[1] CHENG Y, LUO L, LV J T, et al. Copper speciation evolution in swine manure induced by pyrolysis[J]. Environmental Science & Technology, 2020, 54(14): 9008-9014.
[2] XU C, WANG S S, CHEN Z E, et al. Sulphur speciation and availability in long-term fertilized soil: Evidence from chemical fractionation and S K-edge XANES spectroscopy[J]. European Journal of Soil Science, 2016, 67: 666-675. doi: 10.1111/ejss.12364
[3] LUO L, XU C, MA Y B, et al. Sulfur speciation in an arable soil as affected by sample pretreatments and sewage sludge application[J]. Soil Science Society of America Journal, 2014, 78(5): 1615-1623. doi: 10.2136/sssaj2013.11.0506
[4] LOMBI E, SUSINI J. Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives[J]. Plant and Soil, 2009, 320: 1-35. doi: 10.1007/s11104-008-9876-x
[5] 刘瑾, 杨建军, 梁新强, 等. 同步辐射X射线吸收近边结构光谱技术在磷素固相形态研究中的应用[J]. 应用生态学报, 2011, 22(10): 2757-2764.
[6] LUO L, ZHANG S Z. Applications of synchrotron-based X-ray techniques in environmental science[J]. Science China Chemistry, 2010, 53: 2529-2538. doi: 10.1007/s11426-010-4085-x
[7] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44: 1247-1253.
[8] LUO L, LV J T, CHEN Z E, et al. Insights into the attenuated sorption of organic compounds on black carbon aged in soil[J]. Environmental Pollution, 2017, 231: 1469-1476. doi: 10.1016/j.envpol.2017.09.010
[9] LATHAM K G, SIMONE M I, DOSE W M, et al. Synchrotron based NEXAFS study on nitrogen doped hydrothermal carbon: Insights into surface functionalities and formation mechanisms[J]. Carbon, 2017, 114: 566-578. doi: 10.1016/j.carbon.2016.12.057
[10] MUKOME F N D, KILCOYNE A L D, PARIKH S J. Alteration of biochar carbon chemistry during soil incubations: SR-FTIR and NEXAFS investigation[J]. Soil Science Society of America Journal, 2014, 78: 1632-1640. doi: 10.2136/sssaj2014.05.0206
[11] WIEDEMEIER D B, ABIVEN S, HOCKADAY W C, et al. Aromaticity and degree of aromatic condensation of char[J]. Organic Geochemistry, 2015, 78: 135-143. doi: 10.1016/j.orggeochem.2014.10.002
[12] HAGEMANN N, JOSEPH S, SCHMIDT H P, et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility[J]. Nature Communications, 2017, 8: 1089. doi: 10.1038/s41467-017-01123-0
[13] ZHOU Q Q, YANG S S, WAANG H T, et al. Selective deoxygenation of biomass volatiles into light oxygenates catalysed by S-doped, nanosized zinc-rich scrap tyre char with in-situ formed multiple acidic sites[J]. Applied Catalysis B: Environmental 2021, 282: 119603.
[14] NEGASSA W, KRUSE J, MICHALIK D, et al. Phosphorus speciation in agro-industrial byproducts: Sequential fractionation, solution 31P NMR, and P K- and L2, 3-Edge XANES spectroscopy[J]. Environmental Science & Technology, 2010, 44: 2092-2097.
[15] 马陈燕. BSRF中能X射线吸收谱学方法及其应用研究[D]. 北京: 中国科学院研究生院, 2008.
[16] HESTERBERG D, ZHOU W Q, HUTCHISON K J, et al. XAFS study of adsorbed and mineral forms of phosphate[J]. Journal of Synchrotron Radiation, 1999, 6: 636-638. doi: 10.1107/S0909049599000370
[17] ZHENG G D, WANG X K, CHEN T B, et al. Passivation of lead and cadmium and increase of the nutrient content during sewage sludge composting by phosphate amendments[J]. Environmental Research, 2020, 185: 109431. doi: 10.1016/j.envres.2020.109431
[18] BEAUCHEMIN S, HESTERBERG D, CHOU J, et al. Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation[J]. Journal of Environmental Quality, 2003, 32: 1809-1819. doi: 10.2134/jeq2003.1809
[19] LUO L, MA Y B, SANDERS R L, et al. Speciation and transformation of phosphorus in three long-term fertilized Chinese soils using chemical fractionation and P K-edge XANES spectroscopy[J]. Nutrient Cycling in Agroecosystems, 2017, 107: 215-226. doi: 10.1007/s10705-017-9830-5
[20] SATO S, SOLOMON D, HYLAND C, et al. Phosphate speciation in manure and manure-amended soils using XANES spectroscopy[J]. Environmental Science & Technology, 2005, 39: 7485-7491.
