-
含氮废水的处理方法主要有物理法、化学法、生物法等,而生物法是目前污水处理厂最常用的方法[1]。传统的生物法脱氮是利用微生物将水体中的有机氮、氨态氮和硝态氮转化成氮气的过程,包括氨化、硝化和反硝化的3个步骤。其中反硝化作用是由反硝化细菌在厌氧条件下将硝酸盐还原为氮气或氮氧化物的过程,是去除污水中含氮污染物的关键步骤。目前反硝化作用作为一种重要的脱氮工艺已得到广泛应用,但在实际应用中发现存在反硝化速率低的问题,从而影响了生物系统脱氮效率。反硝化过程需要有机物作为电子供体,研究表明我国城市污水处理厂普遍存在进水碳氮比低的问题,碳源不足已经成为制约污水处理厂脱氮效率的主要因素[2]。有很多学者采用新型生物脱氮工艺来提高脱氮效率,例如短程硝化反硝化[3]、厌氧氨氧化[4]和同步硝化反硝化[5]等。但新型工艺受到众多因素的影响,目前在实际工程中难以大规模推广应用。在实际污水处理过程中,碳源不足是制约反硝化脱氮效果的主要原因,但也有研究表明反硝化的电子传递速率是影响反硝化效率的因素之一[6-7]。反硝化反应涉及多重电子传递过程,电子传递速率是影响反硝化速率的重要因素。氧化还原介体是一类能够在电子受体和电子供体之间可逆地被氧化和还原,从而加速电子转移的化合物[8]。通过投加氧化还原介体提高反硝化中电子传递速率是提高生物脱氮速率的有效措施,因此成为目前的研究热点。
研究表明投加氧化还原介体可以提高反硝化过程电子传递速率、降低反应活化能从而加快反硝化脱氮速率[7, 9],通过提高生物反硝化性能减少缺氧池容积、节约投资成本,具有显著的经济效益。氧化还原介体-反硝化技术与新型生物脱氮工艺相比,其对水质、运行环境、操作条件等要求低,易于实施,管理方便。并且氧化还原介体种类多,来源较广泛,因此具有很好的应用前景。该技术的应用为解决生物转化速率慢的问题和高效脱氮提供了新思路。为此,本文对现阶段氧化还原介体强化生物反硝化脱氮研究进展进行了综述。
-
微生物的反硝化过程也称作硝酸盐呼吸。在厌氧条件下,反硝化细菌以硝酸盐为最终电子受体,有机碳为电子供体,在各种酶的作用下,将硝酸盐依次还原成
${\rm{NO}}_2^{-} $ 、NO、N2O、N2,同时将有机碳氧化成CO2的过程并从中获得能量合成细胞[10]。其中涉及的酶主要包括硝酸盐还原酶(NaR)、亚硝酸盐还原酶(NiR)、一氧化氮还原酶(NoR)和一氧化二氮还原酶(N2OR)。反硝化的四步生化反应及其作用酶如表1所示。 -
对于异养型反硝化细菌,微生物在各种酶的作用下通过电子传递链将最初电子供体提供的电子传递给最终电子受体
${\rm{NO}}_3^{-} $ ,其中电子传递链是由与细胞膜紧密结合的电子载体NADH、FP、FeS、CoQ、Cyt b、Cyt bc1复合体和Cyt c等辅酶组成的[6, 14]。电子总是由低电动势传递给高电动势的,结合图1可以描述反硝化细菌的电子传递链。首先,有机物产生的直接电子供体NADH将电子传递给复合体Ⅰ,然后复合体Ⅰ将电子传递给CoQ,从此处,电子传递分两路进行。其一是CoQ将电子传递给NaR中的Cyt b使
${\rm{NO}}_3^{-} $ 还原,同时也向膜外排出质子。其二是CoQ将电子传递给复合物Ⅲ,然后复合体Ⅲ将电子传递给Cyt c,最后Cyt c分别将电子传递给NiR、NoR和N2OR进而完成反硝化过程。当电子供体不足时,反硝化反应中4个步骤会存在电子竞争问题,相应的还原酶活性越强,其电子竞争能力就越强[15]。 -
氧化还原介体(RMs),也称为电子穿梭体,是指能够加速电子从最初电子供体向最终电子受体传递的一类化合物,可以使氧化还原速率提高一至几个数量级[16]。很多研究发现RMs在厌氧条件下不仅可以加速降解高氯酸盐[17]、硝基化合物[18]、偶氮染料[16, 19]等多种污染物,还可以加速微生物将硝酸盐、亚硝酸盐还原成氮气[7, 20]。随着污水处理厂污染物排放标准的提高,低成本、高效率的脱氮技术的研发日益重要,反硝化是去除含氮污染物的关键步骤。反硝化过程中伴随着电子传递,RMs可以提高电子转移效率,目前学者们致力于寻找不同种类的RMs,研究其强化反硝化效果及其作用机制。
作为一种有效的电子穿梭体,介体的氧化还原电位(ORP)应该介于最初电子供体和最终电子受体之间,反硝化电子传递链中电子载体和常见的介体的氧化还原电位具体见表2。RMs强化反硝化脱氮过程主要分为两步,如图2所示:第一步是在各种酶的作用下微生物将电子传递给介体,使介体还原,是生物步骤;第二步是还原态的介体将电子传递给氮氧化合物,使污染物还原,是非生物步骤。RMs对促进反硝化过程的作用机制主要体现在以下3个方面。
1)作为载体在反硝化电子传递链中传递电子,加速电子转移速率;Guo等[9]考察了多金属氧酸盐(POMs)对反硝化性能的影响,其中磷钼酸(PMo12)具有多个氧化还原位点,具有很好地传递电子能力;电化学阻抗谱法和循环伏安实验表明0.05 mmol·L−1的PMo12的添加使反硝化体系的电阻减少了34.28%,提高了电子转移速率,PMo12体系还原硝酸盐速率是对照体系的3.93倍,同时对亚硝酸盐还原也有积极作用。
