-
生物炭由于其价格低廉、来源广泛,并且在去除土壤、水体污染物应用中展现了良好的应用潜力[1-3],引起了研究者对其与污染物相互作用机制的关注与探索。生物炭吸附-降解污染物能力与生物炭的比表面积、极性、芳香性以及表面官能团等结构有较大关联[4-5],而上述结构特性均与生物炭制备温度密切相关[6-7]。前期研究显示,随着制备温度的增高,生物炭比表面积增大、C结构形成致密的芳香环,但O元素随之下降,表面含氧官能团种类、数量也随之发生变化[8-10]。因此,由于制备温度产生的生物炭含氧结构的性质差异导致其与污染物之间的相互的作用方式也发生改变[11-12]。
早期研究者针对生物炭去除污染物的探索主要集中在吸附过程。随着研究的不断深入,研究者发现水体或土壤中添加生物炭后,污染物表观浓度的减少过程不仅包含吸附,还伴随着降解的作用[13-14]。这一结论引发了研究者对生物炭作为新型功能性材料去除污染物的机制新的思考与探索。在对生物炭降解作用的探索过程中,生物炭中的环境持久性自由基(environmentally persistent free radicals, EPFRs)对污染物的氧化作用吸引了研究者的关注[15-17]。有研究在生物炭-对硝基苯酚(PNP)降解体系中,将EPFRs列为降解的主要原因[13]并排除了小分子自由基对PNP降解的贡献;还有研究组发现EPFRs活化过硫酸盐降解促进污染物降解的过程[18]。然而,随着研究的深入,污染物降解程度与EPFRs信号强度出现了不完全匹配的现象。通常,400—700 ℃制备的生物炭自由基信号最强,但自由基信号强度较弱的生物炭(小于400 ℃或大于700 ℃制备)的降解程度反而更高[19-20]。随着越来越多的降解现象无法通过EPFRs一种途径完全解释,研究者们提出,生物炭降解污染物机制可能还包含除了EPFRs以外的途径。近期,生物炭含氧结构参与降解污染物的想法被提出[21],并逐渐成为生物炭去除污染物的研究重点。
为了明确生物炭表面含氧观官能团类型以及含量在去除污染物过程中的作用,研究者通过不同的检测手段对生物炭表面含氧官能团进行定性、定量分析,并使用多种改性方式调控生物炭表面含氧官能团类型和相对含量[4, 22-23],主要以物理、化学改性方式为主,针对性地提高生物炭的氧化或还原能力;还包括微生物作为电子供体与含氧官能团产生协同作用,达到增强污染物吸附-降解的目的[23]。本文以生物炭制备温度为背景,总结了不同温度制备的生物炭在吸附与降解污染物过程中因含氧结构的不同产生的差异,并在现有的研究基础上,归纳了通过不同热解方式、氧化/还原剂改性生物炭以及负载目标官能团等多种方式增强生物炭去除污染物的能力,为后期有选择性地应用生物炭提供一定的参考与依据。
-
与活性炭、石墨烯等其他碳基材料相比,生物炭在吸附污染物方面展现出更优越的性能[24]。早期研究结果表明,吸附机制主要分为物理吸附和化学吸附。物理吸附与生物炭的孔半径、数量、C结构有关[25-26]。在物理吸附过程中,100—400 ℃制备的生物炭保留着部分未完全炭化的结构,这些未炭化的部分也参与了部分吸附行为[8, 26-27]。此制备温度区间烧制的生物炭由于比表面积有限,更大程度上是通过氧化还原或催化的方式达到吸附污染物的目的[24, 28]。而500—1000 ℃烧制的生物炭拥有更大的比表面积,以及更完整的芳香结构[29]。结构的变化导致生物炭吸附方式随之改变[30],丰富的芳香结构使500、1000 ℃烧制的生物炭极性降低,疏水性的增强在吸附污染物时发挥了巨大作用[8, 27, 31]。化学吸附过程当中,由于含氧官能团(—COOH、C=O、—OH)的亲水性[26, 32],在吸附有机污染物,尤其是疏水性污染物时,具有更强的结合能力[26]。生物炭去除无机金属(例如金属汞、二价铜、二价铅,六价铬)[33]过程中,生物炭表面—COOH与酚羟基官能团(Phenolic-OH)反应表现出较高的活性[34],与有机污染物去除过程类似,不同温度制备的生物炭对金属的去除同样表现出了差异性。小于400 ℃制备的低丰度的炭结构更有利于铅的固定,C=O与金属离子形成π离子键,能够有效地的固定铜、镍、镉、铅[35]。而制备温度超过500 ℃时,生物炭O含量损失增多,极性降低,此时,氢键和π-π键在生物炭对无机金属吸附中起主要作用[36-37]。
总体而言,降低生物炭制备温度能够较好地保留炭表面的O元素,含氧官能团的含量相对更加丰富,更有利于吸附过程的进行,其中—COOH、Phenolic-OH等官能团参与了主要吸附过程。从污染物的表观去除率来看,热解温度超过500 ℃的生物炭展现了更大的去除效率,因为该过程除吸附以外,降解效率占据较大的比重[38]。因此仅仅根据吸附效率判定生物炭去除污染物的能力是不客观的,综合考虑生物炭对污染物吸附-降解效率才是评估生物炭环境效应最科学、全面的方式。
-
前期,部分研究者认为生物炭中EPFRs是生物炭降解污染物的主要因素[18, 39]。然而,随着研究的进一步深入,研究者观察到有机污染物降解程度与生物炭中EPFRs信号不匹配的现象,并发现生物炭的降解能力与其表面的一种含氧结构——醌基团(Quinoid C=O)产生了紧密的关联[40]。在木炭制备的生物炭实验中,Saquing等[41]证明了生物炭具有氧化还原循环能力,而该氧化还原循环功能与生物炭表面的Quinoid C=O有着紧密关联[42-43]。与生物炭吸附污染物过程一致,因不同温度制备的生物炭而产生的结构差异在降解途径中也展现了不同机制[44]。在Yu等[19]的研究中,Quinoid C=O和Phenolic-OH被认为是表面的活性位点,对生物炭降解五氯酚的贡献达到了56%,其中900 ℃生物炭对五氯酚的降解效率大于400 ℃生物炭,因为900 ℃生物炭表面Quinoid C=O数量明显更多,其良好的导电性也一定程度上加速了电子传递。在生物炭反硝化过程中,300 ℃生物炭中Phenolic作为电子供体有效地增强了反硝化过程,而800 ℃生物炭中Quinoid C=O作为电子受体抑制了N2O的反硝化过程,但是其电导体结构促进了N2O的还原[14]。大于700 ℃制备的生物炭其导电结构在降解有机污染物过程中辅助Quinoid结构加速电子传递,从而促进降解过程。但最近的研究显示在水热炭厌氧催化甲烷的生成中排除了导电结构的作用,再次强调了含氧官能团在电子传递过程中的重要性[45]。同样,生物炭含氧官能团-重金属污染物体系中,介导物质的加入间接影响降解的途径同样被证实,在Fang研究组中,金属的加入影响EPFRs种类、数量的形成,间接影响酚类化合物降解效率[46]。文中虽未明确指出官能团参与反应过程,但其电子传递氧化Fe2+的过程同样涉及电子传递过程,体系中含氧官能团的作用有待探究。
显然,不管是通过吸附还是降解的方式,两种机制均降低了污染物的表观浓度。与吸附过程相同,生物炭含氧官能团的种类受制备温度的影响,在降解过程中也因其结构变化展现了一定差异性(表1)。不同的是,降解过程中电子接受或供给会影响中间产物的性质,中间产物是否会对环境产生更大的毒害效应,与生物炭性质以及其中的化学反应过程是紧密相关的。因此,生物炭的制备条件是决定其性质的重要因素,后文将从生物质来源、制备温度以及不同的性质进行细致的区分,并对生物炭结构特性进行细致的归纳总结。
-
生物炭来源广泛且种类多样,通常生物炭的制备多使用农业、工业废弃物以及动物粪便作为原料,在低氧或无氧条件下进行热解处理[51-52]。不同来源的生物质在原始组成上包含一定的差异[51],例如以农业废弃物,水稻秸秆、玉米秸秆等植物残留物为原料的生物炭中保留了C、H、O、N、P、S、K、Mg、Si等元素;而以猪粪、牛粪等动物粪便制备的生物炭Mg、Si含量相对较少[53]。近年来较多的研究者使用活性污泥制备生物炭,此类生物炭中包含较多残留的重金属物质[54]。制备过程中不同的原始材料组分的变化也不一样,例如产率和灰分的含量[55]与原料中水分、纤维素、半纤维素、木质素的含量以及热解温度有关[56]。在热解过程中,最先开始分解的是半纤维素成分,其次是纤维素,最后是木质素[57]。Beesley等[58]研究结果显示硬木原生质制备的生物炭更加适用于吸附有机污染物,而软木原生质制备的生物炭对无机污染物吸附效率更高。但在热解升温过程中,不同生物质来源制备的生物炭元素组成、比表面积、官能团种类以及含量变化趋势是一致的。
-
