[1] 周少奇, 周吉林. 生物脱氮新技术研究进展 [J]. 环境污染治理技术与设备, 2000, 1(6): 11-19. ZHOU S Q, ZHOU J L. The advances in investigation of new technologies on biological nitrogen removal [J]. Techniques and Equipment for Environmental Pollution Control, 2000, 1(6): 11-19(in Chinese).
[2] LIU W, YANG H, YE J J, et al. Short-chain fatty acids recovery from sewage sludge via acidogenic fermentation as a carbon source for denitrification: A review [J]. Bioresource Technology, 2020, 311: 123446. doi: 10.1016/j.biortech.2020.123446
[3] GAO D W, PENG Y Z, WU W M. Kinetic model for biological nitrogen removal using shortcut nitrification-denitrification process in sequencing batch reactor [J]. Environmental Science & Technology, 2010, 44(13): 5015-5021.
[4] XU X C, XUE Y, WANG D, et al. The development of a reverse anammox sequencing partial nitrification process for simultaneous nitrogen and COD removal from wastewater [J]. Bioresource Technology, 2014, 155: 427-431. doi: 10.1016/j.biortech.2013.12.111
[5] CHEN H, ZHAO X H, CHENG Y Y, et al. Iron robustly stimulates simultaneous nitrification and denitrification under aerobic conditions [J]. Environmental Science & Technology, 2018, 52(3): 1404-1412.
[6] CHEN J W, STROUS M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution [J]. Biochimica et Biophysica Acta, 2013, 1827(2): 136-144. doi: 10.1016/j.bbabio.2012.10.002
[7] LI M, SU Y L, CHEN Y G, et al. The effects of fulvic acid on microbial denitrification: promotion of NADH generation, electron transfer, and consumption [J]. Applied microbiology and Biotechnology, 2016, 100(12): 5607-5618. doi: 10.1007/s00253-016-7383-1
[8] 班巧英, 刘琦, 余敏, 等. 氧化还原介体催化强化污染物厌氧降解研究进展 [J]. 科技导报, 2019, 37(21): 88-96. BAN Q Y, LIU Q, LI J Z, et al. Review on catalytic effects of redox mediator in anaerobic degradation of pollutants [J]. Science & Technology Review, 2019, 37(21): 88-96(in Chinese).
[9] GUO H X, CHEN Z, GUO J B, et al. Enhanced denitrification performance and biocatalysis mechanisms of polyoxometalates as environmentally-friendly inorganic redox mediators [J]. Bioresource Technology, 2019, 291: 121816. doi: 10.1016/j.biortech.2019.121816
[10] FELEKE Z, SAKAKIBARA Y. A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide. [J]. Water Research, 2002, 36(12): 3092-3102. doi: 10.1016/S0043-1354(01)00538-3
[11] 肖晶晶, 郭萍, 霍炜洁, 等. 反硝化微生物在污水脱氮中的研究及应用进展 [J]. 环境科学与技术, 2009, 32(12): 97-102. doi: 10.3969/j.issn.1003-6504.2009.12.022 XIAO J J, GUO P, HUO W J, et al. Application of denitrifying microbes to wastewater denitrification [J]. Environmental Science and Technology, 2009, 32(12): 97-102(in Chinese). doi: 10.3969/j.issn.1003-6504.2009.12.022
[12] WASSER I M, DE VRIES S, MOENNE-LOCCOZ P, et al. Nitric oxide in biological denitrification: Fe/Cu metalloenzyme and metal complex NOx redox chemistry [J]. American Chemical Society, 2002, 102(4): 1201-1234.
[13] PATRICK W, HEINZ K, FRANK N, et al. NosX function connects to nitrous oxide (N2O) reduction by affecting the Cu Z center of NosZ and its activity in vivo [J]. FEBS Letters, 2005, 579(21): 4605-4609. doi: 10.1016/j.febslet.2005.07.023
[14] 王淑莹, 孙洪伟, 杨庆, 等. 传统生物脱氮反硝化过程的生化机理及动力学 [J]. 应用与环境生物学报, 2008, 14(5): 732-736. doi: 10.3321/j.issn:1006-687X.2008.05.029 WANG S Y, SUN H W, YANG Q, et al. Biochemical reaction mechanism and kinetics of denitrification [J]. Chinese Journal of Applied and Environmental Biology, 2008, 14(5): 732-736(in Chinese). doi: 10.3321/j.issn:1006-687X.2008.05.029
[15] PAN Y T, NI B J, YUAN Z G. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification [J]. Environmental Science & Technology, 2013, 47(19): 11083-11091.
[16] 康丽, 郭建博, 李洪奎, 等. 氧化还原介体催化强化偶氮染料脱色研究进展 [J]. 河北工业科技, 2010, 27(6): 447-450, 464. doi: 10.7535/hbgykj.2010yx06026 KANG L, GUO J B, LI H K, et al. Research advance of catalytic effect of redox mediator in azo dye decolorization process [J]. Hebei Journal of Industrial Science and Technology, 2010, 27(6): 447-450, 464(in Chinese). doi: 10.7535/hbgykj.2010yx06026
[17] 王倩. 介体催化高氯酸盐生物降解机理及动力学研究[D]. 石家庄: 河北科技大学, 2015. WANG Q. Study mechanism and kinetic of ClO4- bio-degradation with redox mediators[D]. Shijiazhuang: Heibei University of Science and Technology, 2015(in Chinese).