2)作为一种催化剂降低反硝化反应的活化能;Xie等[31]的研究表明,在相同条件下,添加了0.25 mmol·L−1氯化血红素的体系和对照体系的反应活化能分别为3.27 kJ·mol−1和25.04 kJ·mol−1,氯化血红素的添加使反硝化反应活化能降低了87%。
3)提高反硝化关键酶的酶活性,并能取代辅酶Q参与电子传递过程。Yin等[25]的研究发现,25 μmol·L−1的AQ分别使NaR和NiR活性提高1.7倍和1.3倍,75 μmol·L−1的ME分别使NaR和NiR活性提高1.97倍和1.36倍,75 μmol·L−1的LAW和100 μmol·L−1的AQDS分别使NiR活性提高了47.6%和208%。Liu等[26]的研究表明AQS在反硝化过程中所起的作用可能与辅酶Q的类似,同时降低了反应体系的氧化还原电位,从而加速了电子传递过程。
-
目前促进反硝化过程的氧化还原介体主要为外源性RMs,研究较多的外源性RMs是腐殖质和醌类物质,有研究表明碳质材料和卟啉类化合物也可作为介体加快电子传递速率。常见外源性RMs种类及其在反硝化过程中作用如表3所示。
(1) 腐殖质
腐殖质(HS)是由动、植物或微生物残体等经生物酶或微生物的分解、氧化及合成等过程形成的一种有机高分子化合物,具有很强的电子转移能力[43]。其电子穿梭能力主要得益于醌、酚等官能团的存在,尤其是醌基团在电子传递中起到了重要的作用[44]。Li等[7]的研究表明,富里酸(FA)通过糖酵解和三羧酸循环增加碳源代谢,产生更多有效的NADH,通过复合体Ⅰ和复合体Ⅲ促进NADH向反硝化酶的转移从而促进硝酸盐还原。有研究表明,亚硝酸盐的累积是由于硝酸盐还原酶和亚硝酸盐还原酶活性不平衡引起的[25],过量的亚硝酸盐对微生物有毒害作用会抑制反硝化作用,从而降低TN的去除。FA的添加会促进反硝化关键酶的合成和催化活性,尤其是提高了亚硝酸盐还原酶和一氧化二氮还原酶的酶活性,显著的降低亚硝酸盐的累积和N2O的排放,使总氮去除率提高1.34倍。吴磊[32]考察了腐殖活性污泥对生物脱氮的促进作用,研究发现腐殖活性污泥对硝酸盐和亚硝酸盐生物反硝化菌有很好的促进效果,通过腐殖酸中的醌类基团充当胞外电子穿梭体,提高硝酸盐生物反硝化速率1.63倍,提高亚硝酸盐生物反硝化速率1.91倍。目前,由于天然腐殖质存在多个氧化还原位点,且不同来源的腐殖质其氧化还原特性也存在差异[45],因此常使用小分子醌类物质作为模板物进行相关研究。
(2) 醌类物质
醌类物质是一类含有两个双键的六碳原子环状二酮结构的芳香族化合物,能够可逆的接受和提供电子用于微生物还原硝酸盐、亚硝酸盐、一氧化二氮。其作用机理是微生物将有机物提供的电子传递给醌类物质使其还原成氢醌,然后氢醌被氧化成醌类将电子传递给硝酸盐[46]。Xi等[20]考察了5种水溶性RMs对反硝化加速效果,结果表明5种介体使反硝化速率提高了1.1—1.5倍,其中AQDS的催化效果最好;通过电子传递链抑制剂确定AQDS加速作用点,研究表明AQDS桥接了NADH与泛醌之间断裂(由抑制剂阻断的)的电子传递链,减少了抑制剂对反硝化电子传递的抑制作用。赵丽君等[47]采用AQS调控亚硝酸盐反硝化过程,研究结果表明AQS降低了反硝化体系的ORP,在反硝化过程中起辅酶Q的作用并加速了细胞色素传递电子的全过程从而加速了
${\rm{NO}}_2^{-} $ 向N2O的转化。由于外源性溶解性醌类物质难降解且易随出水流失,会造成二次污染和增加运行成本。针对这一问题,很多学者采用固定化技术将介体包埋制备成材料用于强化反硝化过程。Guo等[36]利用海藻酸钙固定蒽醌制备成小球,蒽醌固定化小球降低了体系的氧化还原电位,使反硝化速率提高约2倍。杜海峰等[37]利用醋酸纤维素包埋醌类介体制备成介体小球,结果表明介体小球在反应10 h时可使硝酸盐去除率提高1.84倍,并具有很好的重复利用性。
(3) 碳质材料
碳质材料是一类固态的可重复利用的RMs,如生物炭、石墨、氧化石墨烯(GO)等。生物炭是指在低氧环境下,通过高温热解将稻草、玉米秆或其他农作物碳化得到的产物。由于其具有氧化还原活性成分和芳香族结构,可以作为电子穿梭体从而促进污染物还原[48]。Wu等[40]研究表明,300 ℃下制备的生物炭具有良好的接受和提供电子能力,生物炭的添加使反硝化体系碳源代谢能力增加从而产生更多的有效电子供体,并提高NaR、NiR和N2OR的酶活性加速了
${\rm{NO}}_3^{-} $ -N、${\rm{NO}}_2^{-} $ -N和N2O的还原,同时使反硝化体系电子传递活性提高1.37倍,从而减少了${\rm{NO}}_2^{-} $ -N积累和N2O排放,提高了TN的去除。石墨微粒(MGPs)能提高污泥对含氮污水的降解效果,其加速效果取决于MGPs的粒径和投加量。Li等[42]的研究表明MGPs对反硝化有加速作用,0.16 g·L−1的MGPs使合成废水的反硝化速率提高了83.4%。GO在废水中不仅有吸附的作用,还可作为电子穿梭体加快电子传递过程[49]。由于GO的吸附、催化等性能和较高的机械强度,常与其他材料掺杂用于强化污染物去除效果。Tang等[50]利用GO改性聚乙烯醇和海藻酸钠材料,研究其在低温下对反硝化的促进效果,研究表明在长期运行下,0.15 g·L−1 GO改良材料具有稳定的脱氮效果,提高了微生物的活性,使硝酸盐还原率提高了3.92倍。(4) 卟啉类化合物