微波辐射加热法、水热炭化等方式是现阶段常见的制碳方法,对比传统的马弗炉热解方式,在同样的制备温度下,微波辐射加热法制炭产率更高,并包含更多的微孔结构[59-60]。随着制备温度的增高,其O含量损失的速率也低于马弗炉加热,这一过程直接导致了其极性和含氧官能团的数量高于传统的生物炭,并且在同样制备温度(>500 ℃)下,其产生的自由基浓度更高。上述物理特性的优势均为其作为良好的吸附剂、氧化还原催化剂提供了潜在优势[61]。水热炭化法是另一种特殊的制炭方法,以超临界水为介质,原生质在一定的压力和温度下进行加热产生的碳材料[62]。水热法制备的碳材料能够较为完整地保留O元素,因此其含氧官能团较传统热解制备的生物炭更为丰富[23]。虽然微波加热法和水热炭化法在制炭过程中较马弗炉热解法能更好地保留有机质含量,但从经济的角度考虑其设备的价格,制炭效率以及实验条件、操作简易程度而言,马弗炉热解法更适于大范围的推广及应用。
-
生物炭制备温度一般在100—900 ℃之间,通常生物炭制备的升温速率选择中低速热解方式[63-64]。生物炭比表面积、元素组成、自由基信号强度以及官能团种类等特性均受到热解温度的影响。O元素作为生物炭中较活泼的次要元素存在于其表面不同的官能团结构中,其中,Phenolic-OH和Quinoid C=O是含氧官能团中供给和接收电子的两个主要位点[65],这两种结构在溶解性有机质(DOM)、热解炭材料中均存在,但不同的热解温度会导致O元素与C元素结合方式发生变化,这一改变将直接影响含氧官能团的性质。制备温度低于400 ℃的生物炭由于未完全炭化,其比表面积(<100 m2·g−1)以及形成EPFRs浓度较低,pH值偏酸性。此时生物炭O元素含量高(>20%),表面含氧官能团总量较为丰富,主要是以Phenolic-OH、—COOH等酸性官能团为主[65]。大量Phenolic-OH存在提高了生物炭极性[24],使还原能力大于氧化能力,在吸附极性或非极性污染物时均发挥了巨大作用[63, 66]。当制备温度达到500 ℃时,原生质中无机碳被分解,有机碳发生缩合反应,形成高聚合芳香环,生物炭还原、氧化能力以及EPFRs浓度均达到最大值,电子交换能力最大值能达到2 mmol·g−1[65]。此时,生物炭表面Phenolic-OH含量达到最大值、Quinoid C=O数量也相较小于500 ℃制备的生物炭逐渐增多。随着制备温度继续增加,由于H、O等元素含量下降,此时O元素的含量小于总元素含量的10 %,含氧官能团数量也随之降低。当制备温度超过600 ℃时,Phenolic-OH在高温条件下被迅速分解,Quinoid C=O含量大于Phenolic-OH,此时生物炭主要表现出氧化性[65]。有研究者在对比了多种原生质在不同温度下制备的生物炭后,发现制备温度过高或过低均不利于官能团的形成,600 ℃生物炭含氧官能团数量比300 ℃生物炭下降率最多可达96.2%[6]。傅里叶红外光谱(FTIR)和光电子能谱(XPS)是检测生物炭官能团两种最常见的手段,在红外光谱图中,Phenolic-OH、Quinoid C=O、—COOH等官能团分别在波段1262、1578、1712 cm−1有伸缩振动[8, 26-27]。随着制备温度的增加,光谱图上伸缩振动随之减弱或消失[30],说明高温分解了这些酸性官能团,制备温度在400—600 ℃时,最有利于含氧官能团的形成[6, 27, 37]。
研究者在进行吸附-降解实验时,通常选择一系列温度制备的生物炭与污染物相互作用,不同温度的生物炭对污染物均存在吸附-降解现象,但其程度无法与生物炭中某一种特性相匹配,例如比表面积或自由基信号强度。在生物炭-对硝基苯酚降解体系中,对硝基苯酚降解程度与自由基信号呈正比[13],但在生物炭-罗丹明B体系中,低比表面积、低自由基信号强度的200 ℃生物炭对罗丹明B同样存在降解,降解程度甚至高于高比表面积、高自由基信号强度的500 ℃生物炭。因此,生物炭对污染物的吸附/降解过程存在多种机制共存,需要多方面综合考虑。
-
生物炭含氧官能团特性可以通过物理、化学改性方法进行调控。通常物理方法可通过改变热解方式以及温度控制最大程度地保留生物炭的有机质组分,提高产率以及内孔大小、数量、以及表面官能团含量[67-68],增加污染物与生物炭有效接触面积,增强吸附-降解效果[27, 59];而化学改性是通过化学氧化剂或者还原剂的添加,在生物炭与污染物反应前对其进行预处理[4],实现生物炭表面官能团相互转化,反应后通过与未处理生物炭对污染物吸附-降解程度进行对照,进一步掌握生物炭特定性质与污染物间的关联。
Phenolic-OH、Quinoid C=O为生物炭表面典型的含氧官能团结构[69],为了验证其在电子得失过程中的重要性,研究者通过化学改性或负载目标官能团调控生物炭表面含氧官能团种类、数量,针对性地提高生物炭氧化或还原能力。Klüpfel等[65]系统测定了6种来源的草本和木本原生质在200—700 ℃烧制下生物炭得失电子能力,泛醌(ubiquinone)作为Quinoid模型化合物通过吸附与生物炭表面结合,通过电化学工作站检测,反应后的生物炭电子接受能力(EAC)值增大,验证Quinoid在电子转移过程中提供了接受电子的位点,同时验证了表面Quinoid在生物炭电子转移过程中的重要作用。上述方法是通过吸附特定的Quinoid等结构,通过负载的方式,增加生物炭表面活性位点数量,增强吸附-降解的效果。而另一种改性方式是通过使用氧化剂或者还原剂实现生物炭表面官能团相互转化,增加特定含氧官能团含量,达到调控其氧化还原能力的目的。实验常见的氧化剂主要包括HNO3、H2SO4、H2O2[67],这些酸性氧化剂主要增加生物炭表面酸性含氧官能团,例如—COOH。还原剂通常选用硼氢化物(KBH4、NaBH4)对生物炭进行前处理[23],实现了生物炭表面酚羟基官能团和Quinoid数量的转化,使生物炭EAC或电子供给能力(EDC)达到相对最大的程度,进而明确Phenolic-OH或Quinoid C=O在降解时的贡献。值得注意的是,通过化学改性调控生物炭EDC/EAC,实际上是通过增加或减少生物炭表面某种特定的含氧官能团数量来影响其EDC/EAC,这一过程的验证进一步强调了生物炭含氧官能团在氧化还原反应过程中的重要性。
-
微生物的添加同样被证实能够促进有机污染物的降解,与物理、化学改性方法不同的是,生物炭-有机污染物中,微生物的加入没有改变生物炭原有的特性,而是与生物炭表面含氧官能团产生协同作用,增强降解效率[70]。Yu等[71]在实验中使用微生物作为电子供体,生物炭与胡敏酸分别作为电子受体进行对照,结果显示,生物炭电子接收能力强于胡敏酸,并且900 ℃生物炭降解能力强于500 ℃生物炭,Quinoid C=O发挥了重要作用;Saquing等的研究得到了同样的结论,在微生物的作用下,生物炭可以同时作为电子供体还原硝酸盐和电子受体氧化醋酸盐,Phenolic-OH和Quinoid C=O发挥了主要作用。总体而言,生物炭在整个体系中充当了电导体以及电子接收的载体,微生物的加入为电子转移加大了动力来源,增强了体系中降解的程度。
综上所述,物理或化学改性以及微生物的添加均是为了更好地理解生物炭性质与污染物的关联程度。上述改性过程中,Phenolic-OH和Quinoid C=O对降解作用再次被强调,但目前的研究尚处于初步阶段。生物炭的改性提高了吸附-降解的效率,但改性过程中伴随着大量强酸、强碱化学物质的使用。在土壤或水体改良中,附着在改性生物炭表面的酸或碱会不会释放到土壤或水体造成二次污染?甚至加大土壤或水体后续的治理难度?因此,如何正确使用生物炭在实际环境中的应用以及如何规避上述问题,是未来生物炭应用中值得思考的问题。
-
生物炭作为土壤改良剂已在全国范围内大量推广与使用,了解并掌握生物炭特性是其长期应用于环境的前提与保障。通过前期的研究已得知生物炭理化性质、官能团种类、数量均受到制备温度的影响,并系统地归纳生物炭不同特性与不同类型污染物吸附-降解的过程,针对不同性质污染物选择合适来源、制备温度以及改性方式制备的吸附-降解效率最高的生物炭,也同样是生物炭应用过程中不可或缺的一步。目前,针对生物炭与污染物相互作用仍存在以下几个典型的问题需要进一步研究与思考:
(1)以制备温度为界限,进一步归纳不同制备温度生物炭的结构特性,并结合生物质来源、反应条件(例如pH、光照)与污染物性质,针对性地选择反应活性较高的生物炭,最大程度地发挥生物炭环境功能。
(2)虽然目前针对EPFRs在降解中的作用被逐渐弱化,但其作用仍是不可忽视的。从前期的研究结果来看,EPFRs的形成机理以及与污染物的相互作用的机制仍然不清晰。因此,现阶段EPFRs在环境中的效应仍是研究的重点。
(3)生物炭与微生物协同作用研究尚少,自然(水体或土壤)环境中,生物炭与环境将产生怎样的长期效应尚没有准确的预判,但其与微生物的相互作用的过程是广泛存在于环境中的,这一过程为生物炭在自然条件下的应用开辟了新的思考与想法,同时也带来了更多需要考虑的环境效应。
