-
土霉素(oxytetracycline, OTC)属于四环素类抗生素。由于其抗菌谱广、价格低廉,OTC被广泛用于治疗人类和动物疾病。此外,OTC还可作为饲料添加剂用于促进动物生长发育。2013年,我国OTC的用量为1360 t,其中约86%的OTC被用于畜牧养殖业[1]。OTC在生物体内的代谢率较低,大部分以母体的形式随排泄物排出体外。调查表明,畜禽粪肥中普遍含有OTC[2-3]。在我国传统农业模式下,残留的OTC将通过粪污还田进入农田土壤。Zhang等[4]调查发现,长期施用粪肥的菜地土壤中OTC的平均含量为397.6 μg·kg−1。该值超过了兽药国际协调委员会(VICH)提出的土壤抗生素生态毒害效应触发值(100 μg·kg−1),这对于土壤生态系统构成了潜在威胁。例如,OTC能杀死土壤中的部分微生物并干扰其在自然界物质循环中的作用;诱发产生OTC耐药细菌;沿食物链富集并毒害敏感性动植物等[5-7]。OTC造成的土壤环境污染及其生态毒害效应受到国际社会的广泛关注。
吸附是控制OTC在土壤-水界面转化的重要过程,它可以决定OTC的赋存形态,从而影响其在土壤中的迁移过程和生物有效性[8]。目前,关于OTC在土壤中吸附的研究已有大量报道[9-16]。这些研究表明,OTC主要通过疏水性分配、范德华力、离子交换、氢键、化学键、表面络合、孔道内扩散等吸附机制与土壤颗粒结合。OTC的吸附量与土壤理化性质密切相关,如粘土矿物含量高、有机质含量高、离子交换能力强的土壤对OTC的亲和力更强。此外,pH、离子强度、温度、共存离子和胶体等因素也会影响OTC在土壤中的吸附行为。上述研究成果为理解OTC在土壤中的环境行为提供了理论支撑。但是,现有的研究并没有考虑广泛存在于土壤中的微塑料对OTC吸附行为的影响。
微塑料是指“粒径小于5 mm的塑料类污染物”,它们广泛分布在海洋和陆地环境中[17-19]。其中,土壤是微塑料重要的长期储存库,每年排入土壤中的微塑料的量远大于海洋[20]。调查显示,在中国、澳大利亚、瑞士和智利的土壤中均可检测到微塑料,最高浓度为67.5 g·kg−1[21-24]。尽管目前关于国内农田土壤中微塑料污染调查的研究较少,但在采集的所有土壤样品中均可检测到微塑料,其最高丰度达到40000 N·kg−1[24-26]。这表明微塑料广泛存在于农田土壤中,且含量较高,是不应被忽视的一部分。
近期多项研究表明,微塑料可吸附水环境中的OTC。如张凯娜等[27]指出聚乙烯(PE)和聚苯乙烯(PS)微塑料可通过范德华力和微孔填充机制吸附OTC,且OTC的吸附量与盐度呈负相关;Zhang等[28]发现经过老化的PS对OTC的吸附量明显增强,主要吸附机制包括静电引力和氢键;此外,他们还指出腐殖酸能够促进PS对OTC的吸附。由于土壤颗粒与微塑料在理化性质上存在较大差异,二者对OTC的亲和力可能不同,当土壤受到微塑料污染时,其对OTC的吸附和固着能力可能受到较大影响。由此改变OTC的赋存形态及其迁移行为。
OTC在微塑料污染土壤中的吸附行为却未见报道,微塑料对于土壤吸附OTC的影响仍是未知的,这将限制人们准确评估土壤抗生素污染引发的毒性效应。鉴于此,本文选择土壤环境中常见的PE、PS和聚酰胺(PA)为典型微塑料[29-31],以壤土为供试土壤;基于批实验初步研究3种微塑料对OTC在土壤中吸附行为的影响,并探究其影响机制,以期为后续深入研究微塑料污染土壤中抗生素的关键运移过程及机制奠定基础。
微塑料对土壤吸附土霉素的影响初探
Influence of microplastics on sorption behaviors of oxytetracycline onto soils: A preliminary study
-
摘要: 为揭示微塑料对土壤吸附抗生素的影响,以聚酰胺(PA)、聚乙烯(PE)、聚苯乙烯(PS)等3种微塑料和土霉素(OTC)为研究对象,通过批实验研究了OTC在土壤、添加微塑料的土壤及微塑料中的吸附行为。结果表明,微塑料可通过改变液膜厚度、内部孔道数量和吸附位点数量影响土壤对OTC的吸附动力学行为。Temkin模型能够较好地拟合OTC在土壤和含微塑料土壤上的吸附等温线,而OTC在微塑料上的等温吸附更符合Freundlich模型。向土壤中添加微塑料(质量分数10%)可抑制土壤对OTC的吸附,但不同类型微塑料对土壤吸附OTC的抑制程度不同,含有PE或PS的土壤对OTC的吸附量显著降低(P<0.05),而添加等量PA的土壤对OTC的吸附量未明显减少(P>0.05),这可能与3种微塑料对OTC的亲和力不同有关。3种微塑料对OTC的吸附能力(Kf=0.103—0.152 L·g−1)显著(P<0.01)弱于土壤(Kf=1.297 L·g−1),因此向土壤中添加微塑料将减少吸附位点,从而导致OTC的吸附量减少;微塑料能改变反应体系的pH值,由此干扰OTC的形态分布,并间接影响OTC的吸附行为;此外,微塑料还可能通过侵占土壤颗粒内部孔道和竞争吸附位点的方式影响土壤对OTC的吸附。Abstract: In order to reveal the effects of microplastics on sorption behaviors of antibiotics onto soils, polyamide (PA), polyethylene (PE), polystyrene (PS), and oxytetracycline (OTC) were selected as the target, and batch experiments were conducted to investigate sorption of OTC onto the soil, soil containing 10% (mass fraction) of microplastics, and microplastics. Results show that microplastics could influence the sorption rate of OTC by altering the thickness of liquid film, the number of internal channels, and the number of sorption sites. The sorption isotherms of OTC onto the single soil and mixtures of soil and microplastics were in accordance with the Temkin model, while Freundlich model could fit the sorption isotherms of OTC onto microplastics well. Adding microplastics