卟啉是一类由4个吡咯环通过4个次甲基桥互联而成的芳香大环化合物。金属卟啉类具有催化的功能,能够降低反硝化反应的活化能,同时可以作为电子载体参与反硝化电子传递过程,提高反硝化脱氮效率。在自然界的生物体内都有卟啉类化合物的存在,如叶绿素、血红素、细胞色素等。其中细胞色素c是反硝化电子传递链中不可缺少的可移动电子载体,通过血红素中心的铁原子在二价态和三价态之间的变化,在细胞体内进行可逆的电子传递反应[51]。Xie等[31]的研究表明5种不同卟啉化合物的添加均使硝酸盐还原率提高了2—3倍,其中氯化血红素催化效果最好。氯化血红素的添加使体系的ORP迅速下降并达到稳定值并使反应活化能降低了87%,有利于硝酸盐的还原。并通过机理研究发现氯化血红素的金属配体和卟啉配体都有可能参加了反硝化的电子转移过程,加速了复合体Ⅲ的电子传递。叶绿素是一种生态友好型天然氧化还原介体,Lu等[30]发现0.02 mmol·L−1叶绿素a提高了系统的电子转移活性使硝酸盐和亚硝酸盐还原率提高7.26倍和7.31倍,并且叶绿素a具有良好的重复利用性,经过5次循环使用,其对硝酸盐的还原率是空白组的2—5.3倍。
-
反硝化反应涉及多重电子传递过程,电子传递速率是影响反硝化速率的重要因素。氧化还原介体通过促进电子转移效率、降低反应活化能从而提高脱氮效率。目前有关反硝化过程电子介体的研究主要集中在外源性RMs,尤其是腐殖质和醌类物质。外源性介体对反硝化的增效机制主要体现在增加碳源代谢提高NADH产量、提高关键酶的活性、促进电子载体间电子传递等几个方面。少量介体的投加可以显著提高硝酸盐还原速率,减少亚硝酸盐的累积和N2O的生成。
在污水处理系统中,水溶性RMs虽然可以加速反硝化过程,但其易随废水排放而流失,连续投加会增加运行成本。因此,学者们用载体将RMs固定化,固定化介体克服了介体流失问题,易实现固液分离,且具有良好的重复利用性,但其也存在一些问题,如固定化介体在一定程度上减少了微生物与介体的接触面积,限制了介体的催化活性,同时固定化介体的稳定性也需进一步提高。因此提高固定化介体的稳定性及强化催化效率可以作为未来的研究方向之一。此外,目前反硝化过程应用的RMs要以外源性物质为主,大部分为人工合成化合物,其存在潜在的环境风险。内源性RMs是由微生物产生并分泌到细胞外具有电子传递功能的一类物质,包括黄素类、吩嗪类、黑色素等。内源性RMs的分泌虽然会消耗微生物一部分能量,但这些RMs能被多次反复利用,并降低环境污染风险,对微生物毒害较小[52]。然而关于内源性介体在反硝化中的应用还鲜有报道,有待深入研究。
氧化还原介体强化生物反硝化脱氮研究进展
Enhanced biological denitrification by redox mediators: A review
-
摘要: 传统的生物脱氮包括氨化、硝化、反硝化,而反硝化过程是去除污水中含氮污染物的关键步骤。在实际污水处理过程中,低反硝化速率影响了生物系统脱氮效果。研究发现反硝化反应涉及多重电子传递过程,电子传递速率是影响反硝化速率的重要因素。氧化还原介体是一类能够在电子供体和电子受体之间可逆地被氧化和还原,加速电子传递的化合物。研究表明,氧化还原介体可以促进反硝化的电子转移速率,降低反应的活化能从而提高脱氮效果。本文总结了反硝化作用中电子传递过程,在此基础上,论述了氧化还原介体定义及作用,重点分析氧化还原介体的种类及其在反硝化过程中的应用,并指出了今后的研究方向,以提高氧化还原介体在反硝化过程中的应用。Abstract: The traditional biological nitrogen removal includes ammoniation, nitrification and denitrification. Denitrification is the key step in nitrogen removal. Slow denitrification rate is the bottleneck for nitrogen removal in practical wastewater. Denitrification involved multiple electron transfer processes, and electron transfer rate was the important factor for denitrification rate. Redox mediators were compounds that can be reversibly oxidized and reduced between an electron donor and an electron acceptor, thus electron transfer can be accelerated. The