(4)生物炭研究的局限性较高。普遍来看,目前针对生物炭的研究还处于实验室研究阶段,由于反应条件过于理想化的设置,导致实验结果无法真实、客观地诠释生物炭在自然环境中的反应效应,因此如何准确预估生物炭在自然环境下的迁移转换,是当前解决生物炭研究局限性关键问题之一。
生物炭含氧官能团的生成溯源及其在污染物吸附-降解过程中的作用
Traceability of oxygen-containing functional groups in biochars and their roles in the adsorption-degradation of contaminants.
-
摘要: 近年来,生物炭在土壤、水体污染物去除中展现了良好的应用潜力。大量学者围绕生物炭吸附-降解污染物的作用机制展开了深入的研究,发现生物炭含氧官能团结构在污染物去除过程中扮演着重要角色。生物炭制备温度是影响其含氧官能团结构的主要因素,因此本文以生物炭热解温度为背景,区分了生物炭中环境持久性自由基(EPFRs)降解污染物的贡献,探究了生物炭中酚羟基(Phenolic-OH)和醌基团(Quinoid C=O)等活性含氧官能团对污染物的吸附-降解作用机制。此外,本文对生物炭中含氧官能团的产生和含量进行了溯源综述,包括制备生物炭的生物质来源、制备工艺和制备温度,总结了通过物理、化学改性方法对生物炭含氧官能团结构的影响,针对性地提出了提高生物炭的氧化/还原能力的方法,以及微生物与生物炭含氧官能团结构协同作用去除污染物的技术手段,为后续生物炭的工程应用奠定理论基础。Abstract: In recent years, biochars have shown good application potential in the removal of soil and water contaminants. Many researchers have carried out in-depth research on the mechanisms of how biochars adsorb and degrade contaminants, and the oxygen-containing functional groups(OCFGs) of biochars have been found to play an important role in the removal of contaminants. Therefore, this paper used the biochar pyrolysis temperatures as the background, distinguished the contribution of environmental persistent free radicals (EPFRs) of biochars in the degradation of contaminants, and explored the adsorption-degradation mechanism of active OCFGs such as Phenolic-OH and Quinoid C=O on contaminants. Moreover, this paper reviewed the traceability and content of OCFGs in biochars, including the biomass source, preparation process, and pyrolysis temperature. In addition, the effect of physical and chemical modification on the structure of OCFGs has been summarized. The methods for improving the oxidation/reduction capacity of biochar, and the technical means for removing contaminants by the synergistic effect of microorganisms and OCFGs of biochar were proposed. This review attempted to provide a theoretical foundation for the subsequent practical engineering application of biocahrs.
-
Key words:
- biochar /
- oxygen-containing functional group /
- electron transfer /
- adsorption /
- degradation
-
再生水正日益成为城市第二水源[1]。2020年北京市供水量为40.6×109 m3,其中再生水为12.0×109 m3,占总量的29.6%[2]。为实现城市水体富营养化防治目标,污水处理出水水质标准相应不断提升[3]。因此,学界与业界提出极限技术 (limit of technology, LOT) ,目标为实现出水总氮 (TN) <3 mg·L−1,总磷 (TP) <0.1 mg·L−1[4]。目前,国内虽有诸多满足LOT目标要求的处理工艺,但由于各类工艺处于不同研发或应用阶段,其技术完整性、稳定性和应用前景尚缺乏系统性的定量比较与评价。满足城市再生水利用要求的LOT技术及政策选择,仍需科学决策方法的支撑。
技术成熟度 (technology readiness level, TRL) 评价法被用以衡量各项技术对目标工程项目的满足程度[5]。2009年,我国实施《科学技术研究项目评价通则》 (GB/T22900-2009) ,强化了量化管理科学研究和技术成熟度评价的重要性[6-7]。2010年,国防科工局在基础科研“十二五”重大项目立项论证过程中提出:凡是未通过技术成熟度评价或评价等级不达标的项目不得参与立项论证[8]。2017年,《国家技术转移体系建设方案的通知》 (国发〔2017〕44号) 指出“推广技术成熟度评价,促进技术成果规模化应用”[9]。因此,技术成熟度法逐渐在包括环境工程在内的各类科技领域得到应用,并支持了国家水体污染控制与治理科技重大专项 (以下简称“水专项”) 综合技术分析[10]、气浮技术分析[11]、污水处理智控技术分析[12]、洱海入湖河流修复技术分析[13]等相关课题的科学决策。
为兼顾技术在我国研发的前沿性与应用推广前景,本研究从“十一五”、“十二五”和“十三五”水专项已验证项目中,筛选出水水质可基本满足LOT要求的代表性技术组合作为研究对象,进行综合评判的技术成熟度评价,并利用集成成熟度 (integration readiness level, IRL) 对单项技术定性评估结果进行集成系统定量化改良,构建IRL矩阵法改良的系统成熟度 (system readiness level, SRL) ,提升系统技术评价的综合性与全面性,为评估及优选符合减污降碳协同增效的政策背景的,可实现极限脱氮除磷要求的低碳低耗LOT技术提供参考。
1. 矩阵法改良SRL评估方法构建
1.1 TRL等级评估
水处理技术TRL评价准则的建立,通常仿照航天领域TRL细化准则的内涵,按照从立项、研发到应用的顺序构建框架,参考技术原理研究程度、技术市场需求、应用项目数量及尺度级别等特征,最终依据技术发展过程中的原理发现、技术方案、可行性论证、小试至示范工程实验及推广应用等阶段划分,并确定TRL等级值[14]。因此,水处理技术9个TRL等级的评估细则表述如表1所示[15]。TRL等级评估主要是针对离散技术元素的定性赋值评价,即仅限于评估单个系统的关键技术要素 (critical technical elements,CTE) 或某特定系统,而无法致力于多个单项技术的连结与集成[14]。首先,当TRL应用于技术组合的综合定量判别时,难以对技术 (或分系统) 集成到实际运行系统的难度进行精准评判,故使对技术成熟化过程 (由低级TRL向高级TRL演进) 的不确定性做出指导的难度增大。其次,TRL不支持对可能由人为或技术因素引起不确定性的分析,造成其用于定位组合技术成熟水平时误差加剧[16]。同时,因在选择TRL级别时没有引入对比分析法,故当涉及多个技术评估时无法进行比较分析。鉴于TRL本身存在的局限,尽管传统TRL等级评估已广泛应用于单一技术检测且日趋成熟,但单独使用TRL在技术系统层面仍存在不确定和不成熟因素,其单独很难全面描述技术组合的综合成熟水平[17]。