into the soil inhibited sorption of OTC. However, various types of microplastics have different inhibitory effects on OTC sorption. That is, the sorption capacity of soil containing PE or PS microplastics reduced significantly (P<0.05), while the soil containing the same amount of PA microplastics had similar sorption amount of OTC with the soil. This may be related to the different affinity of the three types of microplastics to OTC. Sorption amounts of OTC onto the three types of microplastics (Kf =0.103—0.152 L·g−1) were significantly (P<0.01) smaller than that onto the soil (Kf =1.297 L·g−1). Therefore, adding microplastics to the soil will reduce the overall sorption sites, which in turn will decrease the sorption capacity of the soil containing microplastics to OTC. Microplastics can alter the pH of the reaction system, which will affect speciation of OTC, thereby sorption of OTC is influenced. Further, the influencing mechanisms of microplastics on OTC sorption may also include competing sorption sites and occupying internal pores of soil particles.
-
Key words:
- microplastics /
- oxytetracycline /
- soil /
- sorption /
- batch experiments
-
表 1 供试土壤理化性质
Table 1. Physicochemical properties of the tested soil
pHpzc 有机质/(mg·g−1)
Organic matter阳离子交换量 /(cmol(+)·kg−1)
Cation exchange capacity颗粒组成/%
Particle composition黏粒
Clay(<2 μm)粉粒
Silt(2—50 μm)砂粒
Sand(>50 μm)5.28 12.3 12.4 20.16 33.60 46.24 表 2 准一级和准二级动力学模型拟合参数
Table 2. Fitting parameters of Pseudo-first-order and Pseudo-second-order kinetic models
吸附剂
Sorbentsq(e,exp)/(mg·g−1) 准一级动力学模型
Pseudo-first-order kinetic model准二级动力学模型
Pseudo-second-order kinetic modelqe/(mg·g−1) k1/h−1 R2 qe/(mg·g−1) k2/(g·(mg·h−1) -1) R2 土 1.832 1.848 0.226 0.902 1.879 0.665 0.773 土+PA 1.811 1.813 0.283 0.968 1.898 0.233 0.990 土+PS 1.803 1.787 0.371 0.974 1.871 0.295 0.982 土+PE 1.813 1.811 0.435 0.994 1.921 0.289 0.992 表 3 等温吸附模型拟合参数
Table 3. Fitting parameters of models
吸附剂
SorbentsFreundlich模型 D-R模型 Temkin模型 Linear模型 Kf/(L·g−1) n R2 qm/(mg·g−1) β/(mol2·kJ−2) R2 bT/(kJ·mol−1) KT/(L·g−1) R2 Kd/(L·g−1) R2 土 1.297 0.584 0.945 3.810 0.243 0.950 1.975 3.487 0.993 0.980 0.726 土+PA 1.257 0.665 0.963 3.193 0.250 0.936 2.053 3.457 0.997 0.710 0.612 土+PS 0.955 0.581 0.966 2.426 0.249 0.990 2.960 3.545 0.998 0.453 0.940 土+PE 0.981 0.667 0.971 2.311 0.240 0.983 2.849 3.580 0.996 0.388 0.959 PA 0.152 0.949 0.981 1.751 2.987 0.504 6.884 4.662 0.926 0.156 0.743 PS 0.110 0.368 0.738 0.236 0.044 0.267 72.68 122.1 0.466 0.021 0.754 PE 0.103 0.429 0.812 0.057 0.057 0.973 71.40 94.14 0.982 0.026 0.997 -
[1] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. [2] ZHAO L, DONG Y H, WANG H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China [J]. Science of the Total Environment, 2010, 408(5): 1069-1075. doi: 10.1016/j.scitotenv.2009.11.014 [3] 张慧敏, 章明奎, 顾国平. 浙北地区畜禽粪便和农田土壤中四环素类抗生素残留 [J]. 生态与农村环境学报, 2008, 24(3): 69-73. doi: 10.3969/j.issn.1673-4831.2008.03.014 ZHANG H M, ZHANG M K, GUO G P. Residues of tetracyclines in livestock and poultry and agricultural soils from North Zhejiang Province [J]. Journal of Ecology and Rural Environment, 2008, 24(3): 69-73(in Chinese). doi: 10.3969/j.issn.1673-4831.2008.03.014
