-
膜分离技术具有无二次污染、占用空间小、分离效率高、操作简单等优点,因而在水处理过程中应用广泛[1-2]。以纳滤(nanofiltration,NF)和反渗透(reverse osmosis,RO)膜为代表的高压膜技术可高效去除无机盐和微量有机物等溶解性污染物[3-4],已逐渐发展成为脱盐、除硬、污水再生利用和高品质饮用水处理领域的关键技术[5-6]。膜材料是膜技术的核心[7],其主要性能指标为分离膜的渗透性和选择性[8-10]。高分子聚合物因种类多、易加工、价格低等优点被广泛用于的分离膜制备,然而高分子聚合物分离膜普遍存在渗透性和选择性相互制约、此升彼降的矛盾关系(Trade-off效应)。因此,进一步提高分离膜的水通量和选择性,寻找新材料或改变传统的膜制备方法(如在传统基质膜中加入纳米材料等)来改善膜渗透性和选择性成为膜技术发展的迫切需求[11-12]。
二维材料因厚度超薄,具有纳米尺寸的孔洞和通道,以及易于成膜、亲水性良好、易改性等特点被认为是理想的膜材料[12-14]。其中,氧化石墨烯(graphene oxide,GO)因表面富含大量含氧官能团,且亲水性和化学修饰性较好,制备方法简单,化学性质稳定,比表面积巨大[15-16],成本低廉等优点被广泛应用于膜制备中[17-18]。
本文以GO的结构性质为切入点,梳理了GO混合基质膜和GO层压膜(以下简称“GO膜”)的制备方法及其膜性能,分析GO在膜分离技术中尚存在的不足,并对未来的研究和应用前景进行了展望。
氧化石墨烯高压膜的制备及其在水处理中的应用研究进展
Research progress on the application of graphene oxide in preparation of high-pressure membranes for water purification
-
摘要: 氧化石墨烯(GO)是一种理想的二维结构分离膜材料。从GO结构性质入手,探讨了GO混合基质膜和GO层压膜(GO膜)的制备及其在水处理中的研究现状与前景。分析了GO的添加方式对混合基质膜性能的影响,未来需要进一步对GO表面的活性基团进行改性以提高其分散性和与聚合物的相容性,并加强GO及改性GO的添加方式对膜性能影响的研究。GO混合基质膜在一定程度上可克服传统聚合物膜的Trade-off 效应,技术成熟度较高、应用前景较好。GO膜在水溶液中的不稳定性是其在水处理中应用中的瓶颈,在系统分析提高GO膜稳定性的方法的基础上,进一步指出需要探讨采用新型交联剂或多种稳定方法同步强化其稳定性的可行性,同时其在实际应用中的稳定性及长期运行效果需要进一步研究和验证,以利于开拓其应用。
-
关键词:
- 膜技术 /
- 水处理 /
- 氧化石墨烯膜 /
- 氧化石墨烯混合基质膜
Abstract: Graphene oxide (GO) as a two-dimensional material is ideal for membrane fabrication. In this review, the preparation of GO mixed matrix membrane and GO-based membrane and their application in water treatment were discussed. From the perspective of membrane preparation, the effects of the addition method of GO on the performance of mixed matrix membranes and the methods to improve the stability of GO-based membranes were discussed. For mixed matrix membranes, the functional groups of GO need to be modified to improve its dispersibility and compatibility with the polymer matrix, and the effect of addition methods on the performance of nanofiltration membranes should be further studied. GO mixed matrix membranes can overcome the trade-off effect to some extent, and have high technical maturity and good application prospects. For GO-based membrane, the instability in water limits its application in water treatment. To overcome this bottleneck, the methods to improve the stability is comprehensively reviewed. The new type of crosslinker and or multiple stabilization methods should be developed. More importantly, the long-term stability of GO-based membranes in water needs further investigation for real application.-
Key words:
- membrane technology /
- water treatment /
- graphene oxide membrane /
- mixed matrix membrane
-
表 1 GO制备方法的对比
Table 1. Comparison of preparation methods for GO-based membrane
制备方法 优点 缺点 真空过滤法 操作简单 GO片层连接较弱,膜稳定性较差 层层自组装法 膜稳定性好,性能优异 制备时间较长,操作繁琐 旋涂法 能有效控制GO膜的厚度 操作条件较高,无法大量制备 表 2 不同交联剂制备的GO膜及性能
Table 2. The fabrication methods and performance of GO-based membrane with different crosslinkers
交联剂 基膜 交联方法 机制 交联效果 N-异丙基丙烯酰胺N,N'-亚甲基双丙烯酰胺[22] 聚偏二氟乙烯膜 将两种交联剂加入GO溶液后进行抽滤 三者在水性条件下的自由基聚合过程中能形成GO-聚合物网络 水通量:33.5 L·(m2·h)−1
NaCl截留:98.5%
且具有较好氯稳定性多巴胺[80] 聚偏二氟乙烯膜 使用多巴胺溶液涂敷聚偏二氟乙烯膜 多巴胺有强粘附能力 增强了GO分离层和基底之间的连接,增加了膜稳定性 多巴胺[81] 多孔α-Al2O3膜 将多巴胺涂敷在多孔α-Al2O3基膜上 多巴胺有强粘附能力 水通量:32.1 kg·(m2·h)−1
截留:99.7%