表 1 水处理技术TRL等级评估细则[15]Table 1. Current definitions of TRL for wastewater treatmentTRL等级 等级描述 等级评价标准 成果形式 1 发现基本原理或有基本原理的报告 发现并报告技术的基本原理 需求分析及技术基本原理报告 2 形成技术方案 明确介绍技术概念,提出应用设想,详细说明设计研发的技术路线、确定研究内容、开发策略 技术方案实施方案 3 技术方案通过可行性论证 技术路线、结构设计、关键功能通过可行性验证 论证意见或可行性论证报告等 4 通过小试验证 在实验室环境下验证关键技术、功能 小试研究报告 5 通过中试验证 以小试为基础,在逼真环境下验证关键技术、功能 中试研究报告 6 通过技术示范/工程示范 在示范工程中关键技术、功能得以示范,达到预期目标 技术示范/示范工程报告、专利等 7 通过第三方评估或用户验证认可 通过第三方评估或经用户试用,证明可行,为小批量生产做准备 第三方评估报告,示范工程依托单位应用效益证明 8 通过专业技术评估和成果鉴定 通过专业技术评估和成果鉴定,形成技术指南、规范,建立预生产模型 成果鉴定报告、技术指南、规范 9 得到推广应用 技术体系明确,在其他污染企业或其他流域得到广泛应用 推广应用证明 1.2 改良SRL等级评估
目前,TRL等级评估在单项技术成熟度评估应用中较为成熟。但随着技术体系逐渐丰富,TRL无法体现技术组合中各个单项技术间相互作用对整体系统效果的影响。TRL的这一局限性催生了许多成熟度指标的后续开发,其中包含集成成熟度 (integration readiness level,IRL) 及系统成熟度 (system readiness level,SRL) 。为更加细致、全面及系统地评价技术组合的成熟度及推广特性[18],研究者们基于TRL的相关分析,从数学上将组件TRL值与集成IRL结合起来,创建出针对系统技术进展评估的专门度量方法,即SRL。SRL的精确分析建立在TRL充分、准确的分析结果上,由此可见,TRL体系的成熟与完善为SRL的开发与应用提供了理论可行性与技术基础性。目前,常用的SRL计算方法中加权法应用较多,但权重确定受人为主观影响较大,且难以考虑技术间的复合集成关系[19];模板对比法对系统真实成熟度反映较为客观,但计算过程较为复杂[20];因子法可表示所研究技术与成熟技术的差距,但难以表现技术目前成熟情况[21]。然而,IRL矩阵法兼顾考虑单项技术本身的TRL与不同单项技术间的集成程度,且计算过程简易、结果客观性高,已在航天、卫星和雷达等领域获得成熟应用[18]。因此,本研究选择IRL矩阵法进行改良SRL计算。
1.2.1 IRL等级评估
IRL体现了不同技术兼容交互接口的系统分析,也体现了集成点 (即TRL) 间一致比较性的系统分析。此外,IRL可描述两项技术之间的集成程度,其中一项为开发中技术,另一项为正在开发或成熟技术。因此,对于精确评价技术的集成准备程度,IRL具有广阔的发展前景[22]。水处理技术中IRL等级的定性赋值评判依据如表2所示[10]。
表 2 IRL等级表[10]Table 2. Current definitions of IRLIRL等级 名称 描述 对应TRL 1 基础技术研究 开展新技术的实验,分析提炼基础原理及应用构想 TRL1,TRL2 2 概念定义 定义初始概念,制定开发策略 TRL2,TRL3,TRL4 3 技术开发 确定合适的技术组合 TRL4,TRL5 4 系统开发、验证 开发系统能力,降低集成技术风险;确保经济可行性;验证系统可靠性、可操作性、安全性与实用性 TRL5,TRL6,TRL7 5 生产 达到满足任务需求的生产能力 TRL7,TRL8 6 使用与保障 日常使用与保障中,具有最优效益 TRL8,TRL9 1.2.2 IRL矩阵法改良SRL计算
基于IRL等级的矩阵法改良SRL计算具体过程如下。首先评估单项技术的TRL,形成TRL组合向量 (式 (1) ) ,再构建IRL矩阵 (式 (2) ) ,由IRL表示任意2项技术的交互集成程度。水处理集成技术的处理效果往往取决于发展程度较低的技术,因此IRL矩阵元素取值时取对应位置TRL较低技术的数值。SRL矩阵计算式见式 (3) ,其中计算添加权重因子的SRL见式 (4) 。
TRL=[TRL1TRL2⋮TRLn] (1) IRL=[IRL11IRL12⋯IRL1nIRL21IRL22⋯IRL2n⋮⋮⋱⋮IRLn1IRLn2⋯IRLnn] (2) SRL=[SRL1SRL2⋮SRLn]=19(IRL)×19(TRL)=181[IRL11TRL1+IRL12TRL2+⋯+IRL1nTRLnIRL21TRL1+IRL22TRL2+⋯+IRL2nTRLn⋮IRLn1TRL1+IRLn2TRL2+⋯+IRLnnTRLn] (3) SRL=(SRL1n1+SRL2n2+⋯+SRLini)n (4) 式中:
为与技术i具有集成关系的技术数量;n为所有技术个数,最终算得添加权重因子的SRL为不大于1的正数[23]。基于IRL矩阵法计算的改良SRL取值,可与不同TRL取值所代表的技术成熟程度形成对应关系,相关具体定义如表3所示[23]。ni 表 3 SRL等级表[23]Table 3. Current definitions of SRLSRL取值范围 成熟阶段 定义 0.90~1.00 操作和维护 在系统生命周期内以应用效益最佳方式运行 0.80~0.89 生产 系统达到预期目标,并成功执行 0.60~0.79 系统发展验证 验证系统的协同性、安全性、有效性 0.40~0.59 技术发展 降低技术风险,确定集成技术的合理性 0.1~0.39 理论凝练 明确技术概念,构建应用设想和开发策略 1.3 水专项相关LOT备选技术的筛选
通过调研“十一五”、“十二五”和“十三五”期间水专项相关课题及近年来再生水品质污水脱氮除磷的主流技术,综合考虑国内各地再生水标准取值、相关技术的应用程度及发展前景,在现有氮磷去除率高、出水基本满足LOT要求的技术组合中,筛选出12种工作原理、流程组合方式及应用规模不尽相同的LOT备选技术组合,作为主要研究与分析评估对象。表4汇总了各个备选技术组合的技术细节与基本特征。各备选技术组合至少包含2项以上单项技术,且单个组合内单项技术数量不超过4项,均有水专项针对性相关课题的研究内容进行示范支撑,保证了评估的合理性。由于TRL为针对离散技术元素的定性赋值评价,用于评估单个系统的关键技术要素 (CTE) 或某特定系统,展现单项技术的具体成熟度。SRL分析基于TRL的分析结果进行,以全面细致的对组合技术进行评判。因此,通过TRL对技术组合的单项技术成熟度进行定性评价,并基于此通过改良SRL方法来分析技术组合本身的系统集成状况以期对系统成熟度进行评价。进水水质根据示范工程所在点位示范运行期间的年平均值确定,出水水质、各单项技术的TRL取值及其运行成本根据调研课题研究报告及相关发表论文的数据波动范围综合确定,并基于此计算各项技术组合的TN、TP单位质量去除运行成本。整体而言,各个LOT单项技术的TRL值均在5以上,最高TRL值可达到9。
表 4 水专项相关LOT备选技术组合Table 4. Summary of representative LOT systems in China序号 备选技术组合 技术缩写 进水水质 出水水质 依托课题 TRL 单项技术成本/(元·m-3) TN单位去除运行成本/(元·g-1) TP单位去除运行成本/(元·g-1) 1 A2O -悬浮填料-混凝沉淀极限脱氮除磷技术 TN=24.60 mg·L-1,TP=2.42 mg·L-1, TN=1.915 mg·L-1,TP=0.05 mg·L-1,[24] 地下污水厂建设模式创新与生态综合体示范2017ZX07107-003 0.06 0.61 1.1 A2O技术 A2O 9 0.81[25] 1.2 悬浮填料脱氮技术 MBBR (moving-bed biofilm reactor) 9 0.35[24] 1.3 混凝沉淀技术 Coagulation 9 0.29[26] 2 A2O-反硝化深床滤池极限脱氮除磷技术 TN=39.25 mg·L-1,,TP=3.81 mg·L-1,[25] TN=1.38 mg·L-1,,TP=0.089 mg·L-1,[27] 天津城市污水超高标准处理与再生利用技术研究与示范2017ZX07106-005 0.04 0.38 2.1 A2O技术 A2O 9 0.482[25] 2.2 反硝化深床滤池 DBDF (deep-bed denite filters) 9 0.92[28] 3 Phoredox-反硝化深床滤池极限脱氮除磷技术 TN=31.70 mg/L,TP=1.99 mg·L-1[25] TN=2.37 mg·L-1,,TP=0.06 