studies showed that the redox mediators can improve the denitrification by increasing the electron transfer rate and decreasing the activation energy of the reaction. This paper summarized the electron transfer process of denitrification and discussed the definition and functions of redox mediators. The kinds of redox mediators and their application in the denitrification process was reviewed. Moreover, the future research directions were pointed out to improve the application of redox mediators in denitrification.
-
Key words:
- nitrogen removal /
- redox mediators /
- denitrification /
- electron transfer
-
-
表 1 反硝化脱氮步骤及作用酶的特点
Table 1. The steps of denitrification and the characteristics of enzymes
步骤
Step作用酶
Enzyme酶的特点
Characteristics of enzymeNO3-+2H++2e-→NO2-+H2O NaR 存在膜结合硝酸盐还原酶和周质硝酸盐还原酶,这两种酶在表达条件、结构和编码基因有很大差异[11]。 NO2-+2H++e-→NO+H2O NiR 细胞周质酶,含有两种不同类型的细胞色素:Cyt c和Cyt d1[12]。 2NO+2H++2e-→N2O+H2O NoR 膜结合的细胞色素bc型酶,含有非血红素铁;该酶很不稳定,对NO有着极高的亲和力,可使NO浓度维持在低于毒害临界值的水平[11-12]。 N2O+2H++2e-→N2+H2O N2OR 细胞周质酶,易受pH的抑制,对氧的敏感度高于其他脱氮酶,该酶的每个亚基具有6个Cu原子[13],还含有细胞色素。 表 2 反硝化电子传递链中电子载体和常见RMs的ORP
Table 2. ORP of electron carriers in denitrifying electron transport chains and common RMs
反硝化中电子载体[13, 21-22]
Electron carriers for denitrification[13, 21-22]ORP/mV 氧化还原介体
Redox mediatorORP/mV 烟酰胺腺嘌呤二核苷酸(NADH) −320 黄素腺嘌呤二核苷酸(FAD)[23] −219 黄素蛋白(FP) −300 核黄素(RF)[24] −208 黄素单核苷酸(FMN) −219 2-羟基-1,4-萘醌(LAW)[25] −139 铁硫蛋白(FeS) −180 甲萘醌(ME)[25] +203 细胞色素b(Cyt b) +30 2-蒽醌二磺酸钠(AQS)[26] −218 辅酶Q(CoQ) +100 2,6-蒽醌二磺酸钠(AQDS)[25, 27] −184 细胞色素c(Cyt c) +254 绿脓菌素(PYO)[28] −32 硝酸盐(NO3−) +433 吩嗪-1-羧酸(PCA)[29] −114 亚硝酸盐(NO2−) +320 叶绿素a[30] −35 表 3 外源性RMs种类及其在反硝化过程中的应用
Table 3. Exogenous RMs species and applications in denitrification
种类
Kind氧化还原介体
Redox mediator强化效果
Enhanced effectiveness参考文献
Reference腐殖质 富里酸 总氮去除率提高1.34倍,降低亚硝酸盐累积和减少N2O排放 [7] 腐殖酸 与对照组比,HS-A2O可将总氮去除率提高10%,同时污泥产量减少30% [32] 可溶性醌类物质 AQDS 反硝化速率提高1.5倍 [20] AQ、ME和LAW 反硝化速率分别提高1.60、1.25、2.08倍 [25] NQS,AQDS,LAW 显著提高N和S元素的去除 [33] 2-羟基-1,4-萘醌 使硝酸盐还原率提高了1.38倍 [34] NQS 在低温下,NQS使硝酸盐去除率提高1.5倍,总氮去除率提高1.74倍 [35] 固定醌类物质 海藻酸钙固定蒽醌 反硝化速率提高约2倍 [36] 醋酸纤维素包埋醌类介体 硝酸盐去除率提高1.84倍 [37] 固定醌类物质 醌基功能型高分子生物载体
(PET-1,8-DCA)反硝化速率提高1.2倍 [38] 聚吡咯固定化介体
