-
随着我国城市化和工业化的迅速发展,大量的含磷废水未经有效处理排入水环境中,导致河道和湖泊的水质急剧恶化,出现水体黑臭现象[1]。过量的磷是引起水体富营养化的主要原因[2],水体富营养化会导致藻类过度生长,降低水质,严重危害水生态系统及人类健康[3]。因此,开发经济高效的除磷技术成为研究的重点。目前,污水除磷技术主要包括化学沉淀法、生物处理法、膜处理法、吸附法等。与其他方法相比,吸附法具有操作简单,经济效益好,灵活性高等优点,使其在水处理中得到广泛研究和应用[4]。
近年来,层状双金属氢氧化物(layered double hydroxides, LDH)作为一种新兴材料得到研究人员的广泛关注,其特殊的层状结构相比其他常规吸附剂具有更好的阴离子交换能力及更高的吸附容量,同时其具有制备简单、成本廉价的优点[5]。但在以前的报道中,所制备LDH大多为
${\rm{CO}}_3^{2-} $ -LDH,而对于Cl−-LDH吸附磷的研究较少。由于${\rm{CO}}_3^{2-} $ 的离子交换性能要强于${\rm{H}}_2{\rm{PO}}_4^-$ [6],${\rm{CO}}_3^{2-} $ 不易与磷酸根进行离子交换,限制了其对磷的吸附性能。例如,EDAÑOL等[7]采用共沉淀法合成Mg-Al-${\rm{CO}}_3^{2-} $ LDH,其对磷的吸附量仅为23.792 mg·L−1。由于Mg、Al元素在地壳中丰度高,采用Mg、Al作为原料可减少成本,相对其他金属,对环境也更友好[8]。因此,本研究以Cl-作为层间阴离子以及Mg、Al为金属前体,通过成核/晶化隔离法制备了Mg-Al-Cl− LDH,通过表征手段对吸附剂吸附前后的结构形貌进行分析,且考察了其对磷的吸附性能,探究了可能的吸附机理,以期为Mg-Al-Cl− LDH吸附除磷提供参考。
Mg-Al-Cl− LDH对磷的吸附性能及其机理
Adsorption performance and mechanism of Mg-Al-Cl− LDH on phosphate
-
摘要: 通过成核/晶化隔离法制备了氯离子型镁铝层状双金属氢氧化物(Mg-Al-Cl− LDH),并用于磷酸盐的吸附;借助扫描电镜(SEM)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、X射线光电子能谱(XPS)进行了表征,并探究其吸附磷酸盐的机理。结果表明:当pH为4~7时,Mg-Al-Cl− LDH对磷的吸附效果较好,而在碱性条件下吸附量会下降;磷质量浓度为50 mg·L−1,当pH为5时,Mg-Al-Cl− LDH投加量为2 g·L−1时,磷去除率可达到100%;共存离子
${\rm{CO}}_3^{2-} $ 会对吸附产生一定影响,当${\rm{CO}}_3^{2-} $ 质量浓度为50 mg·L−1时,磷去除率由87%降低到63%。Mg-Al-Cl− LDH对磷的吸附过程在前15 min迅速,90 min时达到平衡,符合准二级动力学和Sips吸附等温模型,说明主要吸附过程以化学吸附为主,理论最大吸附量为62.46 mg·g−1。表征结果表明,Mg-Al-Cl− LDH为典型的六边形层片结构,吸附后依旧保持该结构。Mg-Al-Cl− LDH对磷的吸附机理主要为静电吸引、层间阴离子交换、配体交换过程。Abstract: The chloride ion type magnesium aluminum layered double hydroxide (Mg-Al-Cl− LDH) was prepared by nucleation and crystallization isolation method, and used to absorb phosphate. Scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the fresh and P absorbed Mg-Al-Cl− LDH and identify the corresponding adsorption mechanism. The results show that Mg-Al-Cl− LDH had a good adsorption performance towards phosphate at pH 4~7, whereas the adsorption capacity decreased under alkaline conditions. At the initial phosphate concentration of 50 mg·L−1, pH 5 and Mg-Al-Cl− LDH dosage of 2 g·L−1, the phosphate removal rate could reach 100%. The coexisting anion of${\rm{CO}}_3^{2-} $ had a certain influence on the adsorption, at its concentration of 50 mg·L−1, the phosphate removal rate decreased from 87% to 63%. The phosphate adsorption process on Mg-Al-Cl− LDH was rapid in the first 15 min, then reached equilibrium in 90 min, which conformed to the pesudo-second-order kinetics and the Sips adsorption isotherm model. This indicated that the adsorption process was dominated by chemical adsorption with the maximum theoretical adsorption capacity of 62.46 mg·g−1. The characterization results showed that Mg-Al-Cl− LDH was a typical hexagonal layered structure and still maintained it after adsorption. The phosphate adsorption mechanism on Mg-Al-Cl−LDH was mainly electrostatic attraction, interlayer anion exchange and ligand exchange.-
Key words:
- layered double hydroxide /
- phosphate /
- adsorption /
- influencing factors /
- adsorption mechanism
-
表 1 吸附动力学拟合参数
Table 1. Adsorption kinetics fitting parameters
准一级动力学 准二级动力学 颗粒内扩散 qe(cal)/
(mg·g−1)k1/
min−1R2 qe(cal)/
(mg·g−1)k2/