mg·L-1,[29] 白洋淀与大清河流域 (雄安新区) 水生态环境整治与水安全保障关键技术研究与示范2018ZX07110-002 0.04 0.65 3.1 Phoredox技术 Phoredox 9 0.343[30] 3.2 反硝化深床滤池技术 DBDF (deep-bed denite filters) 9 0.92[28] 4 A2O-SDA+BAF极限脱氮除磷技术 TN=35.4 mg·L-1,TP=5.38 mg·L-1[25] TN=3.00 mg·L-1,TP≤0.10 mg·L-1[31] 城区水污染过程控制与水环境综合改善技术集成与示范2012zx07301-001 0.03 0.20 4.1 A2O技术 A2O 9 0.45[25] 4.2 活性自持深度脱氮技术 SADeN (self-active denitrification) 9 0.086[32] 4.3 曝气生物滤池 BAF 9 0.50[33] 5 A2O-复合介质人工快渗系统极限脱氮除磷技术 TN=89.20 mg·L-1,TP=5.79 mg·L-1[25] TN≈3 mg·L-1,TP=0.071 mg·L-1[34] 永定河 (北京段) 河流廊道生态修复技术与示范2018ZX07101-005 0.01 0.15 5.1 A2O技术 A2O 9 0.482[25] 5.2 复合介质人工快渗系统 CRI (constructed rapid infiltration) 7 0.35[34] 6 氧化沟-轻质填料人工湿地-反硝化除磷滤池极限脱氮除磷技术 TN=32.6 mg·L-1,TP=6.31 mg·L-1[25] TN=1.73 mg·L-1TP=0.1 mg·L-1[35-36] 重庆主城重污染河流水污染控制与水质改善技术研究与示范2012ZX07307-002 0.02 0.09 6.1 氧化沟 OD (oxidation ditch) 9 0.3[37] 6.2 轻质填料人工湿地 CW (Constructed Wetland) 6 0.27[38]] 6.3 反硝化除磷滤池 DPRF (denitrifying P removal filter) 6 7 A2O-复合填料生物滞留池极限脱氮除磷技术 TN=31.6 mg·L-1,TP=3.17 mg·L-1[25] TN<1 mg·L-1,TP<0.1 mg·L-1[39] 0.02 0.21 7.1 A2O技术 A2O 9 0.55[25] 7.2 复合填料生物滞留池 BT (bioretention tank) 6 0.1[40] 8 BNR-多级复合流人工湿地极限脱氮除磷技术 TN=50.2 mg·L-1,TP=4.59 mg·L-1[25] TN<1.5 mg·L-1TP<0.1 mg·L-1[41] 天津中心城区景观水体功能恢复与水质改善的技术集成与示范2008ZX07314-004 0.02 0.21 8.1 BNR技术 BNR (biological nutrient removal) 9 0.89[25] 8.2 混凝沉淀技术 Coagulation 9 8.3 人工湿地技术 CW 9 0.05[42] 8.4 人工浮/沉床技术 EFB/ESB (Ecological floating/submerged bed) 8 9 A2O-复合人工湿地-稳定塘极限脱氮除磷技术 TN=48.8 mg·L-1,TP=4.94 mg·L-1[25] TN<1.5 mg·L-1,TP≈0.05 mg·L-1[41] 天津中心城区景观水体功能恢复与水质改善的技术集成与示范2008ZX07314-004 0.01 0.14 9.1 A2O技术 A2O 9 0.64[25] 9.2 复合人工湿地技术 CCW (combined constructed wetland) 6 0.06[41] 9.3 稳定塘技术 SP (stabilization pond) 9 10 A2O-梯级人工湿地系统极限脱氮除磷技术 TN=35.05 mg·L-1,TP=2.22 mg·L-1[25] TN≈0.45 mg·L-1,TP≈0.10 mg·L-1[43] 入淀湿地复合生态系统构建技术研究和工程示范2018ZX07110-004 0.02 0.36 10.1 A2O技术 A2O 9 0.53[25] 10.2 植物沉淀塘技术 PSP (plants sedimentation pond) 6 0.16[44] 10.3 水平潜流人工湿地技术 HCW (horizontal constructed wetland) 9 10.4 生态稳定塘技术 ESP (eco-stabilization pond) 7 0.08[45] 11 Phoredox-植物净化系统极限脱氮除磷技术 TN=68.20 mg·L-1,TP=1.30 mg·L-1[25] TN≈1.94 mg·L-1,TP≈0.078 mg·L-1[46] 白洋淀与大清河流域 (雄安新区) 水生态环境整治与水安全保障关键技术研究与示范项目2018ZX07110-005 0.01 0.35 11.1 Phoredox技术 Phoredox 9 0.343[30] 11.2 植物净化系统 PPS (phyto-purification system) 7 0.1[46] 12 氧化沟-太阳能混合充电-生态浮岛极限脱氮除磷技术 TN=31.6 mg·L-1,TP=2.91 mg·L-1[25] TN=1.24 mg·L-1,TP=0.04 mg·L-1[47] 0.01 0.11 12.1 氧化沟 OD 9 0.33[25] 12.2 太阳能混合充氧-生态浮岛 SO-EFI 6 0[48]] 2. LOT备选技术组合改良SRL评估分析
由于TRL评价方法的局限性,选用通过基于TRL等级分析以构建IRL矩阵评估的改良SRL评价方法来评估“十一五”、“十二五”和“十三五”期间水专项相关课题及近年来再生水品质污水脱氮除磷筛选出来的12项LOT备选技术,以TRL分析来定性评价技术组合中单项技术的技术成熟度等级及分布情况,并基于此构建SRL对12项技术组合的集成情况和系统成熟度进行定量评估,以为污水处理中的先进技术组合发展评估及优化提供新思路。
2.1 单项技术TRL等级评估分析
根据LOT备选技术组合的不同技术阶段和主功能技术类型,对12种LOT备选技术组合的各个单项技术进行系统归纳分类梳理,结果如图1所示。整体而言,LOT备选技术组合的工艺流程可归纳为污水原水-污水厂二级处理-深度处理3个主控功能阶段。污水原水经污水处理厂二级处理系统净化后,出水辅以深度处理的主功能技术而达到LOT的标准要求。而主功能技术以生物类技术为主,表明满足LOT要求的技术组合仍需重点关注污水处理厂人工处理系统与自然处理系统功能的耦合、强化与优化。LOT备选技术组合中,污水厂二级处理阶段的人工处理系统主要使用A2O技术、Phoredox技术、氧化沟技术及BNR技术此4类传统生化强化技术,技术成熟度高且发展时间较长。深度处理阶段是LOT备选技术组合实现极限脱氮除磷关键功能的核心阶段,现有的主功能技术中除混凝沉淀技术为化学手段外,其余均属于生物手段。按照主要技术功能实施方式的不同,主功能技术可进一步归类为反应器类、人工湿地类和混合系统类3大类;而根据主要处理对象的区别,三大类工艺还可更细致地梳理为单独除磷、单独脱氮和同步脱氮除磷3类。反应器类技术和混合系统类技术的TRL值主要分布在7~9,这表明技术水平多数已达到第三方评估认可至推广应用阶段,面向快速应用的前景可观;人工湿地类技术的TRL值以6为主,主要还停留在进一步完善示范工程市场接受度的阶段,需要第三方的鉴定和验证以评估技术的可靠性及稳定性。
对不同TRL等级单项技术在各LOT备选技术组合中的使用频次和同等级值出现频次进行细化梳理,以获得单项技术TRL值分布的详细信息,结果如图2所示。A2O技术在各技术组合中共出现了7次,是出现频次最高的技术,已被证明技术成熟度以及推广应用程度较高。出现频次第二多的单项技术为氧化沟技术、混凝沉淀技术和Phoredox技术,出现频次均为2次。以上均为污水厂二级处理技术,处于人工处理系统阶段。其余单项技术的出现频次均为1次,且涵盖了所有的LOT主功能技术,这说明LOT的主功能技术尚处于行业发展初期的多方技术竞争市场阶段。对不同TRL等级值的单项技术出现频次进行统计发现,TRL值为8的单项技术有1项,TRL值为6的单项技术共7项,TRL值为7的单项技术共3项,TRL值为9的单项技术共7项。其中,除4项为单独脱氮或除磷的单项技术外,其余单项技术均可实现整体脱氮除磷。整体而言,技术发展水平达到工程示范及以上的单项技术总数可达到22项 (TRL≥6) 。其中,TRL值在6~7的单项技术共10项,大多为新兴的生态/生物类工艺,以生物作用 (植物吸收和微生物利用) 和生态调控作用为脱氮除磷的主要机制;而TRL值≥8的单项技术共12项,已经过第三方评估或用户验证,主要为发展时间较长、应用较为广泛的人工水处理技术和部分生态强化的混合系统类技术。由此可见,这些备选LOT技术组合基本实现了成本优化和低碳低耗的技术运营模式,可满足污水的资源化及生态环境的优化需求。这也表明,以生物脱氮除磷为主的技术已在LOT技术组合中占据重要地位,这也符合减污降碳协同增效的政策背景,具有较高的市场推广及应用价值。
