-
生物炭由于其价格低廉、来源广泛,并且在去除土壤、水体污染物应用中展现了良好的应用潜力[1-3],引起了研究者对其与污染物相互作用机制的关注与探索。生物炭吸附-降解污染物能力与生物炭的比表面积、极性、芳香性以及表面官能团等结构有较大关联[4-5],而上述结构特性均与生物炭制备温度密切相关[6-7]。前期研究显示,随着制备温度的增高,生物炭比表面积增大、C结构形成致密的芳香环,但O元素随之下降,表面含氧官能团种类、数量也随之发生变化[8-10]。因此,由于制备温度产生的生物炭含氧结构的性质差异导致其与污染物之间的相互的作用方式也发生改变[11-12]。
早期研究者针对生物炭去除污染物的探索主要集中在吸附过程。随着研究的不断深入,研究者发现水体或土壤中添加生物炭后,污染物表观浓度的减少过程不仅包含吸附,还伴随着降解的作用[13-14]。这一结论引发了研究者对生物炭作为新型功能性材料去除污染物的机制新的思考与探索。在对生物炭降解作用的探索过程中,生物炭中的环境持久性自由基(environmentally persistent free radicals, EPFRs)对污染物的氧化作用吸引了研究者的关注[15-17]。有研究在生物炭-对硝基苯酚(PNP)降解体系中,将EPFRs列为降解的主要原因[13]并排除了小分子自由基对PNP降解的贡献;还有研究组发现EPFRs活化过硫酸盐降解促进污染物降解的过程[18]。然而,随着研究的深入,污染物降解程度与EPFRs信号强度出现了不完全匹配的现象。通常,400—700 ℃制备的生物炭自由基信号最强,但自由基信号强度较弱的生物炭(小于400 ℃或大于700 ℃制备)的降解程度反而更高[19-20]。随着越来越多的降解现象无法通过EPFRs一种途径完全解释,研究者们提出,生物炭降解污染物机制可能还包含除了EPFRs以外的途径。近期,生物炭含氧结构参与降解污染物的想法被提出[21],并逐渐成为生物炭去除污染物的研究重点。
为了明确生物炭表面含氧观官能团类型以及含量在去除污染物过程中的作用,研究者通过不同的检测手段对生物炭表面含氧官能团进行定性、定量分析,并使用多种改性方式调控生物炭表面含氧官能团类型和相对含量[4, 22-23],主要以物理、化学改性方式为主,针对性地提高生物炭的氧化或还原能力;还包括微生物作为电子供体与含氧官能团产生协同作用,达到增强污染物吸附-降解的目的[23]。本文以生物炭制备温度为背景,总结了不同温度制备的生物炭在吸附与降解污染物过程中因含氧结构的不同产生的差异,并在现有的研究基础上,归纳了通过不同热解方式、氧化/还原剂改性生物炭以及负载目标官能团等多种方式增强生物炭去除污染物的能力,为后期有选择性地应用生物炭提供一定的参考与依据。
生物炭含氧官能团的生成溯源及其在污染物吸附-降解过程中的作用
Traceability of oxygen-containing functional groups in biochars and their roles in the adsorption-degradation of contaminants.
-
摘要: 近年来,生物炭在土壤、水体污染物去除中展现了良好的应用潜力。大量学者围绕生物炭吸附-降解污染物的作用机制展开了深入的研究,发现生物炭含氧官能团结构在污染物去除过程中扮演着重要角色。生物炭制备温度是影响其含氧官能团结构的主要因素,因此本文以生物炭热解温度为背景,区分了生物炭中环境持久性自由基(EPFRs)降解污染物的贡献,探究了生物炭中酚羟基(Phenolic-OH)和醌基团(Quinoid C=O)等活性含氧官能团对污染物的吸附-降解作用机制。此外,本文对生物炭中含氧官能团的产生和含量进行了溯源综述,包括制备生物炭的生物质来源、制备工艺和制备温度,总结了通过物理、化学改性方法对生物炭含氧官能团结构的影响,针对性地提出了提高生物炭的氧化/还原能力的方法,以及微生物与生物炭含氧官能团结构协同作用去除污染物的技术手段,为后续生物炭的工程应用奠定理论基础。Abstract: In recent years, biochars have shown good application potential in the removal of soil and water contaminants. Many researchers have carried out in-depth research on the mechanisms of how biochars adsorb and degrade contaminants, and the oxygen-containing functional groups(OCFGs) of biochars have been found to play an important role in the removal of contaminants. Therefore, this paper used the biochar pyrolysis temperatures as the background, distinguished the contribution of environmental persistent free radicals (EPFRs) of biochars in the degradation of contaminants, and explored the adsorption-degradation mechanism of active OCFGs such as Phenolic-OH and Quinoid C=O on contaminants. Moreover, this paper reviewed the traceability and content of OCFGs in biochars, including the biomass source, preparation process, and pyrolysis temperature. In addition, the effect of physical and chemical modification on the structure of OCFGs has been summarized. The methods for improving the oxidation/reduction capacity of biochar, and the technical means for removing contaminants by the synergistic effect of microorganisms and OCFGs of biochar were proposed. This review attempted to provide a theoretical foundation for the subsequent practical engineering application of biocahrs.