[4] ZHANG H B, ZHOU Y, HUANG Y J, et al. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures[J]. Chemosphere. 2016, 152(6): 229-237. [5] AHMED M B M, RAJAPAKSHA A U, LIM J E, et al. Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce [J]. Journal of Agricultural and Food Chemistry, 2015, 63(2): 398-405. doi: 10.1021/jf5034637 [6] 曾巧云, 丁丹, 檀笑. 中国农业土壤中四环素类抗生素污染现状及来源研究进展 [J]. 生态环境学报, 2018, 27(9): 1774-1782. ZENG Q Y, DING D, TAN X. Pollution status and sources of tetracycline antibiotics in agricultural soil in China: A review [J]. Ecology and Environmental Sciences, 2018, 27(9): 1774-1782(in Chinese).
[7] 仇天雷, 高敏, 韩梅琳, 等. 鸡粪堆肥过程中四环素类抗生素及抗性细菌的消减研究 [J]. 农业环境科学学报, 2015, 34(4): 795-800. doi: 10.11654/jaes.2015.04.027 QIU T L, GAO M, HAN M L, et al. Decreases of tetracyclines and antibiotics-resistant bacteria during composting of chicken manure [J]. Journal of Agro-Environment Science, 2015, 34(4): 795-800(in Chinese). doi: 10.11654/jaes.2015.04.027
[8] WANG Y J, SUN R J, XIAO A Y, et al. Phosphate affects the adsorption of tetracycline on two soils with different characteristics [J]. Geoderma, 2010, 156(3/4): 237-242. [9] BAO Y Y, WAN Y, ZHOU Q X, et al. Competitive adsorption and desorption of oxytetracycline and cadmium with different input loadings on cinnamon soil [J]. Journal of Soils and Sediments, 2013, 13(2): 364-374. doi: 10.1007/s11368-012-0600-3 [10] LEE J, SEO Y, ESSINGTON M E. Sorption and transport of veterinary pharmaceuticals in soil-A laboratory study [J]. Soil Science Society of America Journal, 2014, 78(5): 1531-1543. doi: 10.2136/sssaj2013.11.0490 [11] 曹志磊, 俞花美, 葛成军, 等. 可溶性有机物对土霉素在土壤中吸附-解吸的影响 [J]. 热带作物学报, 2018, 39(4): 825-831. doi: 10.3969/j.issn.1000-2561.2018.04.034 CAO Z L, YU H M, GE C J, et al. Eeffects of dissolved organic matter on adsorption-desorption behavior of oxytetracycline in soil system [J]. Chinese Journal of Tropical Crops, 2018, 39(4): 825-831(in Chinese). doi: 10.3969/j.issn.1000-2561.2018.04.034
[12] KOCAREK M, KODESOVA R, VONDRACKOVA L, et al. Simultaneous sorption of four ionizable pharmaceuticals in different horizons of three soil types [J]. Environmental Pollution, 2016, 218(11): 563-573. [13] PAN M, CHU L M. Adsorption and degradation of five selected antibiotics in agricultural soil [J]. Science of the Total Environment, 2016, 545-546(3): 48-56. [14] 石磊平, 蒋煜峰, 广阿龙, 等. 天然有机质对土霉素在西北灰钙土上吸附行为的影响 [J]. 环境科学研究, 2019, 32(9): 1584-1593. SHI L P, JIANG Y F, GUANG A L, et al. Effect of natural organic matter on adsorption behavior of oxytetracycline onto sierozem soils in Northwest China [J]. Research of Environmental Sciences, 2019, 32(9): 1584-1593(in Chinese).