2.2 技术组合中单项技术TRL值分布比较分析
对各个LOT备选技术组合内部不同单项技术成熟度等级值的数据分布进行统计分析,结果如图3所示。所有技术组合的单项技术TRL值均在6及6以上,其中技术组合1、2、3、4中的各单项技术TRL值均为9。具体来看,技术组合1、2、3、4、8在采用传统A2O或BNR处理技术的基础上,复合了MBBR、反硝化深床滤池、曝气生物滤池、混凝沉淀、传统人工湿地等整体成熟度较高的技术,TRL值为8~9,平均值与中位值接近或等于9,在天津等地有较成熟的的示范工程[41],技术规范也较为成熟,已有推广应用基础。技术组合1、3、5、9、10、11通过将悬浮填料、强化深床滤池等反应器强化脱氮技术或具有蓄积、调控功能的生态技术,运用在A2O技术或Phoredox技术的出水深度处理中,借助植物净化[46]、生态浮床[49]、复合强化人工湿地[50]等技术,可充分发挥植物和湿地的功能特点,以实现水体的强化脱氮除磷。这些技术系统平均TRL值接近8,整体较为成熟,在北京[51]、重庆[34]、天津[41]、河北[43, 46]等地都有相关示范工程和第三方效果评估,并具备初步的技术规范。技术组合6、7、12采用了轻质填料人工湿地、复合填料式生物滞留池、太阳能充氧生态浮岛等较为新颖的技术,故平均TRL值约为7,技术成熟度等级达到第三方评估应用认可的水平,在江苏[52]、安徽[36, 53]、西安[47]等地已建成相关课题的示范工程。
对各项LOT备选技术组合中不同主功能类型单项技术的TRL等级数量占比进行分析,结果如图4所示。在污水处理厂出水阶段,采用的各单项技术TRL值均为9,占比达到100%。污水厂处理工艺主要采用传统的水处理工艺 (A2O、BNR、氧化沟、Phoredox) ,由于其工艺发展时间较长,技术发展成熟,因而基本实现了市场性应用和推广。污水处理厂二级出水后,反应器类主功能技术中单项技术总数共6个,其中66.7%的单项技术TRL值达到9。而TRL值为7的单项技术占16.7%,TRL值为6的单项技术占剩余16.7%。人工湿地类主功能技术的单项技术总数为4个,TRL值为6的单项技术占比最大达50%,TRL值为9的单项技术占比50%。混合系统类主功能技术中,TRL值为6的单项技术总数为4个,占比50%,TRL值为9和8的单项技术各1个,占比均为12.5%,而TRL值为7的单项技术为1个,占比25%。故整体而言反应器类主功能技术大多发展时间较长,单项技术成熟度较高;混合系统类和人工湿地类单项技术具有较多耦合创新,技术成熟度略低。
2.3 SRL计算结果评估及系统运行成本分析
LOT备选技术组合经评估矩阵计算后的系统成熟度SRL分析结果如图5所示。各项备选技术组合的SRL值较高,大多技术组合的SRL值为0.6~0.8,处于系统发展验证阶段,相关技术组合正在为真正的市场推广进行产品稳定性提升。技术组合1、2、3、4、8的SRL值为0.8~1.0及0.9~1.0,达到了生产、操作和维护阶段,具备直接生产并面向市场产生较高的应用效益的能力,可在未来的推广应用中占据重要地位。
技术经济性作为衡量推广应用可行性的重要指标,也纳入本研究的成熟度评价中。LOT备选技术组合中单项技术的处理运行成本依据《城市污水处理工程项目建设标准》 (建标[2001]77号) 核算,主要考量技术的动力费、药剂费、材料费、修理费、管理费、折旧费、人工工资等。经调研,我国污水平均处理运行成本为0.50~1.22元·m−3[54] (污水处理全运营成本减去污泥处理成本) 。根据全国平均进出水水质[55]及平均运行成本计算可知:全国平均TN单位质量去除运行成本为0.03元·g−1,TP单位质量去除运行成本为0.19元·g−1。通过整合各单项技术的运行成本及技术组合的进出水水质,计算得出LOT备选技术组合的TN单位质量去除运行成本和TP单位质量去除运行成本,具体结果如表1所示,而各技术组合系统运行成本的对比分析结果如图5所示。
TN单位质量去除运行成本 (0.01~0.06元·g−1) 较TP单位质量去除运行成本 (0.09~0.65元·g−1) 低,且其技术组合的相应脱氮、除磷的单位质量去除运行成本大致趋势相同,除技术组合11外,由于其进水总磷浓度较低导致TP单位质量去除运行成本较高 (0.35元·g−1) 。12项技术组合的TN单位质量去除运行成本和全国平均TN单位质量去除运行成本基本持平,除技术组合1、2、3、4 (分别为0.06元·g−1、0.04元·g−1、0.03元·g−1、0.03元·g−1) 外TN单位质量去除成本均低于全国平均TN单位质量去除运行成本 (0.03元·g−1) 。由于LOT技术出水水质标准高于全国平均污水厂出水水质,说明LOT技术在单位质量去除TN上更具有市场优势,且更符合人们对再生水水质提高的日益需求。12项技术组合的TP单位质量去除运行成本和全国平均TP单位质量去除运行成本相比,除了技术1、2、3、10、11 (分别为0.61元·g−1、0.38元·g−1、0.65元·g−1、0.36元·g−1、0.35元·g−1) 外,各项技术组合的其单位质量去除运行成本相近或低于全国平均值 (0.19元·g−1) 。而LOT出水水质标准高于全国平均污水厂出水水质,说明LOT技术在单位质量去除TP上更具有市场优势,同样更符合人们对再生水水质提高的日益需求。进一步分析,技术组合1、2、3、4的TN、TP单位质量去除运行成本较高,主要受其技术组合中的污水厂二级处理技术和深度处理主功能技术大多为传统的反应器类技术,其系统运行和维护成本较高,但其改良SRL等级值较高,达到了操作和维护阶段,可直接生产并面向市场实现系统生命周期运行的最大效益。而技术组合5、6、7、8、9、10、11、12因各LOT备选技术组合的深度处理主功能技术类型主要通过生物法 (植物、生态系统耦合) 为核心关键工艺,其系统维护和运营成本较低且去除氮、磷能力较强使其TN、TP单位质量去除运行成本较低,但SRL系数等级大多分布在0.6~0.79,处于系统发展验证阶段。相关技术组合正在为真正的市场推广进行产品稳定性提升,有待进一步优化的潜力空间。以上技术组合将同步脱氮除磷的混合系统类技术或具有蓄积、调控功能的生态技术运用在二级出水深度处理工艺中,借助植物净化、生态浮床、复合强化人工湿地、曝气生物滞留池、太阳能混合充氧生态浮岛等一系列生态技术,充分利用植物和湿地等生态技术的特点,既实现了高效的同步脱氮除磷,又降低了工艺本身的运行和维护成本,并挖掘了污水资源化的景观价值,在其运行生命周期中进一步实现了低碳低耗运营模式的优化与发展。各项技术组合中相关生态类单项技术的TRL等级大多处于示范工程或第三方检验阶段,具备技术革新的潜力,更利于整体系统的优化和提升,市场前景可观。
3. 结论
1) 对水专项相关课题进行相关调研和实时跟进并对其和国内外基本满足LOT要求的技术进行梳理,筛选出12项LOT备选技术组合,均为污水厂二级处理技术辅以主功能深度处理技术进而达到LOT要求。主功能深度处理技术以生物类技术为主,可分为反应器类技术、人工湿地类技术和混合系统类技术三类,大部分单项技术TRL等级在7以上,具有较强的应用前景。整体而言,反应器类技术的单项技术成熟度较高,混合系统类和人工湿地类单项技术具有较多耦合创新,技术成熟度略低。
2) LOT备选技术组合的改良SRL值为0.6~0.8,处于系统发展验证阶段,相关技术组合正在为真正的市场推广进行产品稳定性提升。大部分备选技术组合的TN、TP单位质量去除运行成本均低于我国污水处理厂的相应污染物平均单位质量去除运行成本,具有较大市场优势。技术组合1、2、3、4的TN、TP单位质量去除运行成本较高,但其改良SRL等级值较高,达到了操作和维护阶段,可直接生产并面向市场实现系统生命周期运行的最大效益。技术组合5、6、7、9、10、11、12的系统充分利用植物和湿地等生态技术的特点,运行成本相对较低,具有推广潜力。由此可见,这些备选LOT技术组合基本实现了成本优化和低碳低耗的技术运营模式,可满足污水的资源化及生态环境的优化需求。同时,LOT单项技术还应加强物理-化学脱氮除磷、生态处理技术的研发,推进植被搭配优化,使其在运行生命周期中进一步实现低碳低耗运营模式的不断优化和发展。
