-
农作物秸秆、畜禽粪便、市政污泥等有机固废含有丰富的有机碳、氮、磷及钾、钙、铁、锌等植物生长所需要的营养物质,具有巨大的资源化利用潜力。有机固废通常含有的病原菌、有机污染物及重金属等,这些污染物成为限制有机固废资源化利用的主要障碍。通过有机固废无害化、资源化处理既可以有效解决我国经济快速发展带来的资源短缺问题,又可促进碳中和、维护环境健康。研发快速高效的有机固废资源化利用技术已经成为土壤、资环领域面临的重要课题。通过堆肥、水热、高温热解、焚烧等处置,可以达到减少其体积、降解含有的病原菌及有机污染物、促进固碳和资源化利用等目的。这些处置显著改变了有机固废中碳、磷、硫等营养物质及重金属等赋存形态,厘清这些元素的形态转化规律是决定有机固废资源化再利用的关键。
碳、氮、磷、硫及重金属等元素伴随有机固废进入环境以后,其迁移、累积及生物有效性等环境行为取决于元素的化学形态[1]。传统形态分析方法主要借助化学分级提取技术,根据不同提取强度来反映元素在环境样品中的赋存状态及其生物可利用性等特性。但是,化学分析过程通常会改变元素,尤其是对氧化还原敏感元素如硫、硒等的赋存形态、络合/配位状态,从而造成分析结果失真[2-3]。随着分析技术的迅速发展,以同步辐射光谱技术为代表的先进技术在有机固废研究领域得到广泛应用,这些谱学技术具有样品前处理简单、不破坏样品状态、原位分析等特点,可以获得常规分析手段无法获取的形态信息,从而实现从分子水平、微纳米尺度探索其反应机制,已成为有机固废研究领域重要的前沿技术之一。以X射线吸收精细结构光谱和微束X射线荧光光谱为代表的谱学技术的广泛应用极大地提升了对有机固废中有机碳、硫、磷、重金属等形态演变、生物有效性转化等环境行为与反应机制的认识。通过检索应用同步辐射光谱技术研究有机固废污染控制与资源化进展,尚未见到相关综述性报道。本文在概述同步辐射光谱技术基本原理的基础上,着重介绍近10年来同步辐射X射线吸收精细结构光谱、微束X射线荧光光谱等技术在有机固废研究中的代表性成果,并探讨了目前同步辐射光谱技术的局限性及其未来研究趋势,以期为有机固废清洁利用研究提供参考。
同步辐射光谱技术在有机固废污染控制与资源化研究中的应用
Application of synchrotron radiation-based spectroscopic techniques in pollution control and utilization of organic solid waste
-
摘要: 有机固废中碳、磷、硫及重金属等元素赋存形态是决定其环境行为、反应活性及资源化再利用的关键因素。同步辐射光谱技术可以在分子水平、微纳米尺度原位表征有机固废中碳、磷、硫、重金属等元素赋存形态、结合位点、微观结构,为深入阐明有机固废环境行为、反应机制提供直接的证据。概述了X射线吸收光谱、微束X射线荧光光谱等同步辐射光谱技术在有机固废污染控制与资源化研究的中应用进展,并对同步辐射光谱技术在该领域应用前景和发展趋势进行了展望,以期为有机固废资源化再利用及其污染控制等研究提供参考。Abstract: The chemical speciation of elements including carbon, phosphorus, sulfur and heavy metals determine the environmental behaviors, reactivity, and resource recycling of organic solid waste. Synchrotron radiation-based spectroscopic techniques could characterize the speciation, binding sites, and micro-structure of these elements in organic solid waste in situ at the molecular level and micron/nano scale, which can provide direct evidence for elucidating the behaviors and reaction mechanisms of organic solid waste in the environment. In this paper, the application of synchrotron radiation-based techniques including X-ray absorbance spectroscopy and micro-X-ray fluorescence spectroscopy in pollution control and utilization of organic solid waste research was reviewed. The application challenges and perspectives of these techniques in this field were also discussed. It was expected that this review could provide a comprehensive and effective technical support for the research of the recycling of organic solid waste and the relevant pollution control.
