。然而,在碱性条件下,Mg-Al-Cl LDH依旧拥有一定的吸附量,说明静电吸附作用只是其一,吸附过程还存在其他相互作用。在pH为3时吸附量下降,可能是由于Mg-Al-Cl LDH在较酸性的条件下溶解导致结构坍塌[11]

      2)吸附剂投加量对吸附性能的影响。Mg-Al-Cl LDH投加量对吸附效果的影响如图2所示。当投加量由0.4 g·L−1增加到1.2 g·L−1时,Mg-Al-Cl LDH对磷的去除率由43.84%增加到94.14%;增加到2 g·L−1时,去除率到达了100%。这说明Mg-Al-Cl LDH是一种优良的磷吸附剂。然而,当吸附剂投加量增加到2 g·L−1时,吸附量由54.79 mg·L−1下降到了25 mg·L−1。这是由于:当水中磷质量浓度一定时,投加量的增加相应所提供的吸附位点越多,去除率也越高,但同时也会导致吸附能力过剩,吸附剂并未达到饱和吸附,吸附位点的利用率降低;此外,过高的投加量也会导致吸附剂的浪费,增加不必要的成本。另外,随着Mg-Al-Cl LDH的投加量由1.2 g·L−1增加到2 g·L−1,磷的去除率的上升趋势并不明显,但磷的吸附量却持续下降。因此,为了同时获得合适磷的吸附量及去除率,后续实验的Mg-Al-Cl LDH投加量采用1 g·L−1

      3)共存离子对吸附性能的影响。在实际废水中一般会存在多种阴离子,这些共存阴离子可能会与磷酸盐离子形成竞争吸附,从而影响吸附剂的吸附效果。图3显示了几种常见阴离子存在的情况下,Mg-Al-Cl LDH对磷的吸附量及去除率变化情况。可以看出,共存离子干扰强弱的顺序为CO23>SO24>NO3>Cl。ClNO3对吸附几乎没有影响。SO24CO23对吸附有较大影响,主要是由于SO24CO23具有更高的负价态,更容易通过离子交换进入层间[12],且SO24CO23会通过静电吸附和络合作用在Mg-Al-Cl LDH表面竞争吸附位点[13]。此外,CO23的存在也会使溶液pH升高,从而导致吸附量下降。在CO23的影响下,Mg-Al-Cl LDH对磷的去除率为63%,说明其对磷酸盐具有一定的选择性。

      4)吸附动力学分析。本实验使用准一级动力学、准二级动力学和颗粒内扩散模型动力学对数据进行了拟合,结果如图4所示,动力学相关参数见表1。由图4(a)可知,吸附反应在前15 min非常迅速,这是因为在反应初始阶段吸附剂含有大量的吸附位点。随着时间推移,吸附剂上可提供的吸附位点逐渐较少,吸附速率逐渐平缓,在90 min左右基本达到平衡,此时饱和吸附容量为43.85 mg·L−1。由表1可知,准二级动力学模型的拟合度(R2>0.966)高于准一级动力学模型的拟合度(R2>0.819),说明Mg-Al-Cl LDH对磷的吸附过程更符合准二级动力学模型,且准二级动力学拟合所得吸附容量与实验所得值接近。由此可推断Mg-Al-Cl LDH对磷的吸附主要由化学吸附所控制[14]

      颗粒内扩散模型拟合见图4(b)。由表1可知,颗粒内扩散相关参数k1>k2>k3,说明吸附的过程有3个限制步骤。其中k1较大,说明第1阶段反应速率快,在Mg-Al-Cl LDH表面上扩散的速率限制是由静电吸引引起的[15];第2阶段为磷酸盐离子通过孔隙扩散进入Mg-Al-Cl LDH内表面,速率缓慢,受颗粒内扩散限制;第3阶段为吸附平衡阶段,吸附位点饱和,基本达到吸附平衡。直线并未经过原点,说明颗粒内扩散并不是唯一控制吸附反应速率的因素[16]

      5)吸附等温线。图5为Mg-Al-Cl LDH的吸附等温线拟合曲线,拟合参数见表2。随着溶液中磷质量浓度增加,Mg-Al-Cl LDH对磷的吸附量也随之增加。这是因为:当溶液中磷酸盐质量浓度增加时,浓度梯度具有更强的驱动力来克服固液之间的传质阻力,使磷酸盐与Mg-Al-Cl LDH之间的碰撞概率增加。当Mg-Al-Cl LDH的吸附位点逐渐被占据达到饱和后,吸附量不再变化,达到吸附平衡。由表2可知,吸附等温线的拟合程度为Sips>Freundlich>Langmuir。这说明Sips模型能更好的描述Mg-Al-Cl LDH的等温吸附行为,即该体系的吸附过程在磷质量浓度低时为Freundlich模型的非均匀多分子层吸附,在磷质量浓度高时为Langmuir模型的单层吸附[17]。同时,Langmuir模型拟合的最大吸附量也与实验所得吸附量接近。Freundlich模型中1/n在0.1~0.5,表明Mg-Al-Cl LDH对磷的吸附易于进行[18]表3列举了不同吸附剂对磷的最大吸附量。可以看出,本研究的Mg-Al-Cl LDH具有相对较高的吸附容量,作为磷吸附剂有很强的竞争力。