-
表 1 生物炭含氧官能团在污染物吸附降解过程中的作用
Table 1. Role of oxygen-containing functional groups of biochars in the process of contaminants adsorption and degradation
原生质Raw materials 污染物Contaminants 去除方式The way of the removal 制备温度/℃Temperature 官能团类型Functional groups 参考文献References 家禽粪便 除草剂 吸附 400 Hydroquinone [24] 木材生物炭 汞 吸附 600 —COOH、Phenolic-OH [33] 生物炭 罗丹明B 吸附 — C=O、Phenolic-OH [47] 橘子皮 1-萘酚;萘 吸附 150—700 —OH [30] 玉米秸秆 西马嗪 吸附 100—600 —COOH、C=O [26] 谷物 甲基紫 吸附 350 —COOH、Phenolic-OH [48] 生物炭 N2O 降解 300 Phenolic-OH [14] 水稻秸秆 邻苯二甲酸二乙酯 降解 — Quinoid [49] 水稻秸秆 五氯酚 降解 900 Quinoid C=O [19] 硬木生物炭 乙酸盐、硝酸盐 降解 550 Phenolic-OH、Quinoid C=O [41] 水稻秸秆 罗丹明B 吸附、降解 500、1000 Quinoid C=O [20] 水稻秸秆 对硝基苯酚 吸附、降解 500 Quinoid [40] 碳基材料 — 氧化 —- —COOH [50] -
[1] LEHMANN J. A handful of carbon [J]. Nature, 2007, 447(7141): 143-144. doi: 10.1038/447143a [2] CHEN Q, ZHENG J, ZHENG L, et al. Classical theory and electron-scale view of exceptional Cd(Ⅱ) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations [J]. Chemical Engineering Journal, 2018, 350: 1000-1009. doi: 10.1016/j.cej.2018.06.054 [3] LEHMANN J, DA SILVA J P, STEINER C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments [J]. Plant and Soil, 2003, 249(2): 343-357. doi: 10.1023/A:1022833116184 [4] CHU G, ZHAO J, HUANG Y, et al. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores [J]. Environmental Pollution, 2018, 240: 1-9. doi: 10.1016/j.envpol.2018.04.003 [5] KOLB S E, FERMANICH K J, DORNBUSH M E. Effect of charcoal quantity on microbial biomass and activity in temperate soils [J]. Soil Science Society of America Journal, 2009, 73(4): 1173-1181. doi: 10.2136/sssaj2008.0232 [6] SUN J, HE F, PAN Y, et al. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types [J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2017, 67(1): 12-22. [7] NOVAK J M, BUSSCHER W J, LAIRD D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil [J]. Soil Science, 2009, 174(2): 105-112. doi: 10.1097/SS.0b013e3181981d9a [8] CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars [J]. Environmental Science & Technology, 2004, 38(17): 4649-4655. [9] KIM K H, KIM J Y, CHO T S, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida) [J]. Bioresource Technology, 2012, 118: 158-162. doi: 10.1016/j.biortech.2012.04.094 [10] MENDEZ A, TARQUIS A M, SAA-REQUEJO A, et al. Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil [J]. Chemosphere, 2013, 93(4): 668-676. doi: 10.1016/j.chemosphere.2013.06.004 [11] CAO X, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine [J]. Environmental Science & Technology, 2009, 43(9): 3285-3291. [12] LU H, ZHANG W, YANG Y, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar [J]. Water Research, 2012, 46(3): 854-862. doi: 10.1016/j.watres.2011.11.058 [13] YANG J, PAN B, LI H, et al. Degradation of p-nitrophenol on biochars: Role of persistent free radicals [J]. Environmental Science & Technology, 2016, 50(2): 694-700. [14] CHEN G, ZHANG Z, ZHANG Z, et al. Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures [J]. Science of the Total Environment, 2018, 615: 1547-1556. doi: 10.1016/j.scitotenv.2017.09.125 [15] DELLINGER B, LONINICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals [J]. Proceedings of the Combustion Institute, 2007, 31: 521-528. doi: 10.1016/j.proci.2006.07.172 [16] LOMNICKI S, TRUONG H, VEJERANO E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter [J]. Environmental Science & Technology, 2008, 42(13): 4982-4988. [17] 马超然, 张绪超, 王朋, 等. 生物炭理化性质对其反应活性的影响 [J]. 环境化学, 2019, 11: 2425-2434. MA C Y, ZHANG X C, WANG P, et al. Effect of physical anf chemical properties of biochar on its reactivity [J]. Environmental Chemistry, 2019, 11: 2425-2434(in Chinese).