[15] 鲍艳宇, 周启星, 张浩. 阳离子类型对土霉素在2种土壤中吸附-解吸影响 [J]. 环境科学, 2009, 30(2): 551-556. doi: 10.3321/j.issn:0250-3301.2009.02.040 BAO Y Y, ZHOU Q X, ZHANG H. Influences of cation species on adsorption and desorption of oxytetracycline in two typical soils of China [J]. Environmental Science, 2009, 30(2): 551-556(in Chinese). doi: 10.3321/j.issn:0250-3301.2009.02.040
[16] RABOLLE M, SPLIID N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil [J]. Chemoshpere, 2000, 40(7): 715-722. doi: 10.1016/S0045-6535(99)00442-7 [17] ROCHMAN C M. Microplastics research - from sink to source [J]. Science, 2018, 360(6384): 28-29. doi: 10.1126/science.aar7734 [18] 骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究 防范生态与食物链风险 [J]. 中国科学院院刊, 2018, 33(10): 1021-1030. LUO Y M, ZHOU Q, ZHANG H B, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1021-1030(in Chinese).
[19] 李道季. 海洋微塑料污染研究现状及其应对措施建议 [J]. 环境科学研究, 2019, 32(2): 197-202. LI D J. Research advance and countermeasures on marine microplastic pollution [J]. Research of Environmental Sciences, 2019, 32(2): 197-202(in Chinese).
[20] NIZZETOO L, Langaas S, Futter M. Do microplastics spill on to farm soils? [J]. Nature, 2016, 537(7621): 488-488. [21] FULLER S, GAUTAM A. A procedure for measuring microplastics using pressurized fluid extraction [J]. Environmental Science & Technology, 2016, 50(11): 5774-5780. [22] SCHEURER M, BIGALKE M. Microplastics in Swiss floodplain soils [J]. Environmental Science & Technology, 2018, 52(6): 3591-3598. [23] CORRADINI F, EGUILUZ R, CASADO F, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal [J]. Science of the Total Environment, 2019, 671(6): 411-420. [24] ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China [J]. Science of the Total Environment, 2018, 642(11): 12-20. [25] LIU M T, LU S B, SONG Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China [J]. Environmental Pollution, 2018, 242(11): 855-862. [26] LU X M, LU P Z, LIU X P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil [J]. Science of the Total Environment, 2020, 709(3): 136276. [27] 张凯娜, 李嘉, 李晓强, 等. 微塑料表面土霉素的吸附-解吸机制与动力学过程 [J]. 环境化学, 2017, 36(12): 2531-2540. doi: 10.7524/j.issn.0254-6108.2017032703 ZHANG K N, LI J, LI X Q, et al. Mechanisms and kinetics of oxytetracycline adsorption-desorption onto microplastics [J]. Environmental Chemistry, 2017, 36(12): 2531-2540(in Chinese). doi: 10.7524/j.issn.0254-6108.2017032703
[28] ZHANG H B, WANG J Q, ZHOU B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution, 2018, 243(12): 1550-1557. [29] ZHOU Q, ZHANG H B, FU C C, et al. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea [J]. Geoderma, 2018(7): 201-208. [30] LV W, ZHOU W Z, LU S B, et al. Microplastic pollution in rice-fish co-culture system: A report of three farmland stations in Shanghai, China [J]. Science of the Total Environment, 2019, 652(1): 1209-1218. [31] ZHOU Y F, LIU X N, WANG J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China [J]. Science of the Total Environment, 2019, 694(12): 133798. [32] HUFFER T, METZELDER F, SIGMUND G, et al. Polyethylene microplastics influence the transport of organic contaminants in soil [J]. Science of the Total Environment, 2019, 657(3): 242-247. [33] SUN Y, YUE Q, GAO B, et al. Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption [J]. Journal of Colloid and Interface Science, 2012, 368(1): 521-527. doi: 10.1016/j.jcis.2011.10.067 [34] JANG H M, YOO S, CHOI Y K, et al. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar [J]. Bioresource Technology, 2018, 259(7): 24-31. [35] HARJA M, CIOBANU G. Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite [J]. Science of the Total Environment, 2018, 628/629(7): 36-43. [36] 王静, 朱晓丽, 韩自玉, 等. 3种典型多孔高温改性固废材料对磺胺二甲嘧啶的吸附特性 [J]. 环境科学, 2020, 41(3): 1319-1328. WANG J, ZHU X L, HAN Z Y, et al. Adsorption characteristics of sulfamethazine on three typical porous high-temperature modified solid waste materials [J]. Environmental Science, 2020, 41(3): 1319-1328(in Chinese).