(g·(mg·min)−1)R2 k1/
(g·(mg·min0.5)−1)R12 k2/
(g·(mg·min0.5)−1)R22 k3/
(g·mg·min0.5)−1)R32 41.476 0.357 0.819 43.460 0.014 0.966 7.596 0.961 1.068 0.979 0.076 0.564 表 2 吸附等温线拟合参数
Table 2. Adsorption isotherm fitting parameters
温度/K Langmuir Freundlich Sips qm /(mg·g−1) KL /(L·mg−1) R2 1/n KF R2 qm /(mg·g−1) Ks /(L·mg−1) N R2 298 54.524 1.194 0.890 0.134 29.563 0.929 62.460 0.876 0.470 0.989 -
[1] 赵鹏, 苏子龙, 何剑伟, 等. DSB+CPB复合改性膨润土对磷酸盐的吸附[J]. 环境工程学报, 2020, 14(4): 906-916. doi: 10.12030/j.cjee.201909035 [2] 王乐阳, 许骐, 周琴, 等. 镧铝/壳聚糖复合小球对水中磷的吸附及机理[J]. 环境工程学报, 2018, 12(9): 2490-2501. doi: 10.12030/j.cjee.201803229 [3] NAKARMI A, BOURDO S E, RUHL L, et al. Benign zinc oxide betaine-modified biochar nanocomposites for phosphate removal from aqueous solutions[J]. Journal of Environmental Management, 2020, 272: 111048. doi: 10.1016/j.jenvman.2020.111048 [4] JUNG K, LEE S Y, CHOI J, et al. Synthesis of Mg-Al layered double hydroxides-functionalized hydrochar composite via an in situ one-pot hydrothermal method for arsenate and phosphate removal: Structural characterization and adsorption performance[J]. Chemical Engineering Journal, 2021, 420: 129775. doi: 10.1016/j.cej.2021.129775 [5] SHARMA R, ARIZAGA G G C, SAINI A K, et al. Layered double hydroxide as multifunctional materials for environmental remediation: From chemical pollutants to microorganisms[J]. Sustainable Materials and Technologies, 2021, 29: e319. [6] 吕维扬, 孙继安, 姚玉元, 等. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063. [7] EDAÑOL Y D G, POBLADOR J A O, TALUSAN T J E, et al. Co-precipitation synthesis of Mg-Al-CO3 layered double hydroxides and its adsorption kinetics with phosphate(V) ions[J]. Materials Today: Proceedings, 2020, 33: 1809-1813. doi: 10.1016/j.matpr.2020.05.059 [8] AHMED S, ASHIQ M N, LI D, et al. Recent progress on adsorption materials for phosphate removal[J]. Recent Patents on Nanotechnology, 2019, 13(1): 3-16. doi: 10.2174/1872210513666190306155245 [9] 张倩. 层状双金属氢氧化物除磷材料及氨基酸插层改性性能研究[D]. 重庆: 重庆大学, 2018. [10] TANG Q, SHI C, SHI W, et al. Preferable phosphate removal by nano-La(Ⅲ) hydroxides modified mesoporous rice husk biochars: Role of the host pore structure and point of zero charge[J]. Science of the Total Environment, 2019, 662: 511-520. [11] ZHOU H, TAN Y, YANG Y, et al. Application of FeMgMn layered double hydroxides for phosphate anions adsorptive removal from water[J]. Applied Clay Science, 2020, 200: 105903. [12] MIYATA S. Anion-exchange properties of hydrotalcite-like compounds[J]. Clays and Clay Minerals, 1983, 31(4): 305-311. doi: 10.1346/CCMN.1983.0310409 [13] SAADAT S, RA EI E, TALEBBEYDOKHTI N. Enhanced removal of phosphate from aqueous solutions using a modified sludge derived biochar: Comparative study of various modifying cations and RSM based optimization of pyrolysis parameters[J]. Journal of Environmental Management, 2018, 225: 75-83. [14] LEE S Y, CHOI J, SONG K G, et al. Adsorption and mechanistic study for phosphate removal by rice husk-derived biochar functionalized with Mg/Al-calcined layered double hydroxides via co-pyrolysis[J]. Composites Part B:Engineering, 2019, 176: 107209. doi: 10.1016/j.compositesb.2019.107209 [15] 张兴枝. 