-
Key words:
- biochar /
- oxygen-containing functional group /
- electron transfer /
- adsorption /
- degradation
-
表 1 生物炭含氧官能团在污染物吸附降解过程中的作用
Table 1. Role of oxygen-containing functional groups of biochars in the process of contaminants adsorption and degradation
原生质
Raw materials污染物
Contaminants去除方式
The way of the removal制备温度/℃
Temperature官能团类型
Functional groups参考文献
References家禽粪便 除草剂 吸附 400 Hydroquinone [24] 木材生物炭 汞 吸附 600 —COOH、Phenolic-OH [33] 生物炭 罗丹明B 吸附 — C=O、Phenolic-OH [47] 橘子皮 1-萘酚;萘 吸附 150—700 —OH [30] 玉米秸秆 西马嗪 吸附 100—600 —COOH、C=O [26] 谷物 甲基紫 吸附 350 —COOH、Phenolic-OH [48] 生物炭 N2O 降解 300 Phenolic-OH [14] 水稻秸秆 邻苯二甲酸二乙酯 降解 — Quinoid [49] 水稻秸秆 五氯酚 降解 900 Quinoid C=O [19] 硬木生物炭 乙酸盐、硝酸盐 降解 550 Phenolic-OH、Quinoid C=O [41] 水稻秸秆 罗丹明B 吸附、降解 500、1000 Quinoid C=O [20] 水稻秸秆 对硝基苯酚 吸附、降解 500 Quinoid [40] 碳基材料 — 氧化 —- —COOH [50] -
[1] LEHMANN J. A handful of carbon [J]. Nature, 2007, 447(7141): 143-144. doi: 10.1038/447143a [2] CHEN Q, ZHENG J, ZHENG L, et al. Classical theory and electron-scale view of exceptional Cd(Ⅱ) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations [J]. Chemical Engineering Journal, 2018, 350: 1000-1009. doi: 10.1016/j.cej.2018.06.054 [3] LEHMANN J, DA SILVA J P, STEINER C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments [J]. Plant and Soil, 2003, 249(2): 343-357. doi: 10.1023/A:1022833116184 [4] CHU G, ZHAO J, HUANG Y, et al. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores [J]. Environmental Pollution, 2018, 240: 1-9. doi: 10.1016/j.envpol.2018.04.003 [5] KOLB S E, FERMANICH K J, DORNBUSH M E. Effect of charcoal quantity on microbial biomass and activity in temperate soils [J]. Soil Science Society of America Journal, 2009, 73(4): 1173-1181. doi: 10.2136/sssaj2008.0232 [6] SUN J, HE F, PAN Y, et al. Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types [J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2017, 67(1): 12-22. [7] NOVAK J M, BUSSCHER W J, LAIRD D L, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil [J]. Soil Science, 2009, 174(2): 105-112. doi: 10.1097/SS.0b013e3181981d9a [8] CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars [J]. Environmental Science & Technology, 2004, 38(17): 4649-4655. [9] KIM K H, KIM J Y, CHO T S, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida) [J]. Bioresource Technology, 2012, 118: 158-162. doi: 10.1016/j.biortech.2012.04.094 [10] MENDEZ A, TARQUIS A M, SAA-REQUEJO A, et al. Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil [J]. Chemosphere, 2013, 93(4): 668-676. doi: 10.1016/j.chemosphere.2013.06.004 [11] CAO X, MA L, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine [J]. Environmental Science & Technology, 2009, 43(9): 3285-3291. [12] LU H, ZHANG W, YANG Y, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar [J]. Water Research, 2012, 46(3): 854-862. doi: 10.1016/j.watres.2011.11.058 [13] YANG J, PAN B, LI H, et al. Degradation of p-nitrophenol on biochars: Role of persistent free radicals [J]. Environmental Science & Technology, 2016, 50(2): 694-700. [14] CHEN G, ZHANG Z, ZHANG Z, et al. Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures [J]. Science of the Total Environment, 2018, 615: 1547-1556. doi: 10.1016/j.scitotenv.2017.09.125 [15] DELLINGER B, LONINICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals [J]. Proceedings of the Combustion Institute, 2007, 31: 521-528. doi: 10.1016/j.proci.2006.07.172 [16] LOMNICKI S, TRUONG H, VEJERANO E, et al. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter [J]. Environmental Science & Technology, 2008, 42(13): 4982-4988. [17] 马超然, 张绪超, 王朋, 等. 生物炭理化性质对其反应活性的影响 [J]. 环境化学, 2019, 11: 2425-2434. MA C Y, ZHANG X C, WANG P, et al. Effect of physical anf chemical properties of biochar on its reactivity [J]. Environmental Chemistry, 2019, 11: 2425-2434(in Chinese).