[18] FANG G, GAO J, LIU C, et al. Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation [J]. Environmental Science & Technology, 2014, 48(3): 1902-1910. [19] YU L, YUAN Y, TANG J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens [J]. Sci Rep, 2015(5): 16221. [20] WU D, LI F, CHEN Q, et al. Mediation of Rhodamine B photodegradation by biochar [J]. Chemosphere, 2020, 256: 127082. doi: 10.1016/j.chemosphere.2020.127082 [21] YU X, GONG W, LIU X, et al. The use of carbon black to catalyze the reduction of nitrobenzenes by sulfides [J]. Journal of Hazardous Materials, 2011, 198: 340-346. doi: 10.1016/j.jhazmat.2011.10.052 [22] ZHANG C, KATAYAMA A. Humin as an electron mediator for microbial reductive dehalogenation [J]. Environmental Science & Technology, 2012, 46(12): 6575-6583. [23] QIN Y, ZHANG L, AN T. Hydrothermal carbon-mediated fenton-like reaction mechanism in the degradation of alachlor: Direct electron transfer from hydrothermal carbon to Fe(Ⅲ) [J]. Acs Applied Materials & Interfaces, 2017, 9(20): 17116-17125. [24] OH S Y, SON J G, CHIU P C. Biochar-mediated reductive transformation of nitro herbicides and explosives [J]. Environmental Toxicology and Chemistry, 2013, 32(3): 501-508. doi: 10.1002/etc.2087 [25] ZHU D Q, KWON S, PIGNATELLO J J. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions [J]. Environmental Science & Technology, 2005, 39(11): 3990-3998. [26] ZHANG G, ZHANG Q, SUN K, et al. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures [J]. Environmental Pollution, 2011, 159(10): 2594-2601. doi: 10.1016/j.envpol.2011.06.012 [27] CHEN B, ZHOU D, ZHU L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures [J]. Environmental Science & Technology, 2008, 42(14): 5137-5143. [28] OH S Y, SON J G, HUR S H, et al. Black carbon-mediated reduction of 2,4-dinitrotoluene by dithiothreitol [J]. Journal of Environmental Quality, 2013, 42(3): 815-821. doi: 10.2134/jeq2012.0411 [29] YANG K, JIANG Y, YANG J, et al. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 degrees C [J]. Environmental Pollution, 2018, 233: 64-70. doi: 10.1016/j.envpol.2017.10.035 [30] CHEN B, CHEN Z. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures [J]. Chemosphere, 2009, 76(1): 127-133. doi: 10.1016/j.chemosphere.2009.02.004 [31] CHEN T, ZHANG Y, WANG H, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge [J]. Bioresource Technology, 2014, 164: 47-54. doi: 10.1016/j.biortech.2014.04.048 [32] CHEFETZ B, BILKIS Y I, POLUBESOVA T. Sorption-desorption behavior of triazine and phenylurea herbicides in Kishon river sediments [J]. Water Research, 2004, 38(20): 4383-4394. doi: 10.1016/j.watres.2004.08.023 [33] PARK J H, WANG J J, ZHOU B, et al. Removing mercury from aqueous solution using sulfurizedbiochar and associated mechanisms [J]. Environmental Pollution, 2019, 244: 627-635. doi: 10.1016/j.envpol.2018.10.069 [34] CAO X, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation [J]. Bioresource Technology, 2010, 101(14): 5222-5228. doi: 10.1016/j.biortech.2010.02.052 [35] UCHIMIYA M, KLASSON K T, WARTELLE L H, et al. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations [J]. Chemosphere, 2011, 82(10): 1431-1417. doi: 10.1016/j.chemosphere.2010.11.050 [36] HARVEY O R, HERBERT B E, RHUE R D, et al. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry [J]. Environmental Science & Technology, 2011, 45(13): 5550-5556. [37] LIAN F, XING B. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk [J]. Environmental Science & Technology, 2017, 51(23): 13517-13532. [38] WU C, LIU X, WU X, et al. Sorption, degradation and bioavailability of oxyfluorfen in biochar-amended soils [J]. Science of the Total Environment, 2019, 658: 87-94. doi: 10.1016/j.scitotenv.2018.12.059 [39] LIAO S, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings [J]. Environmental Science & Technology, 2014, 48(15): 8581-8587. [40] YANG J, PIGNATELLO J J, PAN B, et al. Degradation of p-nitrophenol by lignin and cellulose chars: H2O2-mediated reaction and direct reaction with the char [J]. Environmental Science & Technology, 2017, 51(16): 8972-8980. [41] SAQUING J M, YU Y H, PEI C C. Wood-derived black carbon (biochar) as a microbial electron donor and acceptor [J]. 2016, 3(2): 62-66. [42] KEMPER J M, AMMAR E, MITCH W A. Abiotic degradation of hexahydro-l,3,5-trinitro-1,3,5-triazine in the presence of hydrogen sulfide and black carbon [J]. Environmental Science & Technology, 2008, 42(6): 2118-2123. [43] ZEE F P V D, BISSCHOPS I A E, LETTINGA G, et al. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes [J]. Environmental Science & Technology, 2003, 37(2): 402-408. [44] SUN T, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon [J]. Nature Communications, 2017(8): 14873. [45] REN S, USMAN M, TSANG D C W, et al. Hydrochar-facilitated anaerobic digestion: Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups [J]. Environmental Science & Technology, 2020, 54(9): 5755-5766. [46] FANG G, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation [J]. Environmental Science & Technology, 2015, 49(9): 5645-5653. [47] QIU Y, ZHENG Z, ZHOU Z, et al. Effectiveness and mechanisms of dye adsorption on a straw-based biochar [J]. Bioresource Technology, 2009, 100(21): 5348-5351. doi: 10.1016/j.biortech.2009.05.054 [48] XU R K, XIAO S C, YUAN J H, et al. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues [J]. Bioresource Technology, 2011, 102(22): 10293-10298. doi: 10.1016/j.biortech.2011.08.089 [49] FANG G, LIU C, WANG Y, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation [J]. Applied Catalysis B-Environmental, 2017, 214: 34-45. doi: 10.1016/j.apcatb.2017.05.036 [50] CHEN C Y, JAFVERT C T. The role of surface functionalization in the solar light-induced production of reactive oxygen species by single-walled carbon nanotubes in water [J]. Carbon, 2011, 49(15): 5099-5106. doi: 10.1016/j.carbon.2011.07.029 [51] GASKIN J W, STEINER C, HARRIS K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J]. Transactions of the Asabe, 2008, 51(6): 2061-2069. doi: 10.13031/2013.25409 [52] YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol [J]. Soil Use and Management, 2011, 27(1): 110-115. doi: 10.1111/j.1475-2743.2010.00317.x [53] XIAO X, CHEN B L, ZHU L Z. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures [J]. Environmental Science & Technology, 2014, 48(6): 3411-3419. [54] JIN J W, LI Y N, ZHANG J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge [J]. Journal of Hazardous Materials, 2016, 320: 417-426. doi: 10.1016/j.jhazmat.2016.08.050 [55] WANG Z, HAN L, SUN K, et al. Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures [J]. Chemosphere, 2016, 144: 285-291. doi: 10.1016/j.chemosphere.2015.08.042 [56] DEMIRBAS A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues [J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(2): 243-248. doi: 10.1016/j.jaap.2004.07.003 [57] LIU W J, LI W W, JIANG H, et al. Fates of chemical elements in biomass during its pyrolysis [J]. Chem Rev, 2017, 117(9): 6367-6398. doi: 10.1021/acs.chemrev.6b00647 [58] BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L, et al. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils [J]. Environmental Pollution, 2011, 159(12): 3269-3282. doi: 10.1016/j.envpol.2011.07.023 [59] CHU G, ZHAO J, CHEN F, et al. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation [J]. Environmental Pollution, 2017, 227: 372-379. doi: 10.1016/j.envpol.2017.04.067 [60] LUQUE R, MENENDEZ J A, ARENILLAS A, et al. Microwave-assisted pyrolysis of biomass feedstocks: the way forward? [J]. Energy & Environmental Science, 2012, 5(2): 5481-5488. [61] MENENDEZ J A, DOMINGUEZ A, FERNANDEZ Y, et al. Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls [J]. Energy & Fuels, 2007, 21(1): 373-378. [62] MUMME J, ECKERVOGT L, PIELERT J, et al. Hydrothermal carbonization of anaerobically digested maize silage [J]. Bioresource Technology, 2011, 102(19): 9255-9260. doi: 10.1016/j.biortech.2011.06.099 [63] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071 [64] DEMIRBAS A, ARIN G. An overview of biomass pyrolysis [J]. Energy Sources, 2002, 24(5): 471-482. doi: 10.1080/00908310252889979 [65] KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar) [J]. Environmental Science & Technology, 2014, 48(10): 5601-5611. [66] SUN K, KEILUWEIT M, KLEBER M, et al. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure [J]. Bioresource Technology, 2011, 102(21): 9897-9903. doi: 10.1016/j.biortech.2011.08.036 [67] 林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征 [J]. 环境化学, 2017, 36(10): 2107-2114. doi: 10.7524/j.issn.0254-6108.2017021703 LIN Q Y, QIANG C C, ZHANG M Y. Characterization of the physical and chemical structures of biochar under simulated aging condition [J]. Environmental Chemistry, 2017, 36(10): 2107-2114(in Chinese). doi: 10.7524/j.issn.0254-6108.2017021703
[68] 黄兆琴, 胡林潮, 程德义, 等. 化学老化后稻壳生物炭理化性质的改变及微观结构表征 [J]. 环境化学, 2019, 8: 1735-1744. doi: 10.7524/j.issn.0254-6108.2018101605 HUANG Z Q, HU L C, CHENG D Y, et al. Characterization of physicochemical properties and microstructure of rice husk-derived biochar after chemical aging [J]. Environmental Chemistry, 2019, 8: 1735-1744(in Chinese). doi: 10.7524/j.issn.0254-6108.2018101605
[69] QIN W, WANG Y, FANG G, et al. Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation [J]. Chemosphere, 2016, 150: 71-78. doi: 10.1016/j.chemosphere.2016.01.119 [70] ZHANG P, ZHENG S, LIU J, et al. Surface properties of activated sludge-derived biochar determine the facilitating effects on Geobacter co-cultures [J]. Water Research, 2018, 142: 441-451. doi: 10.1016/j.watres.2018.05.058 [71] YU L, WANG Y, YUAN Y, et al. Biochar as electron acceptor for microbial extracellular respiration [J]. Geomicrobiology Journal, 2016, 33(6): 530-536. doi: 10.1080/01490451.2015.1062060 -