336 h后截留和通量几乎恒定对苯二胺[82] 聚丙烯腈膜 通过LBL法将GO和对苯二胺交联 对苯二胺中的胺与GO中的环氧基之间的环氧开环反应,产生羟基和仲胺 截留率提高了12%,稳定性显著增强 乙二胺[99] 溴化聚苯醚膜 在乙二胺中加入不同量的GO GO上的-COOH与乙二胺上的-NH反应 交联膜在水中浸泡1个月后,仍保持其通量和脱盐能力 尿素[85] 醋酸纤维素膜 GO和尿素混合,过滤 尿素上的-NH与GO上的-COOH反应 膜通量提高了1.6~2.4倍 二羧酸[87] 聚丙烯微滤膜 二羧酸与GO混合,
过滤二羧酸与GO上的羧基交联 渗透量增加了2倍,GO溶胀度
下降了4.3%阳离子[88,91] 醋酸纤维素膜;聚偏二氟乙烯膜;陶瓷膜 GO分别与不同阳离子溶液混合制膜 阳离子通过静电力和配位键提高GO纳米片的键合强度 膜完整性能保持1个月以上,且能通过调节阳离子浓度来调节GO层间距 四硼酸钠[92] 聚偏二氟乙烯膜 在GO溶液中加入四硼酸钠混合 两者反应形成
—B—O—C—共价键膜的临界破坏载荷增加了10倍,在破坏性洗涤实验中保持良好的稳定性 均苯三甲酰氯[100] 聚砜膜 层层组装法 酰氯基团与GO上羧基和羟基反应形成酯键 亚甲基蓝:46%~66%
罗丹明-WT:93%~95%
水通量:27.2~93.8 L·(m2·h)−1卟啉[95] PC膜 GO与卟啉混合后过滤 通过静电作用和π−π作用 Na2SO4:87.7%
水通量:9.3 L·(m2·h)−1聚阳离子[96] 聚丙烯腈膜 层层组装法 静电作用 甲基蓝:99.2%
水通量(每0.1 MPa下):6.42 kg·(m2·h)−1聚乙烯亚胺[97] 聚丙烯腈膜 层层组装法 静电作用 MgCl2:86% 聚氧化铝[98] 聚偏二氟乙烯膜 层层组装法 静电作用 腐殖酸:99.6%
TOC:90%~95%聚丙烯胺盐酸盐[101] 聚丙烯腈膜 层层组装法 静电作用 蔗糖:99% -
[1] 赵向阳, 许锋. 膜技术在饮用水处理行业的研究进展及应用[J]. 广东化工, 2017, 44(16): 152-153. doi: 10.3969/j.issn.1007-1865.2017.16.067 [2] PERSSON K M, GEKAS V, TRAGARDH G. Study of membrane compaction and its influence on ultrafiltration water permeability[J]. Journal of Membrane Science, 1995, 100(2): 155-162. doi: 10.1016/0376-7388(94)00263-X [3] GIN D L, NOBLE R D. Designing the next generation of chemical separation membranes.[J]. Science, 2011, 332(6030): 674-676. doi: 10.1126/science.1203771 [4] DU Y C, HUANG L J, WANG Y X, et al. Recent developments in graphene-based polymer composite membranes: Preparation, mass transfer mechanism, and applications[J]. Journal of Applied Polymer Science, 2019, 136(28): 47761. doi: 10.1002/app.47761 [5] TANG C Y, ZHE Y, HAO G, et al. Potable water reuse through advanced membrane technology[J]. Environmental Science & Technology, 2018, 52(18): 10215-10223. [6] XU R, QIN W, ZHANG B, et al. Nanofiltration in pilot scale for wastewater reclamation: long-term performance and membrane biofouling characteristics[J]. Chemical Engineering Journal, 2020, 395: 125087. doi: 10.1016/j.cej.2020.125087 [7] PENDERGAST M T M, HOEK E M V. A review of water treatment membrane nanotechnologies[J]. Energy & Environmental Science, 2011, 4(6): 1946-1971. [8] MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. doi: 10.1016/j.desal.2014.10.043 [9] KOROS W J, ZHANG C. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. doi: 10.1038/nmat4805 [10] EPSZTEIN R, SHAULSKY, QIN M, et al. Activation behavior for ion permeation in ion-exchange membranes: Role of ion dehydration in selective transport[J]. Journal of Membrane Science, 2019, 580(15): 316-326. [11] YANG Y, WANG H, LI J, et al. Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment[J]. Environmental Science & Technology, 2012, 46(12): 6815-6821. [12] LEE A, ELAM J W, DARLING S B. Membrane materials for water purification: Design, development, and application[J]. Environmental Science: Water Research & Technology, 2016, 2(1): 17-42. [13] WEI Y, ZHAGN Y, GAO X, et al. Multilayered graphene oxide membrane for water treatment: A review[J]. Carbon, 2018, 139: 964-981. doi: 10.1016/j.carbon.2018.07.040 [14] FATHIZADEH M, XU W L, ZHOU F, et al. Graphene oxide: a novel 2-Dimensional material in membrane separation for water purification[J]. Advanced Materials Interfaces, 2017, 4(5): 1-16. [15] SONG N, GAO X, MA Z, et al. A review of graphene-based separation