(AQS/PPY/ACF)减少亚硝酸盐的累积,反硝化速率提高约35%,具有很好的重复性 [39] 碳质材料 生物炭 TN去除率提高415%,N2O排放量减少78% [40] 生物炭 低温热解的生物炭强化了反硝化效果,高温热解的生物碳减少74.1%—99.9%的N2O排放 [41] 石墨微粒(MGPs) MGPs浓度为0.16 g·L−1,反硝化速率提高83.4% [42] 卟啉类化合物 氯化血红素 硝酸盐还原率提高2—3倍,反应活化能降低87% [31] 叶绿素 硝酸盐和亚硝酸盐还原率提高7.26倍和7.31倍 [30] 无机类 磷钼酸 硝酸盐还原速率提高3.93倍 [9] -
[1] 周少奇, 周吉林. 生物脱氮新技术研究进展 [J]. 环境污染治理技术与设备, 2000, 1(6): 11-19. ZHOU S Q, ZHOU J L. The advances in investigation of new technologies on biological nitrogen removal [J]. Techniques and Equipment for Environmental Pollution Control, 2000, 1(6): 11-19(in Chinese).
[2] LIU W, YANG H, YE J J, et al. Short-chain fatty acids recovery from sewage sludge via acidogenic fermentation as a carbon source for denitrification: A review [J]. Bioresource Technology, 2020, 311: 123446. doi: 10.1016/j.biortech.2020.123446 [3] GAO D W, PENG Y Z, WU W M. Kinetic model for biological nitrogen removal using shortcut nitrification-denitrification process in sequencing batch reactor [J]. Environmental Science & Technology, 2010, 44(13): 5015-5021. [4] XU X C, XUE Y, WANG D, et al. The development of a reverse anammox sequencing partial nitrification process for simultaneous nitrogen and COD removal from wastewater [J]. Bioresource Technology, 2014, 155: 427-431. doi: 10.1016/j.biortech.2013.12.111 [5] CHEN H, ZHAO X H, CHENG Y Y, et al. Iron robustly stimulates simultaneous nitrification and denitrification under aerobic conditions [J]. Environmental Science & Technology, 2018, 52(3): 1404-1412. [6] CHEN J W, STROUS M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution [J]. Biochimica et Biophysica Acta, 2013, 1827(2): 136-144. doi: 10.1016/j.bbabio.2012.10.002 [7] LI M, SU Y L, CHEN Y G, et al. The effects of fulvic acid on microbial denitrification: promotion of NADH generation, electron transfer, and consumption [J]. Applied microbiology and Biotechnology, 2016, 100(12): 5607-5618. doi: 10.1007/s00253-016-7383-1 [8] 班巧英, 刘琦, 余敏, 等. 氧化还原介体催化强化污染物厌氧降解研究进展 [J]. 科技导报, 2019, 37(21): 88-96. BAN Q Y, LIU Q, LI J Z, et al. Review on catalytic effects of redox mediator in anaerobic degradation of pollutants [J]. Science & Technology Review, 2019, 37(21): 88-96(in Chinese).