-
Key words:
- speciation /
- phosphorus /
- sulfur /
- heavy metal /
- X-ray absorption spectroscopy
-
表 1 应用硬X射线吸收光谱研究有机固废污染控制与资源化代表性进展案例
Table 1. Application cases of synchrotron-based hard X-ray absorbance spectroscopy to study pollution control and utilization of organic solid waste
有机固废类型 目标元素 主要表征技术 主要结果 参考文献 污泥 As, Cu, Zn XANES, EXAFS Cu、Zn在污泥中分别主要以还原态硫化物、As以还原态As(Ⅲ)存在 [34-35] 污泥 Cu, Zn XANES, EXAFS, μ-XRF 堆放污泥中Cu主要为有机络合态、Zn主要为磷酸盐结合态 [36-37] 污泥 Cu, Ni, Zn μ-XANES, μ-XRF 污泥进入受纳土壤后Ni主要与有机碳络合,而Cu、Zn赋存形态主要与铁氧化物密切相关 [38] 污泥 Cr, Hg(L3边) XANES 高温处理污泥中Hg 以HgS、HgCl2及HgSe形态存在;而Cr以还原态存在 [39] 污泥 Cr, Cu, Zn XANES, EXAFS 水热处理污泥促进Cu、Zn形成硫化物;Cr形成硅酸盐结合态Cr(Ⅲ);厌氧消化促进生成Cu2S及有机络合态Cr、Zn;热解促进Cu、Zn硫化物脱硫 [26-37,40] 污泥 Ag, Zn XANES, EXAFS 单质Ag及AgCl纳米颗粒进入污泥后迅速转化为Ag2S;ZnO纳米颗粒主要形成ZnS、Zn3(PO4)2及铁氧化物结合态Zn等 [41-46] 污泥 Ag XANES, EXAFS, EDS 污泥等有机固废中AgCl经光照后转化为Ag纳米颗粒,在污泥焚烧过程中Ag2S和AgCl转化为元素Ag形态 [47-48] 污泥 Cs XANES 污泥焚烧过程中大部分铯以CsCl形态转移到飞灰中,少部分以Cs2CO3形态残存于底灰组分 [49] 污泥 Ce (K, L边) XANES, EDS 污泥焚烧过程中小粒径CeO2纳米颗粒被还原成Ce(Ⅲ),大粒径CeO2形态相对稳定 [50] 污泥、猪粪 Cu, Zn XANES, EXAFS 厌氧消化促进有机固废中Cu形成CuS、Cu2S,Zn形成磷酸锌等化合物 [51] 污泥、畜禽粪便 Zn EXAFS Zn以磷酸盐结合态存在于有机固废中,并可在土壤中稳定存在 [52] 猪粪 Cu XANES, μ-XRF 猪粪中Cu主要以Cu2S形态存在 [1,53] 猪粪、生物炭 Cu XANES, EXAFS 猪粪热解过程中Cu转为稳定的还原态硫化物及磷酸盐结合态化合物 [1] 生物炭 Hg(L3边) XANES, μ-XRF, CMXRFI 硫/巯基化处理生物炭可以显著增强其对Hg的吸附能力 [54] 生物炭 Pb(L3边) EXAFS, μ-XRF 生物炭可促进土壤中针铁矿结合态Pb转化为更为稳定的磷酸盐结合态及含氧有机碳官能团络合态 [55] 生物炭 Cd XANES 生物炭与Cd形成有机络合态、氢氧化物、碳酸盐等结合态化合物,降低了其有效态组分 [56] 生物炭 As, Cr, Hg XANES, EXAFS, CMXRFI 铁改性生物炭显著增强了其对As(V)、As(Ⅲ)、Cr(Ⅵ)及Hg(Ⅱ)等的吸附能力 [57-58] 木质素 Hg(L3边) EXAFS Hg(Ⅱ)在造纸副产物木质素中主要通过与含氧有机官能团络合而被吸附 [59] 注:XANES,X射线吸收近边结构;EXAFS,扩展X射线吸收精细结构;μ-XRF, 微束X射线荧光;CMXRFI, 共焦显微X射线荧光成像;EDS, X射线能量色散谱。 -
[1] CHENG Y, LUO L, LV J T, et al. Copper speciation evolution in swine manure induced by pyrolysis[J]. Environmental Science & Technology, 2020, 54(14): 9008-9014. [2] XU C, WANG S S, CHEN Z E, et al. Sulphur speciation and availability in long-term fertilized soil: Evidence from chemical fractionation and S K-edge XANES spectroscopy[J]. European Journal of Soil Science, 2016, 67: 666-675. doi: 10.1111/ejss.12364 [3] LUO L, XU C, MA Y B, et al. Sulfur speciation in an arable soil as affected by sample pretreatments and sewage sludge application[J]. Soil Science Society of America Journal, 2014, 78(5): 1615-1623. doi: 10.2136/sssaj2013.11.0506 [4] LOMBI E, SUSINI J. Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives[J]. Plant and Soil, 2009, 320: 1-35. doi: 10.1007/s11104-008-9876-x [5] 刘瑾, 杨建军, 梁新强, 等. 同步辐射X射线吸收近边结构光谱技术在磷素固相形态研究中的应用[J]. 应用生态学报, 2011, 22(10): 2757-2764. [6] LUO L, ZHANG S Z. Applications of synchrotron-based X-ray techniques in environmental science[J]. Science China Chemistry, 2010, 53: 2529-2538. doi: 10.1007/s11426-010-4085-x [7] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44: 1247-1253. [8] LUO L, LV J T, CHEN Z E, et al. Insights into the attenuated sorption of organic compounds on black carbon aged in soil[J]. Environmental Pollution, 2017, 231: 1469-1476. doi: 10.1016/j.envpol.2017.09.010 [9] LATHAM K G, SIMONE M I, DOSE W M, et al. Synchrotron based NEXAFS study on nitrogen doped hydrothermal carbon: Insights into surface functionalities