[21] SHOBER A L, HESTERBERG D L, SIMS J T, et al. Characterization of phosphorus species in biosolids and manures using XANES spectroscopy[J]. Journal of Environmental Quality, 2006, 35: 1983-1993. doi: 10.2134/jeq2006.0100
[22] HUANG R X, FANG C, LU X W, et al. Transformation of phosphorus during (Hydro)thermal treatments of solid biowastes: Reaction mechanisms and implications for P reclamation and recycling[J]. Environmental Science & Technology, 2017, 51: 10284-10298.
[23] HUANG R X, TANG Y Z. Evolution of phosphorus complexation and mineralogy during (hydro)thermal treatments of activated and anaerobically digested sludge: Insights from sequential extraction and P K-edge XANES[J]. Water Research, 2016, 100: 439-447. doi: 10.1016/j.watres.2016.05.029
[24] SHI Y, CHEN Z, CAO Y, et al. Migration and transformation mechanism of phosphorus in waste activated sludge during anaerobic fermentation and hydrothermal conversion[J]. Journal of Hazardous Materials, 2021, 403: 123649. doi: 10.1016/j.jhazmat.2020.123649
[25] BUSS W, BOGUSH A, IGNATYEV K, et al. Unlocking the fertilizer potential of waste-derived biochar[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 12295-12303.
[26] FANG G D, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation[J]. Environmental Science & Technology, 2015, 49: 5645-5653.
[27] SPOSITO G. The Chemistry of Soils[M]. New York: Oxford University Press, 2008: 54-56.
[28] GEORGE G N, GORBATY M L. Sulfur K-edge x-ray absorption spectroscopy of petroleum asphaltenes and model compounds[J]. Journal of the American Chemistry Society, 1989, 111: 3182-3186. doi: 10.1021/ja00191a012
[29] MORRA M J, FENDORF S E, BROWN P D. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy[J]. Geochimica et Cosmochimica Acta, 1997, 61: 683-688. doi: 10.1016/S0016-7037(97)00003-3
[30] MANCEAU A, NAGY K. Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy[J]. Geochimica et Cosmochimica Acta, 2012, 99: 206-223. doi: 10.1016/j.gca.2012.09.033
[31] HUANG R X, TANG Y Z, LUO L. Thermochemistry of sulfur during pyrolysis and hydrothermal carbonization of sewage sludges[J]. Waste Management, 2021, 121: 276-285. doi: 10.1016/j.wasman.2020.12.004
[32] VOGEL C, RADTKE M, REINHOLZ U, et al. Chemical state of chromium, sulfur, and iron in sewage sludge ash based phosphorus fertilizers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3: 2376-2380.
[33] HAN X M, WANG F, ZHOU B H. Phosphorus complexation of sewage sludge during thermal hydrolysis with different reaction temperature and reaction time by P K-edge XANES and 31P NMR[J]. Science of the Total Environment, 2019, 688: 1-9. doi: 10.1016/j.scitotenv.2019.06.017
[34] NAGOSHI M, KAWANO S, FUJIWARA S, et al. Chemical states of trace heavy metals in sewage sludge by XAFS spectroscopy[J]. Physica Scripta, 2005, T115: 946-948.
[35] WANG Q, ZHANG C, JUNG H, et al. Transformation and mobility of Cu, Zn, and Cr in sewage sludge during anaerobic digestion with pre- or interstage hydrothermal treatment[J]. Environmental Science & Technology, 2021, 55: 1615-1625.
[36] DONNER E, HOWARD D L, DE JONGE M D, et al. X-ray absorption and micro X-ray fluorescence spectroscopy investigation of copper and zinc speciation in biosolids[J]. Environmental Science & Technology, 2011, 45(17): 7249-7257.