[37] LU J B, XU K, LI W L, et al. Removal of tetracycline antibiotics from aqueous solutions using easily regenerable pumice: Batch and column study [J]. Water Quality Research Journal of Canada, 2018, 53(3): 143-155. doi: 10.2166/wqrj.2018.012 [38] 王东升, 张婷, 晁宇. 离子强度和离子类型对土霉素在草甸土中被吸附的影响 [J]. 生态环境学报, 2014, 23(5): 870-875. doi: 10.3969/j.issn.1674-5906.2014.05.022 WANG D S, ZHANG T, CHAO Y. Influence of different strength and species of cation on adsorption of oxytetracycline in meadow soils [J]. Ecology and Environmental Sciences, 2014, 23(5): 870-875(in Chinese). doi: 10.3969/j.issn.1674-5906.2014.05.022
[39] 齐瑞环, 李兆君, 龙健, 等. 土壤粉碎粒径对土霉素在土壤中吸附的影响 [J]. 环境科学, 2011, 32(2): 589-595. QI R H, LI Z J, LONG J, et al. Effects of soil trituration size on adsorption of oxytetracycline on soils [J]. Environmental Science, 2011, 32(2): 589-595(in Chinese).
[40] HADI, M, SAMARGHANDI, M R, MCKAY, G. Equilibrium two-parameter isotherms of acid dyes sorption by activated carbons: study of residual errors[J]. Chemical Engineering Journal , 2010, 160(2): 408-416. [41] GUNAY A, ARSLANKAYA E, TOSUN İ. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics [J]. Journal of Hazardous Materials, 2007, 146(1/2): 362-371. [42] LI J, ZHANG K N, ZHANG H. Adsorption of antibiotics on microplastics [J]. Environmental pollution, 2018, 237(6): 460-467. [43] ZHANG S, HAN B, SUN Y et al. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil[J]. Journal of Hazardous Materials, 2020, 388(4): 121775. [44] WANG F, SHIH K M, LI X Y. The partition behavior of perfluorooctanesulfonate(PFOS) and perfluorooctanesulfonamide(FOSA) on microplastics [J]. Chemosphere, 2015, 119(2): 841-847. [45] 张翠, 胡学锋, 骆永明. 模拟太阳光下水中土霉素的光化学降解 [J]. 环境化学, 2016, 35(3): 430-438. doi: 10.7524/j.issn.0254-6108.2016.03.2015101303 ZHANG C, HU X F, LUO Y M. Aqueous photodegradation of oxytetracycline under simulated sunlight irradiation [J]. Environmental Chemistry, 2016, 35(3): 430-438(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.03.2015101303
[46] TORKZABAN S, BRADFORD S A, van GENUCHTEN M T, et al. Colloid transport in unsaturated porous media: The role of water content and ionic strength on particle straining [J]. Journal of Contaminant Hydrology, 2008, 96(1): 113-127. [47] LUO Y Y, ZHANG Y Y, XU Y B, et al. Distribution characteristics and mechanism of microplastics mediated by soil physicochemical properties [J]. Science of the Total Environment, 2020, 726(7): 138389.