and formation mechanisms[J]. Carbon, 2017, 114: 566-578. doi: 10.1016/j.carbon.2016.12.057 [10] MUKOME F N D, KILCOYNE A L D, PARIKH S J. Alteration of biochar carbon chemistry during soil incubations: SR-FTIR and NEXAFS investigation[J]. Soil Science Society of America Journal, 2014, 78: 1632-1640. doi: 10.2136/sssaj2014.05.0206 [11] WIEDEMEIER D B, ABIVEN S, HOCKADAY W C, et al. Aromaticity and degree of aromatic condensation of char[J]. Organic Geochemistry, 2015, 78: 135-143. doi: 10.1016/j.orggeochem.2014.10.002 [12] HAGEMANN N, JOSEPH S, SCHMIDT H P, et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility[J]. Nature Communications, 2017, 8: 1089. doi: 10.1038/s41467-017-01123-0 [13] ZHOU Q Q, YANG S S, WAANG H T, et al. Selective deoxygenation of biomass volatiles into light oxygenates catalysed by S-doped, nanosized zinc-rich scrap tyre char with in-situ formed multiple acidic sites[J]. Applied Catalysis B: Environmental 2021, 282: 119603. [14] NEGASSA W, KRUSE J, MICHALIK D, et al. Phosphorus speciation in agro-industrial byproducts: Sequential fractionation, solution 31P NMR, and P K- and L2, 3-Edge XANES spectroscopy[J]. Environmental Science & Technology, 2010, 44: 2092-2097. [15] 马陈燕. BSRF中能X射线吸收谱学方法及其应用研究[D]. 北京: 中国科学院研究生院, 2008. [16] HESTERBERG D, ZHOU W Q, HUTCHISON K J, et al. XAFS study of adsorbed and mineral forms of phosphate[J]. Journal of Synchrotron Radiation, 1999, 6: 636-638. doi: 10.1107/S0909049599000370 [17] ZHENG G D, WANG X K, CHEN T B, et al. Passivation of lead and cadmium and increase of the nutrient content during sewage sludge composting by phosphate amendments[J]. Environmental Research, 2020, 185: 109431. doi: 10.1016/j.envres.2020.109431 [18] BEAUCHEMIN S, HESTERBERG D, CHOU J, et al. Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation[J]. Journal of Environmental Quality, 2003, 32: 1809-1819. doi: 10.2134/jeq2003.1809 [19] LUO L, MA Y B, SANDERS R L, et al. Speciation and transformation of phosphorus in three long-term fertilized Chinese soils using chemical fractionation and P K-edge XANES spectroscopy[J]. Nutrient Cycling in Agroecosystems, 2017, 107: 215-226. doi: 10.1007/s10705-017-9830-5 [20] SATO S, SOLOMON D, HYLAND C, et al. Phosphate speciation in manure and manure-amended soils using XANES spectroscopy[J]. Environmental Science & Technology, 2005, 39: 7485-7491. [21] SHOBER A L, HESTERBERG D L, SIMS J T, et al. Characterization of phosphorus species in biosolids and manures using XANES spectroscopy[J]. Journal of Environmental Quality, 2006, 35: 1983-1993. doi: 10.2134/jeq2006.0100 [22] HUANG R X, FANG C, LU X W, et al. Transformation of phosphorus during (Hydro)thermal treatments of solid biowastes: Reaction mechanisms and implications for P reclamation and recycling[J]. Environmental Science & Technology, 2017, 51: 10284-10298. [23] HUANG R X, TANG Y Z. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: Insights from sequential extraction and P K-edge XANES[J]. Water Research, 2016, 100: 439-447. doi: 10.1016/j.watres.2016.05.029 [24] SHI Y, CHEN Z, CAO Y, et al. Migration and transformation mechanism of phosphorus in waste activated sludge during anaerobic fermentation and hydrothermal conversion[J]. Journal of Hazardous Materials, 2021, 403: 123649. doi: 10.1016/j.jhazmat.2020.123649 [25] BUSS W, BOGUSH A, IGNATYEV K, et al. Unlocking the fertilizer potential of waste-derived biochar[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 12295-12303. [26] FANG G D, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation[J]. Environmental Science & Technology, 2015, 49: 5645-5653. [27] SPOSITO G. The Chemistry of Soils[M]. New York: Oxford University Press, 2008: 54-56. [28] GEORGE G N, GORBATY M L. Sulfur K-edge x-ray absorption spectroscopy of petroleum asphaltenes and model compounds[J]. Journal of the American Chemistry Society, 1989, 111: 3182-3186. doi: 10.1021/ja00191a012 [29] MORRA M J, FENDORF S E, BROWN P D. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy[J]. Geochimica et Cosmochimica Acta, 1997, 61: 683-688. doi: 10.1016/S0016-7037(97)00003-3 [30] MANCEAU A, NAGY K. Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy[J]. Geochimica et Cosmochimica Acta, 2012, 99: 206-223. doi: 10.1016/j.gca.2012.09.033 [31] HUANG R X, TANG Y Z, LUO L. Thermochemistry of sulfur during pyrolysis and hydrothermal carbonization of sewage sludges[J]. Waste Management, 2021, 121: 276-285. doi: 10.1016/j.wasman.2020.12.004 [32] VOGEL C, RADTKE M, REINHOLZ U, et al. Chemical state of chromium, sulfur, and iron in sewage sludge ash based phosphorus fertilizers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3: 2376-2380. [33] HAN X M, WANG F, ZHOU B H. Phosphorus complexation of sewage sludge during thermal hydrolysis with different reaction temperature and reaction time by P K-edge XANES and 31P NMR[J]. Science of the Total Environment, 2019, 688: 1-9. doi: 10.1016/j.scitotenv.2019.06.017 [34] NAGOSHI M, KAWANO S, FUJIWARA S, et al. Chemical states of trace heavy metals in sewage sludge by XAFS spectroscopy[J]. Physica Scripta, 2005, T115: 946-948. [35] WANG Q, ZHANG C, JUNG H, et al. Transformation and mobility of Cu, Zn, and Cr in sewage sludge during anaerobic digestion with pre- or interstage hydrothermal treatment[J]. Environmental Science & Technology, 2021, 55: 1615-1625. [36] DONNER E, HOWARD D L, DE JONGE M D, et al. X-ray absorption and micro X-ray fluorescence spectroscopy investigation of copper and zinc speciation in biosolids[J]. Environmental Science & Technology, 2011, 45(17): 7249-7257. [37] DONNER E, RYAN C G, HOWARD D L, et al. A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids[J]. Environmental Pollution, 2012, 166: 57-64. doi: 10.1016/j.envpol.2012.02.012 [38] MAMINDY-PAJANY Y, SAYEN S, MOSSELMANS F W, et al. Copper, nickel and zinc speciation in a biosolid-amended soil: pH adsorption edge, μ-XRF and μ-XANES investigations[J]. Environmental Science & Technology, 2014, 48: 7237-7244. [39] VOGEL C, KRÜGER O, HERZEL H, et al. Chemical state of mercury and selenium in sewage sludge ash based P-fertilizers[J]. Journal of Hazardous Materials, 2016, 313: 179-184. doi: 10.1016/j.jhazmat.2016.03.079 [40] HUANG R X, ZHANG B, SAAD E M, et al. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges[J]. Water Research, 2018, 132: 260-269. doi: 10.1016/j.watres.2018.01.009 [41] KAEGI R, VOEGELIN A, ORT C, et al. Fate and transformation of silver nanoparticles in urban wastewater systems[J]. Water Research, 2013, 47: 3866-3877. doi: 10.1016/j.watres.2012.11.060 [42] LOMBI E, DONNER E, TAVAKKOLI E, et al. Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge[J]. Environmental Science & Technology, 2012, 46: 9089-9096. [43] LOMBI E, DONNER E, TAHERI S, et al. Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge[J]. Environmental Pollution, 2013, 176: 193-197. doi: 10.1016/j.envpol.2013.01.029 [44] MA R, LEVARD C, JUDY J D, et al. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids[J]. Environmental Science & Technology, 2014, 48: 104-112. [45] DOOLETTE C, MCLAUGHLIN M J, KIRBY J K, et al. Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities[J]. Chemistry Central Journal, 2013, 7: 46. doi: 10.1186/1752-153X-7-46 [46] LE BARS M, LEGROS S, LEVARD C, et al. Drastic change in zinc speciation during anaerobic digestion and composting: Instability of Nnanosized zinc sulfide[J]. Environmental Science & Technology, 2018, 52: 12987-12996. [47] YIN Y G, XU W, TAN Z Q, et al. Photo- and thermo-chemical transformation of AgCl and Ag2S in environmental matrices and its implication[J]. Environmental Pollution, 2017, 220: 955-962. doi: 10.1016/j.envpol.2016.10.081 [48] MEIER C, VOEGELIN A, DE REAL A P, et al. Transformation of silver nanoparticles in sewage sludge during incineration[J]. Environmental Science & Technology, 2016, 50: 3503-3510. [49] OSHITA K, AOKI H, FUKUTANI S, et al. Behavior of cesium in municipal solid waste incineration[J]. Journal of Environmental Radioactivity, 2015, 143: 1-6. doi: 10.1016/j.jenvrad.2015.01.019 [50] GOGOS A, WIELINSKI J, VOEGELIN A, et al. Transformation of cerium dioxide nanoparticles during sewage sludge incineration[J]. Environmental Science:Nano, 2019, 6: 1765. doi: 10.1039/C9EN00281B [51] LEGROS S, LEVARD C, MARCATO-ROMAIN C E, et al. Anaerobic digestion alters copper and zinc speciation[J]. Environmental Science & Technology, 2017, 51: 10326-10334. [52] HODOMIHOU N R, FEDER F, LEGROS S, et al. Zinc speciation in organic waste drives its fate in amended soils[J]. Environmental Science & Technology, 2020, 54: 12034-12041. [53] LEGROS S, CHAURAND P, ROSE J, et al. Investigation of copper speciation in pig slurry by a multitechnique approach[J]. Environmental Science & Technology, 2010, 44(18): 6926-6932. [54] LIU P, PTACEKE C J, ELENA K M A, et al. Valuation of mercury stabilization mechanisms by sulfurized biochars determined using X-ray absorption spectroscopy[J]. Journal of Hazardous Materials, 2018, 347: 114-122. doi: 10.1016/j.jhazmat.2017.12.051 [55] LI J H, WANG S L, ZHANG J M, et al. Coconut-fiber biochar reduced the bioavailability of lead but increased its translocation rate in rice plants: Elucidation of immobilization mechanisms and significance of iron plaque barrier on roots using spectroscopic techniques[J]. Journal of Hazardous Materials 2020, 389: 122117. [56] CUI L Q, NOERPEL M R, SCHECKEL K G, et al. Wheat straw biochar reduces environmental cadmium bioavailability[J]. Environment