[9] GUO H X, CHEN Z, GUO J B, et al. Enhanced denitrification performance and biocatalysis mechanisms of polyoxometalates as environmentally-friendly inorganic redox mediators [J]. Bioresource Technology, 2019, 291: 121816. doi: 10.1016/j.biortech.2019.121816 [10] FELEKE Z, SAKAKIBARA Y. A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide. [J]. Water Research, 2002, 36(12): 3092-3102. doi: 10.1016/S0043-1354(01)00538-3 [11] 肖晶晶, 郭萍, 霍炜洁, 等. 反硝化微生物在污水脱氮中的研究及应用进展 [J]. 环境科学与技术, 2009, 32(12): 97-102. doi: 10.3969/j.issn.1003-6504.2009.12.022 XIAO J J, GUO P, HUO W J, et al. Application of denitrifying microbes to wastewater denitrification [J]. Environmental Science and Technology, 2009, 32(12): 97-102(in Chinese). doi: 10.3969/j.issn.1003-6504.2009.12.022
[12] WASSER I M, DE VRIES S, MOENNE-LOCCOZ P, et al. Nitric oxide in biological denitrification: Fe/Cu metalloenzyme and metal complex NOx redox chemistry [J]. American Chemical Society, 2002, 102(4): 1201-1234. [13] PATRICK W, HEINZ K, FRANK N, et al. NosX function connects to nitrous oxide (N2O) reduction by affecting the Cu Z center of NosZ and its activity in vivo [J]. FEBS Letters, 2005, 579(21): 4605-4609. doi: 10.1016/j.febslet.2005.07.023 [14] 王淑莹, 孙洪伟, 杨庆, 等. 传统生物脱氮反硝化过程的生化机理及动力学 [J]. 应用与环境生物学报, 2008, 14(5): 732-736. doi: 10.3321/j.issn:1006-687X.2008.05.029 WANG S Y, SUN H W, YANG Q, et al. Biochemical reaction mechanism and kinetics of denitrification [J]. Chinese Journal of Applied and Environmental Biology, 2008, 14(5): 732-736(in Chinese). doi: 10.3321/j.issn:1006-687X.2008.05.029
[15] PAN Y T, NI B J, YUAN Z G. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification [J]. Environmental Science & Technology, 2013, 47(19): 11083-11091. [16] 康丽, 郭建博, 李洪奎, 等. 氧化还原介体催化强化偶氮染料脱色研究进展 [J]. 河北工业科技, 2010, 27(6): 447-450, 464. doi: 10.7535/hbgykj.2010yx06026 KANG L, GUO J B, LI H K, et al. Research advance of catalytic effect of redox mediator in azo dye decolorization process [J]. Hebei Journal of Industrial Science and Technology, 2010, 27(6): 447-450, 464(in Chinese). doi: 10.7535/hbgykj.2010yx06026
[17] 王倩. 介体催化高氯酸盐生物降解机理及动力学研究[D]. 石家庄: 河北科技大学, 2015. WANG Q. Study mechanism and kinetic of ClO4- bio-degradation with redox mediators[D]. Shijiazhuang: Heibei University of Science and Technology, 2015(in Chinese).