    • Mg-Al-Cl LDH吸附磷前后的SEM-EDS图如图6所示。图6(a)为Mg-Al-Cl LDH的SEM图。可以看出,通过成核/晶化隔离法制备的Mg-Al-Cl LDH为规则的六边形层片结构,晶体大小均一,表面光滑,结晶度较好,而LAFI等[24]单纯通过共沉淀法制备的Mg-Al-Cl LDH没有达到此效果。图6(b)为Mg-Al-Cl LDH吸附磷后的SEM图。由图6(b)可知,Mg-Al-Cl LDH吸附磷后依旧保持层片结构但表面光滑度降低。这可能是因磷被吸附在Mg-Al-Cl LDH表面所造成的。图6(c)和图6(d)分别为Mg-Al-Cl LDH吸附磷前后的EDS图。由图6(c)和图6(d)可知,Mg-Al-Cl LDH吸附磷后,图谱中出现磷元素,可见磷被成功吸附在Mg-Al-Cl LDH上,且吸附后Cl的峰强度降低,Cl含量减少,说明氯离子通过离子交换被磷酸盐离子交换出层间。

      图7为Mg-Al-Cl LDH吸附磷前后的XRD图。在衍射角2θ值约为11.3°、22.8°、34.7°、39.1°、46.3°、60.5°、61.8°处分别对应的衍射晶面(003)、(006)、(012)、(015)、(018)、(110)、(113),表现出典型的LDH结构特征,且衍射峰强而尖锐,没有出现其他杂相峰,说明其纯度和结晶度较高[25]。在Mg-Al-Cl LDH吸附磷后,结晶度降低,但各个特征衍射峰依然存在,说明其依旧保持层状结构。通过Jade 6.0软件分析得到,Mg-Al-Cl LDH吸附磷后的层间距发生变化,由0.759 nm增加到0.776 nm,说明层间发生了离子交换,磷酸盐离子的插入扩大了层间距。d为0.776 nm也与磷酸盐作为层间阴离子所制备的LDH层间距接近[26]

      Mg-Al-Cl LDH吸附磷前后的FT-IR如图8所示。图8中3 565 cm−1处较大的吸收峰是金属氢氧化物层板上—OH基团的伸缩振动,1 610 cm−1处的吸收峰为—OH的弯曲振动,表明层间结晶水的存在[27]。1 370 cm−1处为CO23中C—O的不对称伸缩振动峰,可能来自制备过程中去离子水或空气中的CO2。1 067 cm−1处属于P—O键的不对称振动峰[28],说明磷吸附在了Mg-Al-Cl LDH上。664 cm−1处为M—O(M为Mg,Al)的拉伸振动峰[29],并且在吸附过后峰强度降低,说明M—O参与了吸附反应。此外,—OH基团对应的吸收峰发生了偏移,551 cm−1处的振动带归因于O—P—O的弯曲振动[30]。这进一步说明了磷酸盐与Mg-Al-Cl LDH层板上的—OH通过配体交换形成了络合物。

      图9为Mg-Al-Cl LDH吸附磷前后的XPS全谱图。由图9可以看出,在Mg-Al-Cl LDH吸附磷后,出现了一个新的P2p峰,同时Cl2p峰在吸附后几乎消失,因而进一步证实了磷酸盐离子与氯离子之间的离子交换行为。

      图10显示了O1s、P2p、Al2p、Mg1s的XPS谱图。图10(a)为P2p图,P2p解卷成2个重叠的峰,分别归因于磷酸盐的P2p1/2和P2p3/2,对应以H2PO4HPO24形式存在的磷酸盐。图10(b)为Mg1s图,在吸附后Mg1s由1 304.09 eV向较高能级偏移了0.34 eV。图10(c)为Al2p图,Al2p1/2和Al2p3/2的峰面积比发生了明显的变化,结合能为73.85 eV对应的Al—OH峰面积比由27.24%降至19.5%,说明Mg-Al-Cl LDH表面的羟基官能团通过配体交换形成Mg(Al)—O—P络合[31]。此外,图10(d)中O1s在结合能531.94 eV处对应的M—OH(M为Mg,Al)峰在吸附后峰面积比由86.45%降至75.28%,M—O的比例由13.55%升高至24.72%,也表明了Mg-Al-Cl LDH上的含氧官能团对磷酸盐具有很强的亲和力[32],其表面的—OH参与了磷酸盐的吸附过程形成了M—O—P络合[33]

      以上对吸附剂的表征分析结果表明,Mg-Al-Cl LDH吸附磷酸盐的机理为层间阴离子交换(式(10))、配体交换形成单齿或双齿络合(式(11)和式(12))以及在pH较低时(pH<pHpzc)存在静电吸附(式(13))。

    • 1) Mg-Al-Cl LDH对磷的吸附效果优于前人所研究的Mg-Al-CO23 LDH。pH会影响Mg-Al-Cl LDH的吸附性能,在pH为4~7时吸附效果最佳;随着pH增大,吸附量会下降。在50 mg·L−1磷的质量浓度下,Mg-Al-Cl LDH对磷的去除率随投加量增加持续上升,当其投加量为2 g·L−1时,水中磷可全部去除。在质量浓度为50 mg·L−1CO23的影响下,Mg-Al-Cl LDH对磷的去除率在60%以上,表现出一定的选择性。

      2) Mg-Al-Cl LDH对磷的吸附在前15 min反应迅速,在90 min时可达到吸附平衡,符合准二级动力学模型,吸附过程主要为化学吸附,颗粒内扩散并不是唯一控制吸附反应速率的因素。Sips模型能更好的描述吸附过程,对磷的理论最大吸附量可达62.46 mg·g−1

      3)通过表征分析发现,成核/晶化隔离法制备的Mg-Al-Cl- LDH拥有规整的六边形层片结构,具备典型的LDH结构,且晶体大小均一,结晶度较好,在吸附磷后依旧保持层状结构。Mg-Al-Cl- LDH对磷酸盐的吸附机理主要为静电吸引、离子交换、配体交换过程。

    参考文献 (33)

返回顶部

目录

/

返回文章
返回