International, 2019, 126: 69-75. doi: 10.1016/j.envint.2019.02.022 [57] FENG Y, LIU P, WANG Y X, et al. Distribution and speciation of iron in Fe-modified biochars and its application in removal of As(V), As(III), Cr(VI), and Hg(II): An X-ray absorption study[J]. Journal of Hazardous Materials, 2020, 384: 121342. doi: 10.1016/j.jhazmat.2019.121342 [58] XU Y, XIE X J, FENG Y, et al. As(III) and As(V) removal mechanisms by Fe-modified biochar characterized using synchrotron-based X-ray absorption spectroscopy and confocal micro-X-ray fluorescence imaging[J]. Bioresource Technology, 2020, 304: 122978. doi: 10.1016/j.biortech.2020.122978 [59] LV J T, LUO L, ZHANG J, et al. Adsorption of mercury on lignin: Combined surface complexation modeling and X-ray absorption spectroscopy study[J]. Environmental Pollution, 2012, 162(1): 255-261. [60] LI S H, ZOU D S, LI L C, et al. Evolution of heavy metals during thermal treatment of manure: A critical review and outlooks[J]. Chemosphere, 2020, 247: 125962. doi: 10.1016/j.chemosphere.2020.125962 [61] DONNER E, BRUNETTI G, ZARCINAS B, et al. Effects of chemical amendments on the lability and speciation of metals in anaerobically digested biosolids[J]. Environmental Science & Technology, 2013, 47: 11157-11165. [62] XIA Y, LUO H N, LI D, et al. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms[J]. Environmental Pollution, 2020, 261: 114217. doi: 10.1016/j.envpol.2020.114217 [63] LIAN F, XING B S. Black carbon (Biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51: 13571-13532. [64] 刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展: 修复机理及研究热点分析[J]. 环境工程学报, 2021, 15(4): 1140-1148. doi: 10.12030/j.cjee.202012051 [65] HETTIARACHCHI G M, SCHECKEL K G, RYAN J A, et al. μ-XANES and μ-XRF investigations of metal binding mechanisms in biosolid[J]. Journal Environmental Quality, 2006, 35: 342-351. [66] KAEGI R, VOEGELIN A, SINNET B, et al. Transformation of AgCl nanoparticles in a sewer system: A field study[J]. Science of the Total Environment, 2015, 535: 20-27. [67] DEL REAL A E P, CASTILLO-MICHEL H, KAEGI R, et al. Fate of Ag-NPs in sewage sludge after application on agricultural soils[J]. Environmental Science & Technology, 2016, 50: 1759-1768. [68] WIELINSKI J, MARAFATTO F F, GOGOS A, et al. Synchrotron hard X-ray chemical imaging of trace element speciation in heterogeneous samples: Development of criteria for uncertainty analysis[J]. Journal of Analytical Atomic Spectrometry, 2020, [69] LIU P, PTACEK C J, BLOWS D W, et al. A method for redox mapping by confocal micro-X-ray fluorescence image: Using chromium species in a biochar particle as an example[J]. Analytical Chemistry, 2019, 91: 5142-5149. doi: 10.1021/acs.analchem.8b05718 [70] LUO L, LV J T, XU C, et al. Strategy for characterization of distribution and associations of organobromine compounds in soil using synchrotron based spectromicroscopies[J]. Analytical Chemistry, 2014, 86(22): 11002-11005. doi: 10.1021/ac503280v [71] LIU Y R, PASKEVICIUS M, SOFIANOS M V, et al. In situ SAXS studies of the pore development in biochar during gasification[J]. Carbon, 2021, 172: 454-462. doi: 10.1016/j.carbon.2020.10.028