[18] AMEZQUITA-GARCIA H J, RAZO-FLORES E, CERVANTES F J, et al. Activated carbon fibers as redox mediators for the increased reduction of nitroaromatics [J]. Carbon, 2013, 55: 276-284. doi: 10.1016/j.carbon.2012.12.062 [19] MENG X, LIU G, ZHOU J, et al. Effects of redox mediators on azo dye decolorization by Shewanella algae under saline conditions [J]. Bioresource Technology, 2014, 151: 63-68. doi: 10.1016/j.biortech.2013.09.131 [20] XI Z H, GUO J B, LIAN J, et al. Study the catalyzing mechanism of dissolved redox mediators on bio-denitrification by metabolic inhibitors [J]. Bioresource Technology, 2013, 140: 22-27. doi: 10.1016/j.biortech.2013.04.065 [21] 张万辉. 微生物反硝化及其电化学强化研究进展 [J]. 安徽农业科学, 2014, 42(19): 6324-6326, 6355. doi: 10.3969/j.issn.0517-6611.2014.19.080 ZHANG W H. The mechanism of denitrification and the enhancement by electrode [J]. Journal of Anhui Agricultural Sciences, 2014, 42(19): 6324-6326, 6355(in Chinese). doi: 10.3969/j.issn.0517-6611.2014.19.080
[22] YANG J X, FENG L, PI S S, et al. A critical review of aerobic denitrification: Insights into the intracellular electron transfer [J]. Science of the Total Environment, 2020, 731: 139080. doi: 10.1016/j.scitotenv.2020.139080 [23] JIA R, YANG D Q, XU D K, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 118: 38-46. doi: 10.1016/j.bioelechem.2017.06.013 [24] MARSILI E, BARON D B, SHIKHARE I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 3968-3973. doi: 10.1073/pnas.0710525105 [25] YIN S, QIAO S, ZHOU J T, et al. Effects of redox mediators on nitrogen removal performance by denitrifying biomass and the activity of Nar and Nir [J]. Chemical Engineering Journal, 2014, 257: 90-97. doi: 10.1016/j.cej.2014.07.029 [26] LIU H J, GUO J B, QU J H, et al. Biological catalyzed denitrification by a functional electropolymerization biocarrier modified by redox mediator [J]. Bioresource Technology, 2012, 107: 144-150. doi: 10.1016/j.biortech.2011.12.071 [27] LI H B, GUO J B, LIAN J, et al. Effective and characteristics of anthraquinone-2, 6-disulfonate (AQDS) on denitrification by Paracoccus versutus sp. GW1 [J]. Environmental Technology, 2013, 34(17): 2563-2570. doi: 10.1080/09593330.2013.781198 [28] HUANG L Y, HUANG Y, LOU Y T, et al. Pyocyanin-modifying genes phzM and phzS regulated the extracellular electron transfer in microbiologically-influenced corrosion of X80 carbon steel by Pseudomonas aeruginosa [J]. Corrosion Science, 2020, 164: 108355. doi: 10.1016/j.corsci.2019.108355 [29] WANG Y, KEM S E, NEWMAN D K. Endogenous phenazine antibiotics promote anaerobic survival of pseudomonas aeruginosa via extracellular electron transfer [J]. Journal of Bacteriology, 2010, 192(1): 365-369. doi: 10.1128/JB.01188-09 [30] LU C C, XIE Z, GUO J B, et al. Chlorophyll as natural redox mediators for the denitrification process [J]. International Biodeterioration & Biodegradation, 2020, 148: 104895. [31] XIE Z, GUO J B, LU C C, et al. Biocatalysis mechanisms and characterization of a novel denitrification process with porphyrin compounds based on the electron transfer chain [J]. Bioresource Technology, 2018, 265: 548-553. doi: 10.1016/j.biortech.2018.05.069 [32] 吴磊. 腐殖活性污泥A2/O系统脱氮除磷效果与反应动力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. WU L. Study on the performance and kinetics of nitrogen and phosphorus removal in humic activated sludage A2/O system[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
[33] CLICERIO A T, MARIA I E A, ANNA C T, et al. Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification [J]. Chemosphere, 2007, 69(11): 1722-1727. doi: 10.1016/j.chemosphere.2007.06.004 [34] SU J F, LI G Q, HUANG T L, et al. The mixotrophic denitrification characteristics of Zoogloea sp. L2 accelerated by the redox mediator of 2-hydroxy-1, 4-naphthoquinone [J]. Bioresource Technology, 2020, 311: 123533. doi: 10.1016/j.biortech.2020.123533 [35] 苑宏英, 孙锦绣, 王小佩, 等. 投加介体强化低温污水生物反硝化脱氮的研究 [J]. 环境科学与技术, 2016, 39(11): 90-94. YUAN H Y, SUN J X, WANG X P, et al. Study on performance of sewage biological denitrification at low temperature adding redox mediator [J]. Environmental Science & Technology, 2016, 39(11): 90-94(in Chinese).
[36] GUO J B, KANG L, YANG J L, et al. Study on a novel non-dissolved redox mediator catalyzing biological denitrification (RMBDN) technology [J]. Bioresource Technology, 2010, 101(11): 4238-4241. doi: 10.1016/j.biortech.2010.01.029 [37] 杜海峰, 赵丽君, 郭延凯, 等. 醋酸纤维素包埋非水溶性介体催化强化生物反硝化特性 [J]. 环境工程学报, 2014, 8(6): 2417-2422. DU H F, ZHAO L J, GUO Y K, et al. Accelerating characteristic of non-dissolved redox mediators immobilized by cellulose acetate(CA) on denitrification [J]. Acta Scientiae Circumstantiae, 2014, 8(6): 2417-2422(in Chinese).