[37] DONNER E, RYAN C G, HOWARD D L, et al. A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids[J]. Environmental Pollution, 2012, 166: 57-64. doi: 10.1016/j.envpol.2012.02.012
[38] MAMINDY-PAJANY Y, SAYEN S, MOSSELMANS F W, et al. Copper, nickel and zinc speciation in a biosolid-amended soil: pH adsorption edge, μ-XRF and μ-XANES investigations[J]. Environmental Science & Technology, 2014, 48: 7237-7244.
[39] VOGEL C, KRÜGER O, HERZEL H, et al. Chemical state of mercury and selenium in sewage sludge ash based P-fertilizers[J]. Journal of Hazardous Materials, 2016, 313: 179-184. doi: 10.1016/j.jhazmat.2016.03.079
[40] HUANG R X, ZHANG B, SAAD E M, et al. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges[J]. Water Research, 2018, 132: 260-269. doi: 10.1016/j.watres.2018.01.009
[41] KAEGI R, VOEGELIN A, ORT C, et al. Fate and transformation of silver nanoparticles in urban wastewater systems[J]. Water Research, 2013, 47: 3866-3877. doi: 10.1016/j.watres.2012.11.060
[42] LOMBI E, DONNER E, TAVAKKOLI E, et al. Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge[J]. Environmental Science & Technology, 2012, 46: 9089-9096.
[43] LOMBI E, DONNER E, TAHERI S, et al. Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge[J]. Environmental Pollution, 2013, 176: 193-197. doi: 10.1016/j.envpol.2013.01.029
[44] MA R, LEVARD C, JUDY J D, et al. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids[J]. Environmental Science & Technology, 2014, 48: 104-112.
[45] DOOLETTE C, MCLAUGHLIN M J, KIRBY J K, et al. Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities[J]. Chemistry Central Journal, 2013, 7: 46. doi: 10.1186/1752-153X-7-46
[46] LE BARS M, LEGROS S, LEVARD C, et al. Drastic change in zinc speciation during anaerobic digestion and composting: Instability of Nnanosized zinc sulfide[J]. Environmental Science & Technology, 2018, 52: 12987-12996.
[47] YIN Y G, XU W, TAN Z Q, et al. Photo- and thermo-chemical transformation of AgCl and Ag2S in environmental matrices and its implication[J]. Environmental Pollution, 2017, 220: 955-962. doi: 10.1016/j.envpol.2016.10.081
[48] MEIER C, VOEGELIN A, DE REAL A P, et al. Transformation of silver nanoparticles in sewage sludge during incineration[J]. Environmental Science & Technology, 2016, 50: 3503-3510.
[49] OSHITA K, AOKI H, FUKUTANI S, et al. Behavior of cesium in municipal solid waste incineration[J]. Journal of Environmental Radioactivity, 2015, 143: 1-6. doi: 10.1016/j.jenvrad.2015.01.019
[50] GOGOS A, WIELINSKI J, VOEGELIN A, et al. Transformation of cerium dioxide nanoparticles during sewage sludge incineration[J]. Environmental Science:Nano, 2019, 6: 1765. doi: 10.1039/C9EN00281B
[51] LEGROS S, LEVARD C, MARCATO-ROMAIN C E, et al. Anaerobic digestion alters copper and zinc speciation[J]. Environmental Science & Technology, 2017, 51: 10326-10334.
[52] HODOMIHOU N R, FEDER F, LEGROS S, et al. Zinc speciation in organic waste drives its fate in amended soils[J]. Environmental Science & Technology, 2020, 54: 12034-12041.
[53] LEGROS S, CHAURAND P, ROSE J, et al. Investigation of copper speciation in pig slurry by a multitechnique approach[J]. Environmental Science & Technology, 2010, 44(18): 6926-6932.
[54] LIU P, PTACEKE C J, ELENA K M A, et al. Valuation of mercury stabilization mechanisms by sulfurized biochars determined using X-ray absorption spectroscopy[J]. Journal of Hazardous Materials, 2018, 347: 114-122. doi: 10.1016/j.jhazmat.2017.12.051
[55] LI J H, WANG S L, ZHANG J M, et al. Coconut-fiber biochar reduced the bioavailability of lead but increased its translocation rate in rice plants: Elucidation of immobilization mechanisms and significance of iron plaque barrier on roots using spectroscopic techniques[J]. Journal of Hazardous Materials 2020, 389: 122117.