membrane: Materials, characteristics, preparation and applications[J]. Desalination, 2018, 437: 59-72. doi: 10.1016/j.desal.2018.02.024 [16] YOON H W, CHO Y H, PARK H B. Graphene-based membranes: Status and prospects[J]. Philosophical Transactions, 2016, 374(2060): 1-23. [17] KANG Y, XIA Y, WANG H, et al. 2D laminar membranes for selective water and ion transport[J]. Advanced Functional Materials, 2019, 29(29): 1902014. doi: 10.1002/adfm.201902014 [18] SUN P, WANG K, ZHU H. Recent Developments in graphene-based membranes: structure, mass-transport mechanism and potential applications[J]. Advanced Materials, 2016, 28(12): 2287-2310. doi: 10.1002/adma.201502595 [19] LERF A, HE H Y, FORSTER M, et al. Structure of graphite oxide revisited[J]. The Journal of Physical Chemistry, 1998, 102(21/22/23/24): 4477-4482. [20] 黄铁凡. 交联型GO膜的结构调控和应用[D]. 杭州: 浙江大学, 2015. [21] 徐宇曦. 功能化石墨烯的制备、组装及其应用[D]. 北京: 清华大学, 2011. [22] KIM S, OU R, HU Y, et al. Non-swelling graphene oxide-polymer nanocomposite membrane for reverse osmosis desalination[J]. Journal of Membrane Science, 2018, 562: 47-55. doi: 10.1016/j.memsci.2018.05.029 [23] 董航, 张林, 陈欢林, 等. 混合基质水处理膜: 材料、制备与性能[J]. 化学进展, 2014, 26(12): 2007-2018. [24] CHONG J Y, WANG B, MATTEVI C, et al. Dynamic microstructure of graphene oxide membranes and the permeation flux[J]. Journal of Membrane Science, 2018, 549: 385-392. doi: 10.1016/j.memsci.2017.12.018 [25] HEGAB H M, ZOU L. Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification[J]. Journal of Membrane Science, 2015, 484: 95-106. doi: 10.1016/j.memsci.2015.03.011 [26] BASKORO F, WONG C B, RAJESH KUMAR S, et al. Graphene oxide-cation interaction: inter-layer spacing and zeta potential changes in response to various salt solutions[J]. Journal of Membrane Science, 2018, 554: 253-263. doi: 10.1016/j.memsci.2018.03.006 [27] GANESH B M, ISLOOR A M, ISMAIL A F. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane[J]. Desalination, 2013, 313(7): 199-207. [28] ZINADINI S, ZINATIZADEH A A, RAHIMI M, et al. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates[J]. Journal of Membrane Science, 2014, 453(3): 292-301. [29] ZHAO C, XU X, CHEN J, et al. Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes[J]. Journal of Environmental Chemical Engineering, 2013, 1(3): 349-354. doi: 10.1016/j.jece.2013.05.014 [30] LAI G S, LAU W J, GOH Q S, et al. Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance[J], Desalination, 2016, 387(1): 14-24. [31] NASSERI S, EBRAHIMI S, SAEEDI R, et al. Synthesis and characterization of polysulfone/graphene oxide nano-composite membranes for removal of bisphenol A from water[J]. Journal of Environmental Management, 2018, 205(1): 174-182. [32] ZHAO H, WU L, ZHOU Z, et al. Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide[J]. Physical Chemistry Chemical Physics, 2013, 15(23): 9084-9092. doi: 10.1039/c3cp50955a [33] XIE Q, ZHANG S, HONG Z, et al. A novel double-modified strategy to enhance the performance of thin-film nanocomposite nanofiltration membranes: Incorporating functionalized graphenes into supporting and selective layers[J]. Chemical Engineering Journal,2019, 368: 186-201. [34] YIN J, ZHU G, DENG B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification[J]. Desalination, 2016, 379: 93-101. doi: 10.1016/j.desal.2015.11.001 [35] 陈贤鸿, 傅倍佳, 钟明强, 等. 