[38] XU Q, GUO J B, NIU C M, et al. The denitrification characteristics of novel functional biocarriers immobilised by non-dissolved redox mediators [J]. Biochemical Engineering Journal, 2015, 95: 98-103. doi: 10.1016/j.bej.2014.12.004 [39] 郭延凯. 聚吡咯固定化介体制备及其调控生物反硝化特性研究[D]. 石家庄: 河北科技大学, 2012. GUO Y K. Study on the denitrification regulation characteristic by a functional electropolymerization biocarrier modified by redox mediators[D]. Shijiazhuang: Hebei University of Science and Technology, 2012(in Chinese).
[40] WU Z S, XU F, YANG C, et al. Highly efficient nitrate removal in a heterotrophic denitrification system amended with redox-active biochar: a molecular and electrochemical mechanism [J]. Bioresource Technology, 2019, 288: 297-306. [41] CENH G H, ZHANG Z R, ZHANG Z Y, et al. Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures [J]. Science of the Total Environment, 2018, 615: 1547-1556. doi: 10.1016/j.scitotenv.2017.09.125 [42] LI J Z, PENG Z Z, HU R Y, et al. Micro-graphite particles accelerate denitrification in biological treatment systems [J]. Bioresource Technology, 2020, 308: 122935. doi: 10.1016/j.biortech.2020.122935 [43] 李丽, 檀文炳, 王国安, 等. 腐殖质电子传递机制及其环境效应研究进展 [J]. 环境化学, 2016, 35(2): 254-266. doi: 10.7524/j.issn.0254-6108.2016.02.2015071002 LI L, TAN W B, WANG G A, et al. Electron transfer mechanisms of humic substances and their environmental implications: A review [J]. Environmental Chemistry, 2016, 35(2): 254-266(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.02.2015071002
[44] MARTINEZ C M, ALVAREZ L H, CELIS L B, et al. Humus-reducing microorganisms and their valuable contribution in environmental processes [J]. Applied Microbiology and Biotechnology, 2013, 97(24): 10293-10308. doi: 10.1007/s00253-013-5350-7 [45] FUITON J R, MCKNIGHT D M, FOREMAN C M, et al. Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake [J]. Springer Nature Journal, 2004, 66(1): 27-46. [46] VAN DER ZEE F P, CERVANTES F J. Impact and application of electron shuttles on the redox (bio) transformation of contaminants: A review [J]. Biotechnology Advances, 2009, 27(3): 256-277. doi: 10.1016/j.biotechadv.2009.01.004 [47] 赵丽君, 马志远, 郭延凯, 等. 氧化还原介体调控亚硝酸盐反硝化特性研究 [J]. 环境科学, 2013, 34(9): 3520-3525. ZHAO L J, MA Z Y, GUO Y K, et al. Nitrite denitrification characteristics with redox mediator [J]. Environmental Science, 2013, 34(9): 3520-3525(in Chinese).
[48] SAQUING J M, YU Y H, CHIU P C. Wood-derived black Carbon (biochar) as a microbial electron donor and acceptor [J]. Environmental science & Technology Letters, 2016, 3(2): 62-66. [49] 黄硕, 于德爽, 陈光辉, 等. 氧化石墨烯强化厌氧氨氧化菌的脱氮性能 [J]. 中国环境科学, 2019, 39(5): 1945-1953. doi: 10.3969/j.issn.1000-6923.2019.05.018 HUANG S, YU D S, CHEN G H, et al. Improvement of the activity of anammox bacteria using graphene oxide [J]. China Environmental Science, 2019, 39(5): 1945-1953(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.05.018
[50] TANG M Z, JIANG J, LV Q L, et al. Denitrification performance of Pseudomonas fluorescens Z03 immobilized by graphene oxide-modified polyvinyl-alcohol and sodium alginate gel beads at low temperature [J]. Royal Society Open Science, 2020, 7(3): 191542. doi: 10.1098/rsos.191542 [51] 王丹. 紫外可见光照下细胞色素C氧化还原反应研究[D]. 长春: 吉林大学, 2016. WANG D. Research on oxidation-reduction of cytochrome c irradiated by the UV-Vis light[D]. Changchun: Jilin University, 2016(in Chinese).
[52] 马金莲, 马晨, 汤佳, 等. 电子穿梭体介导的微生物胞外电子传递: 机制及应用 [J]. 化学进展, 2015, 27(12): 1833-1840. doi: 10.7536/PC150533 MA J L, MA C, TANG J, et al. Mechanisms and applications of electron shuttle-mediated extracellular electron transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840(in Chinese). doi: 10.7536/PC150533
-