[56] CUI L Q, NOERPEL M R, SCHECKEL K G, et al. Wheat straw biochar reduces environmental cadmium bioavailability[J]. Environment International, 2019, 126: 69-75. doi: 10.1016/j.envint.2019.02.022
[57] FENG Y, LIU P, WANG Y X, et al. Distribution and speciation of iron in Fe-modified biochars and its application in removal of As(V), As(III), Cr(VI), and Hg(II): An X-ray absorption study[J]. Journal of Hazardous Materials, 2020, 384: 121342. doi: 10.1016/j.jhazmat.2019.121342
[58] XU Y, XIE X J, FENG Y, et al. As(III) and As(V) removal mechanisms by Fe-modified biochar characterized using synchrotron-based X-ray absorption spectroscopy and confocal micro-X-ray fluorescence imaging[J]. Bioresource Technology, 2020, 304: 122978. doi: 10.1016/j.biortech.2020.122978
[59] LV J T, LUO L, ZHANG J, et al. Adsorption of mercury on lignin: Combined surface complexation modeling and X-ray absorption spectroscopy study[J]. Environmental Pollution, 2012, 162(1): 255-261.
[60] LI S H, ZOU D S, LI L C, et al. Evolution of heavy metals during thermal treatment of manure: A critical review and outlooks[J]. Chemosphere, 2020, 247: 125962. doi: 10.1016/j.chemosphere.2020.125962
[61] DONNER E, BRUNETTI G, ZARCINAS B, et al. Effects of chemical amendments on the lability and speciation of metals in anaerobically digested biosolids[J]. Environmental Science & Technology, 2013, 47: 11157-11165.
[62] XIA Y, LUO H N, LI D, et al. Efficient immobilization of toxic heavy metals in multi-contaminated agricultural soils by amino-functionalized hydrochar: Performance, plant responses and immobilization mechanisms[J]. Environmental Pollution, 2020, 261: 114217. doi: 10.1016/j.envpol.2020.114217
[63] LIAN F, XING B S. Black carbon (Biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk[J]. Environmental Science & Technology, 2017, 51: 13571-13532.
[64] 刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展: 修复机理及研究热点分析[J]. 环境工程学报, 2021, 15(4): 1140-1148. doi: 10.12030/j.cjee.202012051
[65] HETTIARACHCHI G M, SCHECKEL K G, RYAN J A, et al. μ-XANES and μ-XRF investigations of metal binding mechanisms in biosolid[J]. Journal Environmental Quality, 2006, 35: 342-351.
[66] KAEGI R, VOEGELIN A, SINNET B, et al. Transformation of AgCl nanoparticles in a sewer system: A field study[J]. Science of the Total Environment, 2015, 535: 20-27.
[67] DEL REAL A E P, CASTILLO-MICHEL H, KAEGI R, et al. Fate of Ag-NPs in sewage sludge after application on agricultural soils[J]. Environmental Science & Technology, 2016, 50: 1759-1768.
[68] WIELINSKI J, MARAFATTO F F, GOGOS A, et al. Synchrotron hard X-ray chemical imaging of trace element speciation in heterogeneous samples: Development of criteria for uncertainty analysis[J]. Journal of Analytical Atomic Spectrometry, 2020,
[69] LIU P, PTACEK C J, BLOWS D W, et al. A method for redox mapping by confocal micro-X-ray fluorescence image: Using chromium species in a biochar particle as an example[J]. Analytical Chemistry, 2019, 91: 5142-5149. doi: 10.1021/acs.analchem.8b05718
[70] LUO L, LV J T, XU C, et al. Strategy for characterization of distribution and associations of organobromine compounds in soil using synchrotron based spectromicroscopies[J]. Analytical Chemistry, 2014, 86(22): 11002-11005. doi: 10.1021/ac503280v
[71] LIU Y R, PASKEVICIUS M, SOFIANOS M V, et al. In situ SAXS studies of the pore development in biochar during gasification[J]. Carbon, 2021, 172: 454-462. doi: 10.1016/j.carbon.2020.10.028