氧化石墨烯掺杂反渗透混合基质膜制备及性能[J]. 化工学报, 2018, 69(1): 437-442. [36] HU R, ZHANG R, HE Y, et al. Graphene oxide-in-polymer nanofiltration membranes with enhanced permeability by interfacial polymerization[J]. Journal of Membrane Science, 2018, 564: 813-819. doi: 10.1016/j.memsci.2018.07.087 [37] ZHAO W, LIU H Y, MENG N, et al. Graphene oxide incorporated thin film nanocomposite membrane at low concentration monomers[J]. Journal of Membrane Science, 2018, 565: 380-389. [38] 芦瑛, 赵海洋, 张林, 等. 含氧化石墨烯混合基质反渗透复合膜的制备及性能研究[J]. 中国工程科学, 2014, 16(7): 84-88. doi: 10.3969/j.issn.1009-1742.2014.07.015 [39] BANO S, MAHMOOD A, KIM S J, et al. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties[J]. Journal of Materials Chemistry A, 2015, 3(5): 2065-2071. doi: 10.1039/C4TA03607G [40] ALI M E A, WANG L, WANG X, et al. Thin film composite membranes embedded with graphene oxide for water desalination[J]. Desalination, 2016, 386: 67-76. doi: 10.1016/j.desal.2016.02.034 [41] XIA S, YAO L, ZHAO Y, et al. Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal[J]. Chemical Engineering Journal, 2015, 280: 720-727. doi: 10.1016/j.cej.2015.06.063 [42] WANG X, WNAG H, WNAG Y, et al. Hydrotalcite/graphene oxide hybrid nanosheets functionalized nanofiltration membrane for desalination[J]. Deslination, 2019, 451: 209-218. doi: 10.1016/j.desal.2017.05.012 [43] YANG L L, XI L, YAN S L, et al. Single-walled carbon nanotubes-carboxyl-functionalized graphene oxide-based electrochemical DNA biosensor for thermolabile hemolysin gene detection[J]. Analytical Methods, 2015, 7: 5303-5310. doi: 10.1039/C5AY01062D [44] ZHANG H, LI B, PAN J, et al. Carboxyl-functionalized graphene oxide polyamide nanofiltration membrane for desalination of dye solutions containing monovalent salt[J]. Journal of Membrane Science, 2017, 539: 128-137. doi: 10.1016/j.memsci.2017.05.075 [45] KANG Y, OBAID M, JANG J, et al. Novel sulfonated graphene oxide incorporated polysulfone nanocomposite membranes for enhanced-performance in ultrafiltration process[J]. Chemosphere, 2018, 207: 581-589. doi: 10.1016/j.chemosphere.2018.05.141 [46] WEN P, CHEN Y, HU X, et al. Polyamide thin film composite nanofiltration membrane modified with acyl chlorided graphene oxide[J]. Journal of Membrane Science, 2017, 535: 208-220. doi: 10.1016/j.memsci.2017.04.043 [47] ZHANG Y, RUAN H, GUO C, et al. Thin-film nanocomposite reverse osmosis membranes with enhanced antibacterial resistance by incorporating p-aminophenol-modified graphene oxide[J]. Separation and Purification Technology, 2020, 234: 116017. doi: 10.1016/j.seppur.2019.116017 [48] ALI F A, ALAM J, SHUKLA A K, et al. Graphene oxide-silver nanosheet-incorporated polyamide thin-film composite membranes for antifouling and antibacterial action against Escherichia coli and bovine serum albumin[J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 227-238. doi: 10.1016/j.jiec.2019.07.052 [49] LIU Y, LIU J, JIANG J, et al. Synthesis of novel high flux thin-film nanocomposite nanofiltration membranes containing GO-SiO2 via interfacial