[18] FANG G, GAO J, LIU C, et al. Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation [J]. Environmental Science & Technology, 2014, 48(3): 1902-1910. [19] YU L, YUAN Y, TANG J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens [J]. Sci Rep, 2015(5): 16221. [20] WU D, LI F, CHEN Q, et al. Mediation of Rhodamine B photodegradation by biochar [J]. Chemosphere, 2020, 256: 127082. doi: 10.1016/j.chemosphere.2020.127082 [21] YU X, GONG W, LIU X, et al. The use of carbon black to catalyze the reduction of nitrobenzenes by sulfides [J]. Journal of Hazardous Materials, 2011, 198: 340-346. doi: 10.1016/j.jhazmat.2011.10.052 [22] ZHANG C, KATAYAMA A. Humin as an electron mediator for microbial reductive dehalogenation [J]. Environmental Science & Technology, 2012, 46(12): 6575-6583. [23] QIN Y, ZHANG L, AN T. Hydrothermal carbon-mediated fenton-like reaction mechanism in the degradation of alachlor: Direct electron transfer from hydrothermal carbon to Fe(Ⅲ) [J]. Acs Applied Materials & Interfaces, 2017, 9(20): 17116-17125. [24] OH S Y, SON J G, CHIU P C. Biochar-mediated reductive transformation of nitro herbicides and explosives [J]. Environmental Toxicology and Chemistry, 2013, 32(3): 501-508. doi: 10.1002/etc.2087 [25] ZHU D Q, KWON S, PIGNATELLO J J. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions [J]. Environmental Science & Technology, 2005, 39(11): 3990-3998. [26] ZHANG G, ZHANG Q, SUN K, et al. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures [J]. Environmental Pollution, 2011, 159(10): 2594-2601. doi: 10.1016/j.envpol.2011.06.012 [27] CHEN B, ZHOU D, ZHU L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures [J]. Environmental Science & Technology, 2008, 42(14): 5137-5143. [28] OH S Y, SON J G, HUR S H, et al. Black carbon-mediated reduction of 2,4-dinitrotoluene by dithiothreitol [J]. Journal of Environmental Quality, 2013, 42(3): 815-821. doi: 10.2134/jeq2012.0411 [29] YANG K, JIANG Y, YANG J, et al. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 degrees C [J]. Environmental Pollution, 2018, 233: 64-70. doi: 10.1016/j.envpol.2017.10.035 [30] CHEN B, CHEN Z. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures [J]. Chemosphere, 2009, 76(1): 127-133. doi: 10.1016/j.chemosphere.2009.02.004 [31] CHEN T, ZHANG Y, WANG H, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge [J]. Bioresource Technology, 2014, 164: 47-54. doi: 10.1016/j.biortech.2014.04.048 [32] CHEFETZ B, BILKIS Y I, POLUBESOVA T. Sorption-desorption behavior of triazine and phenylurea herbicides in Kishon river sediments [J]. Water Research, 2004, 38(20): 4383-4394. doi: 10.1016/j.watres.2004.08.023 [33] PARK J H, WANG J J, ZHOU B, et al. Removing mercury from aqueous solution using sulfurizedbiochar and associated mechanisms [J]. Environmental Pollution, 2019, 244: 627-635. doi: 10.1016/j.envpol.2018.10.069 [34] CAO X, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation [J]. Bioresource Technology, 2010, 101(14): 5222-5228. doi: 10.1016/j.biortech.2010.02.052 [35] UCHIMIYA M, KLASSON K T, WARTELLE L H, et al. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations [J]. Chemosphere, 2011, 82(10): 1431-1417. doi: 10.1016/j.chemosphere.2010.11.050 [36] HARVEY O R, HERBERT B E, RHUE R D, et al. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry [J]. Environmental Science & Technology, 2011, 45(13): 5550-5556. [37] LIAN F, XING B. Black carbon (biochar) in water/soil environments: molecular structure, sorption, stability, and potential risk [J]. Environmental Science & Technology, 2017, 51(23): 13517-13532. [38] WU C, LIU X, WU X, et al. Sorption, degradation and bioavailability of oxyfluorfen in biochar-amended soils [J]. Science of the Total Environment, 2019, 658: 87-94. doi: 10.1016/j.scitotenv.2018.12.059 [39] LIAO S, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings [J]. Environmental Science & Technology, 2014, 48(15): 8581-8587. [40] YANG J, PIGNATELLO J J, PAN B, et al. Degradation of p-nitrophenol by lignin and cellulose chars: H2O2-mediated reaction and direct reaction with the char [J]. Environmental Science & Technology, 2017, 51(16): 8972-8980. [41] SAQUING J M, YU Y H, PEI C C. Wood-derived black carbon (biochar) as a microbial electron donor and acceptor [J]. 2016, 3(2): 62-66. [42] KEMPER J M, AMMAR E, MITCH W A. Abiotic degradation of hexahydro-l,3,5-trinitro-1,3,5-triazine in the presence of hydrogen sulfide and black carbon [J]. Environmental Science & Technology, 2008, 42(6): 2118-2123. [43] ZEE F P V D, BISSCHOPS I A E, LETTINGA G, et al. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes [J]. Environmental Science & Technology, 2003, 37(2): 402-408. [44] SUN T, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon [J]. Nature Communications, 2017(8): 14873. [45] REN S, USMAN M, TSANG D C W, et al. Hydrochar-facilitated anaerobic digestion: Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups [J]. Environmental Science & Technology, 2020, 54(9): 5755-5766. [46] FANG G, LIU C, GAO J, et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation [J]. Environmental Science & Technology, 2015, 49(9): 5645-5653. [47] QIU Y, ZHENG Z, ZHOU Z, et al. Effectiveness and mechanisms of dye adsorption on a straw-based biochar [J]. Bioresource Technology, 2009, 100(21): 5348-5351. doi: 10.1016/j.biortech.2009.05.054 [48] XU R K, XIAO S C, YUAN J H, et al. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues [J]. Bioresource Technology, 2011, 102(22): 10293-10298. doi: 10.1016/j.biortech.2011.08.089 [49] FANG G, LIU C, WANG Y, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation [J]. Applied Catalysis B-Environmental, 2017, 214: 34-45. doi: 10.1016/j.apcatb.2017.05.036 [50] CHEN C Y, JAFVERT C T. The role of surface functionalization in the solar light-induced production of reactive oxygen species by single-walled carbon nanotubes in water [J]. Carbon, 2011, 49(15): 5099-5106. doi: 10.1016/j.carbon.2011.07.029 [51] GASKIN J W, STEINER C, HARRIS K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use [J]. Transactions of the Asabe, 2008, 51(6): 2061-2069. doi: 10.13031/2013.25409 [52] YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol [J]. Soil Use and Management, 2011, 27(1): 110-115. doi: 10.1111/j.1475-2743.2010.00317.x [53] XIAO X, CHEN B L, ZHU L Z. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures [J]. Environmental Science & Technology, 2014, 48(6): 3411-3419. [54] JIN J W, LI Y N, ZHANG J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge [J]. Journal of Hazardous Materials, 2016, 320: 417-426. doi: 10.1016/j.jhazmat.2016.08.050 [55] WANG Z, HAN L, SUN K, et al. Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures [J]. Chemosphere, 2016, 144: 285-291. doi: 10.1016/j.chemosphere.2015.08.042 [56] DEMIRBAS A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues [J]. Journal of Analytical and Applied Pyrolysis, 2004, 72(2): 243-248. doi: 10.1016/j.jaap.2004.07.003 [57] LIU W J, LI W W, JIANG H, et al. Fates of chemical elements in biomass during its pyrolysis [J]. Chem Rev, 2017, 117(9): 6367-6398. doi: 10.1021/acs.chemrev.6b00647 [58] BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L, et al. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils [J]. Environmental Pollution, 2011, 159(12): 3269-3282. doi: 10.1016/j.envpol.2011.07.023 [59] CHU G, ZHAO J, CHEN F, et al. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation [J]. Environmental Pollution, 2017, 227: 372-379. doi: 10.1016/j.envpol.2017.04.067 [60] LUQUE R, MENENDEZ J A, ARENILLAS A, et al. Microwave-assisted pyrolysis of biomass feedstocks: the way forward? [J]. Energy & Environmental Science, 2012, 5(2): 5481-5488. [61] MENENDEZ J A, DOMINGUEZ A, FERNANDEZ Y, et al. Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls [J]. Energy & Fuels, 2007, 21(1): 373-378. [62] MUMME J, ECKERVOGT L, PIELERT J, et al. Hydrothermal carbonization of anaerobically digested maize silage [J]. Bioresource Technology, 2011, 102(19): 9255-9260. doi: 10.1016/j.biortech.2011.06.099 [63] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33. doi: 10.1016/j.chemosphere.2013.10.071 [64] DEMIRBAS A, ARIN G. An overview of biomass pyrolysis [J]. Energy Sources, 2002, 24(5): 471-482. doi: 10.1080/00908310252889979 [65] KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar) [J]. Environmental Science & Technology, 2014, 48(10): 5601-5611. [66] SUN K, KEILUWEIT M, KLEBER M, et al. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure [J]. Bioresource Technology, 2011, 102(21): 9897-9903. doi: 10.1016/j.biortech.2011.08.036 [67] 林庆毅, 姜存仓, 张梦阳. 生物炭老化后理化性质及微观结构的表征 [J]. 环境化学, 2017, 36(10): 2107-2114. doi: 10.7524/j.issn.0254-6108.2017021703 LIN Q Y, QIANG C C, ZHANG M Y. Characterization of the physical and chemical structures of biochar under simulated aging condition [J]. Environmental Chemistry, 2017, 36(10): 2107-2114(in Chinese). doi: 10.7524/j.issn.0254-6108.2017021703
[68] 黄兆琴, 胡林潮, 程德义, 等. 化学老化后稻壳生物炭理化性质的改变及微观结构表征 [J]. 环境化学, 2019, 8: 1735-1744. doi: 10.7524/j.issn.0254-6108.2018101605 HUANG Z Q, HU L C, CHENG D Y, et al. Characterization of physicochemical properties and microstructure of rice husk-derived biochar after chemical aging [J]. Environmental Chemistry, 2019, 8: 1735-1744(in Chinese). doi: 10.7524/j.issn.0254-6108.2018101605
[69] QIN W, WANG Y, FANG G, et al. Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation [J]. Chemosphere, 2016, 150: 71-78. doi: 10.1016/j.chemosphere.2016.01.119 [70] ZHANG P, ZHENG S, LIU J, et al. Surface properties of activated sludge-derived biochar determine the facilitating effects on Geobacter co-cultures [J]. Water Research, 2018, 142: 441-451. doi: 10.1016/j.watres.2018.05.058 [71] YU L, WANG Y, YUAN Y, et al. Biochar as electron acceptor for microbial extracellular respiration [J]. Geomicrobiology Journal, 2016, 33(6): 530-536. doi: 10.1080/01490451.2015.1062060