类花状水滑石材料的制备及其对水体中磷的吸附再利用性能研究[D]. 杭州: 浙江理工大学, 2020. [16] ZHU N, YAN T, QIAO J, et al. Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization[J]. Chemosphere, 2016, 164: 32-40. doi: 10.1016/j.chemosphere.2016.08.036 [17] 刘泽珺. 壳聚糖基半互穿网络水凝胶的制备及其对水中腐殖酸的吸附性能[D]. 广州: 华南理工大学, 2018. [18] ZHANG Z, YAN L, YU H, et al. Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: Fast removal and mechanistic studies[J]. Bioresource Technology, 2019, 284: 65-71. doi: 10.1016/j.biortech.2019.03.113 [19] LI X D, KUANG Y, CHEN J B, et al. Competitive adsorption of phosphate and dissolved organic carbon on lanthanum modified zeolite[J]. Journal of Colloid and Interface Science, 2020, 574: 197-206. doi: 10.1016/j.jcis.2020.04.050 [20] 万骏. 基于功能设计的水凝胶对水中磷酸盐去除研究[D]. 武汉: 华中科技大学, 2018. [21] 郑力. 氧化镁/果胶复合除磷剂的制备及其除磷机理研究[D]. 武汉: 华中科技大学, 2017. [22] WANG Y, XIE X, CHEN X, et al. Biochar-loaded Ce3+-enriched ultra-fine ceria nanoparticles for phosphate adsorption[J]. Journal of Hazardous Materials, 2020, 396: 122626. doi: 10.1016/j.jhazmat.2020.122626 [23] ZOU Y, ZHANG R, WANG L, et al. Strong adsorption of phosphate from aqueous solution by zirconium-loaded Ca-montmorillonite[J]. Applied Clay Science, 2020, 192: 105638. doi: 10.1016/j.clay.2020.105638 [24] LAFI R, CHARRADI K, DJEBBI M A, et al. Adsorption study of congo red dye from aqueous solution to Mg-Al-ayered double hydroxide[J]. Advanced Powder Technology, 2016, 27(1): 232-237. doi: 10.1016/j.apt.2015.12.004 [25] LEE S Y, CHOI J W, SONG K G, et al. Adsorption and mechanistic study for phosphate removal by rice husk-derived biochar functionalized with Mg/Al-calcined layered double hydroxides via co-pyrolysis[J]. Composites Part B:Engineering, 2019, 176: 107209.1-107209.15. [26] HE H, KANG H, MA S, et al. High adsorption selectivity of ZnAl layered double hydroxides and the calcined materials toward phosphate[J]. Journal of Colloid and Interface Science, 2010, 343(1): 225-231. doi: 10.1016/j.jcis.2009.11.004 [27] 何天旭. 铁改性镁铝水滑石吸附剂制备及其对水中磷的吸附研究[D]. 武汉: 华中科技大学, 2019. [28] JIA Z, ZENG W, XU H, et al. Adsorption removal and reuse of phosphate from wastewater using a novel adsorbent of lanthanum-modified platanus biochar[J]. Process Safety and Environmental Protection, 2020, 140: 221-232. doi: 10.1016/j.psep.2020.05.017 [29] 程福龙, 李超, 陈娟, 等. Zr4+掺杂对Mg/Al水滑石磷酸根吸附行为的影响[J]. 精细化工, 2019, 36(10): 2122-2127. [30] LING Z, QI Z, JIANYONG L, et al. Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber[J]. Chemical Engineering Journal, 2012, 185-186: 160-167. doi: 10.1016/j.cej.2012.01.066 [31] BUI T H, HONG S P, YOON J. Development of nanoscale zirconium molybdate embedded anion exchange resin for selective removal of phosphate[J]. Water Research, 2018, 134: 22-31. doi: 10.1016/j.watres.2018.01.061 [32] YANG F, ZHANG S S, SUN Y Q, et al. Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery[J]. Journal of Hazardous Materials, 2019, 365: 665-673. doi: 10.1016/j.jhazmat.2018.11.047 [33] 刘晨, 张美一, 潘纲. 超薄水滑石纳米片除磷效果与机理[J]. 环境工程学报, 2018, 12(9): 2446-2456. doi: 10.12030/j.cjee.201803195