polymerization[J]. Industrial & Engineering Chemistry Research, 2019, 58: 22324-22333. [50] ABADIKHAH H, KALALI E N, KHODI S, et al. Multifunctional thin-film nanofiltration membrane Incorporated with reduced graphene oxide@TiO2@Ag nanocomposites for high desalination performance, dye retention, and antibacterial properties[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23535-23545. [51] LAI G S, LAU W J, GOH P S, et al. A novel interfacial polymerization approach towards synthesis of graphene oxide-incorporated thin film nanocomposite membrane with improved surface properties[J]. Arabian Journal of Chemistry, 2019, 12(1): 75-87. doi: 10.1016/j.arabjc.2017.12.009 [52] SHI J, WU W, XIA Y, et al. Confined interfacial polymerization of polyamide-graphene oxide composite membranes for water desalination[J]. Desalination, 2018, 441: 77-86. doi: 10.1016/j.desal.2018.04.030 [53] LI Y, LI C, LI S, et al. Graphene oxide (GO)-interlayered thin-film nanocomposite (TFN) membranes with high solvent resistance for organic solvent nanofiltration (Osn)[J]. Journal of Materials Chemistry A, 2019, 7: 13315-13330. doi: 10.1039/C9TA01915D [54] CHOI W, CHOI J, BANG J, et al. Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12510-12519. [55] FRANCOIS P, TOUSLEY M E, ELIMELECH M. Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets[J]. Environmental Science & Technology Letters, 2013, 1(1): 71-76. [56] WANG J L, GAO X L, WANG J, et al. O-(Carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4381-4389. [57] KOVTUN A, ZAMBIANCHI M, BETTINI C, et al. Graphene oxide–polysulfone filters for tap water purification, obtained by fast microwave oven treatment[J]. Nanoscale, 2019, 11: 22780-22787. doi: 10.1039/C9NR06897J [58] JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. doi: 10.1126/science.1245711 [59] WANG K, AUSRI I R, CHU K Y, et al. Pressure-driven solvent transport and complex ion permeation through graphene oxide membranes[J]. Advanced Materials Interface, 2019, 6(12): 1802056. doi: 10.1002/admi.201802056 [60] FEI W W, XUE M M, QIU H, et al. Heterogeneous graphene oxide membrane for rectified ion transport[J]. Nanoscale, 2019, 11(3): 1313-1318. doi: 10.1039/C8NR07557C [61] PERREAULT F, ANDREIA F D, ELIMELECH M. Environmental applications of graphene-based nanomaterials[J]. Chemical Society Reviews, 2015, 44(16): 5861-5896. [62] ZHANG M, SUN J, MAO Y, et al. Effect of substrate on formation and nanofiltration performance of graphene oxide membranes[J]. Journal of Membrane Science, 2019, 574: 196-204. doi: 10.1016/j.memsci.2018.12.071 [63] 张瑛洁, 戴继悟. 氧化石墨烯改性复合纳滤膜的研究进展[J]. 水处理技术, 2017, 43(9): 1-5. [64] NAN Q, LI P, CAO B. Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination[J]. Applied Surface Science, 2016, 387: 521-528. doi: 10.1016/j.apsusc.2016.06.150 [65] ZHU Y, MURALI S, CAI W, et al. Graphene-based materials: Graphene and graphene oxide: Synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. doi: 10.1002/adma.201001068 [66] WANG T, LU J, MAO L, et al. Electric field assisted layer-by-layer assembly of graphene oxide containing nanofiltration membrane[J]. Journal of Membrane Science, 2016, 515: 125-133. doi: 10.1016/j.memsci.2016.05.053 [67] QI B Y, HE X F, ZENG G F, et al. Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes[J]. Nature Communications, 2017, 8(1): 825. doi: 10.1038/s41467-017-00990-x [68] FATHIZADE M, TIEN H N, KHIVANTSEV K, et al. Printing ultrathin graphene oxide nanofiltration membranes for water purification[J]. Journal of Materials Chemistry A, 2017,5(39): 20860-20866. [69] KIM H W, YOON H W, YOON S M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes[J]. Science, 2013, 342(6154): 91-95. doi: 10.1126/science.1236098 [70] LI H, SONG Z, ZHANG X, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation[J]. Science, 2013, 342(6154): 95-98. doi: 10.1126/science.1236686 [71] LIU R, ARABALE G, KIM J, et al. Graphene oxide membrane for liquid phase organic molecular separation[J]. Carbon, 2014, 77: 933-938. doi: 10.1016/j.carbon.2014.06.007 [72] LIU G P, JIN W Q. Graphene oxide membrane for molecular separation: challenges and opportunities[J]. Science China Materials, 2018, 61(8): 1021-1026. doi: 10.1007/s40843-018-9276-8 [73] NAIR R R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. doi: 10.1126/science.1211694 [74] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240. doi: 10.1039/B917103G [75] HUANG L, ZHANG M, LI C, et al. Graphene-based membranes for molecular separation[J]. The Journal of Physical Chemistry Letters, 2015, 6(14): 2806-2815. doi: 10.1021/acs.jpclett.5b00914 [76] ROMANOS G, PASTRANA M, TSOUFIS T, et al. A facile approach for the development of fine-tuned self-standing graphene oxide membranes and their gas and vapor separation performance[J]. Journal of Membrane Science, 2015, 493: 734-747. doi: 10.1016/j.memsci.2015.07.034 [77] ZHANG M C, MAO Y Y, LIU G Z, et al. Molecular bridges stabilize graphene oxide membranes in Water[J]. Angewandte Chemie, 2019, 58: 2-9. doi: 10.1002/anie.201813331 [78] MI B. Graphene oxide membranes for ionic and molecular sieving[J]. Science, 2014, 343(6172): 740-742. doi: 10.1126/science.1250247 [79] AN Z, COMPTON O C, PUTZ K W, et al. Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films[J]. Advanced Materials, 2011, 23(33): 3842-3846. [80] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. [81] XU K, FENG B, ZHOU C, et al. Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination[J]. Chemical Engineering Science, 2016, 146: 159-165. [82] VEPIKA K, ANA M P, ACEVEDO B, et al. Enhanced covalent p-phenylenediamine crosslinked graphene oxide membranes: Towards superior contaminant removal from wastewaters and improved membrane reusability[J]. Journal of Hazardous Materials, 2019, 380: 120840. doi: 10.1016/j.jhazmat.2019.120840 [83] LI B, CUI Y, JAPIP S, et al. Graphene oxide (GO) laminar membranes for concentrating pharmaceuticals and food additives in organic solvents[J]. Carbon, 2018, 130: 503-514. doi: 10.1016/j.carbon.2018.01.040 [84] MAHALINGAM D K, WANG S F, NUNES S P. Stable graphene oxide cross-linked membranes for organic solvent nnanofiltration[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23106-23113. [85] ZHANG Y Z, SU K M, LI Z H. Graphene oxide composite membranes cross-linked with urea for enhanced desalting properties[J]. Journal of Membrane Science, 2018, 563: 718-725. doi: 10.1016/j.memsci.2018.06.037 [86] JIA Z, WANG Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation[J]. Journal of Materials Chemistry A, 2015, 3(4405): 4405-4412. [87] JIA Z, SHI W, WANG Y, et al. Dicarboxylic acids crosslinked graphene oxide membranes for salt solution permeation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 494: 101-107. [88] YI R, YANG R, YU R, et al. Ultrahigh permeance of a chemical cross-linked graphene oxide nanofiltration membrane enhanced by cation–π interaction[J]. RCS Advances, 2019, 9: 40397-40403. [89] YU W, YU T, GRAHAM N. Development of a stable cation modified graphene oxide membrane for water treatment[J]. 2D Materials, 2017, 4(4): 045006. doi: 10.1088/2053-1583/aa814c [90] LIU T, YANG B, GRAHAM N, et al. Trivalent metal cation cross-linked graphene oxide membranes for NOM removal in water treatment[J]. Journal of Membrane Science, 2017, 542: 31-40. doi: 10.1016/j.memsci.2017.07.061 [91] CHEN L, SHI G, SHEN J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017, 550: 380-383. doi: 10.1038/nature24044 [92] HAN J L, HAIDER M R, LIU M J, et al. Borate inorganic crosslinked durable graphene oxide membrane preparation and membrane fouling control[J]. Environmental Science & Technology, 2019, 53(3): 1501-1508. [93] HAN J L, ZHANG D P, JIANG W R, et al. Tuning the functional groups of a graphene oxide membrane by ·OH contributes to the nearly complete prevention of membrane fouling[J]. Journal of Membrane Science, 2019, 576: 190-197. [94] RAN J, CHU C Q, PAN T, et al. Non-covalent cross-linking to boost the stability and permeability of graphene-oxide-based membrane[J]. Jouranl of Materials Chemistry, 2019, 7(14): 8085-8091. doi: 10.1039/C9TA00952C [95] XU X L, LIN F W, DU Y, et al. Graphene oxide nanofiltration membranes stabilized by cationic porphyrin for high salt rejection[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12588-12593. [96] WANG L, WANG N X, LI J, et al. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance[J]. Separation and Purification Technology, 2016, 160: 123-131. doi: 10.1016/j.seppur.2016.01.024 [97] LIU Y, ZHNEG S X, GU P, et al. Graphene-polyelectrolyte multilayer membranes with tunable structure and internal charge[J]. Carbon, 2020, 160: 219-227. doi: 10.1016/j.carbon.2019.12.092 [98] LIU T, TIAN L, GRAHAM N, et al. Regulating the interlayer spacing of graphene oxide membranes and enhancing their stability by use of PACl[J]. Environmental Science & Technology, 2019, 53(20): 11949-11959. [99] MENG N, ZHAO W, SHAMSAEI E, et al. A low-pressure GO nanofiltration membrane crosslinked via ethylenediamine[J]. Journal of Membrane Science, 2018, 548: 363-371. doi: 10.1016/j.memsci.2017.11.044 [100] HU M, MI B. Enabling graphene oxide nanosheets as water separation membranes[J]. Environmental Science & Technology, 2013, 47(8): 3715-3723. [101] HU M, MI B. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction[J]. Journal of Membrane Science, 2014, 469: 80-87. doi: 10.1016/j.memsci.2014.06.036 [102] YUAN Y, GAO X, WEI Y, et al. Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes[J]. Desalination, 2017, 405: 29-39. doi: 10.1016/j.desal.2016.11.024 [103] LIM M Y, CHOI Y S, KIM J, et al. Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine[J]. Journal of Membrane Science, 2017, 521: 1-9. doi: 10.1016/j.memsci.2016.08.067 [104] CHEN Z H, LIU Z, HU J Q, et al. β-cyclodextrin-modified graphene oxide membranes with large adsorption capacity and high flux for efficient removal of bisphenol A from water[J]. Journal of Membrane Science, 2019, 595: 117510. [105] RENTERIA J D, RAMIREZ S, MALEKPOUR H, et al. Strongly anisotropic thermalconductivity of free-standing reduced graphene oxide films annealed at high temperature[J]. Advanced Functional Materials, 2015, 25(29): 4664-4672. doi: 10.1002/adfm.201501429 [106] HUANG H, JOSHI R K, DE SILVA K, et al. Fabrication of reduced graphene oxide membranes for water desalination[J]. Journal of Membrane Science, 2019, 572: 12-19. doi: 10.1016/j.memsci.2018.10.085 [107] XI Y H, HU J Q, LIU Z, et al. Graphene oxide membranes with strong stabilityin aqueous solutions and controllable lamellar spacing[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15557-15566. [108] HAN Y, XU Z, GAO C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials, 2013, 23(29): 3693-3700. doi: 10.1002/adfm.201202601 [109] LI G, WANG X, TAO L, et al. Cross-linked graphene membrane for high-performance organics separation of emulsions[J]. Journal of Membrane Science, 2015, 495: 439-444. doi: 10.1016/j.memsci.2015.08.042 [110] JANG J H, WOO J J, LEE J, et al. Ambivalent effect of thermal reduction in mass rejection through graphene oxide membrane[J]. Environmental Science & Technology, 2016, 50(18): 10024-10030. [111] LI Y, YUAN S, XIA Y, et al. Mild annealing reduced graphene oxide membrane for nanofiltration[J]. Journal of Membrane Science, 2020, 601: 117900. doi: 10.1016/j.memsci.2020.117900 [112] ZHAO Z, NI S, SU X, et al. Thermally reduced graphene oxide membrane with ultrahigh rejection of metal ions’separation from water[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14874-14882. [113] YU H, HE Y, XIAO G Q, et al. Weak-reduction graphene oxide membrane for improving water purification performance[J]. Jouranl of Materials Science& Technology, 2020, 39: 106-112. [114] LI Y, ZHAO W, WEYLAND M, et al. Thermally reduced nanoporous graphene oxide oembrane for desalination[J]. Environmental Science & Technology, 2019, 53(14): 8314-8323. [115] CHEN X Y, FENG Z H, GOHIL J, et al. Reduced holey graphene oxide membranes for desalination with improved water permeance[J]. ACS Applied Materials & Interfaces, 2020, 12: 1387-1394. [116] SONG X X, ZAMBARE R S, QI S, et al. Charge gated ion transport through polyelectrolyte intercalated amine reduced graphene oxide membranes[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41482-41495. [117] ZHANG Z S, LI N, SUN Y G, et al. Interfacial force assisted in situ fabrication of graphene oxide membrane for desalination.[J]. ACS Applied Materials & Interfaces, 2018, 10(32): 27205-27214. [118] CHEN X, QIU M, DING H, et al. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification[J]. Nanoscale, 2016, 8(10): 5696-5705. doi: 10.1039/C5NR08697C [119] HAN Y, JIANG Y, GAO C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8147-8155.