[18] AMEZQUITA-GARCIA H J, RAZO-FLORES E, CERVANTES F J, et al. Activated carbon fibers as redox mediators for the increased reduction of nitroaromatics [J]. Carbon, 2013, 55: 276-284. doi: 10.1016/j.carbon.2012.12.062
[19] MENG X, LIU G, ZHOU J, et al. Effects of redox mediators on azo dye decolorization by Shewanella algae under saline conditions [J]. Bioresource Technology, 2014, 151: 63-68. doi: 10.1016/j.biortech.2013.09.131
[20] XI Z H, GUO J B, LIAN J, et al. Study the catalyzing mechanism of dissolved redox mediators on bio-denitrification by metabolic inhibitors [J]. Bioresource Technology, 2013, 140: 22-27. doi: 10.1016/j.biortech.2013.04.065
[21] 张万辉. 微生物反硝化及其电化学强化研究进展 [J]. 安徽农业科学, 2014, 42(19): 6324-6326, 6355. doi: 10.3969/j.issn.0517-6611.2014.19.080 ZHANG W H. The mechanism of denitrification and the enhancement by electrode [J]. Journal of Anhui Agricultural Sciences, 2014, 42(19): 6324-6326, 6355(in Chinese). doi: 10.3969/j.issn.0517-6611.2014.19.080
[22] YANG J X, FENG L, PI S S, et al. A critical review of aerobic denitrification: Insights into the intracellular electron transfer [J]. Science of the Total Environment, 2020, 731: 139080. doi: 10.1016/j.scitotenv.2020.139080
[23] JIA R, YANG D Q, XU D K, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 118: 38-46. doi: 10.1016/j.bioelechem.2017.06.013
[24] MARSILI E, BARON D B, SHIKHARE I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 3968-3973. doi: 10.1073/pnas.0710525105
[25] YIN S, QIAO S, ZHOU J T, et al. Effects of redox mediators on nitrogen removal performance by denitrifying biomass and the activity of Nar and Nir [J]. Chemical Engineering Journal, 2014, 257: 90-97. doi: 10.1016/j.cej.2014.07.029
[26] LIU H J, GUO J B, QU J H, et al. Biological catalyzed denitrification by a functional electropolymerization biocarrier modified by redox mediator [J]. Bioresource Technology, 2012, 107: 144-150. doi: 10.1016/j.biortech.2011.12.071
[27] LI H B, GUO J B, LIAN J, et al. Effective and characteristics of anthraquinone-2, 6-disulfonate (AQDS) on denitrification by Paracoccus versutus sp. GW1 [J]. Environmental Technology, 2013, 34(17): 2563-2570. doi: 10.1080/09593330.2013.781198
[28] HUANG L Y, HUANG Y, LOU Y T, et al. Pyocyanin-modifying genes phzM and phzS regulated the extracellular electron transfer in microbiologically-influenced corrosion of X80 carbon steel by Pseudomonas aeruginosa [J]. Corrosion Science, 2020, 164: 108355. doi: 10.1016/j.corsci.2019.108355
[29] WANG Y, KEM S E, NEWMAN D K. Endogenous phenazine antibiotics promote anaerobic survival of pseudomonas aeruginosa via extracellular electron transfer [J]. Journal of Bacteriology, 2010, 192(1): 365-369. doi: 10.1128/JB.01188-09
[30] LU C C, XIE Z, GUO J B, et al. Chlorophyll as natural redox mediators for the denitrification process [J]. International Biodeterioration & Biodegradation, 2020, 148: 104895.
[31] XIE Z, GUO J B, LU C C, et al. Biocatalysis mechanisms and characterization of a novel denitrification process with porphyrin compounds based on the electron transfer chain [J]. Bioresource Technology, 2018, 265: 548-553. doi: 10.1016/j.biortech.2018.05.069
[32] 吴磊. 腐殖活性污泥A2/O系统脱氮除磷效果与反应动力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. WU L. Study on the performance and kinetics of nitrogen and phosphorus removal in humic activated sludage A2/O system[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
[33] CLICERIO A T, MARIA I E A, ANNA C T, et al. Effects of different quinoid redox mediators on the removal of sulphide and nitrate via denitrification [J]. Chemosphere, 2007, 69(11): 1722-1727. doi: 10.1016/j.chemosphere.2007.06.004
[34] SU J F, LI G Q, HUANG T L, et al. The mixotrophic denitrification characteristics of Zoogloea sp. L2 accelerated by the redox mediator of 2-hydroxy-1, 4-naphthoquinone [J]. Bioresource Technology, 2020, 311: 123533. doi: 10.1016/j.biortech.2020.123533
[35] 苑宏英, 孙锦绣, 王小佩, 等. 投加介体强化低温污水生物反硝化脱氮的研究 [J]. 环境科学与技术, 2016, 39(11): 90-94. YUAN H Y, SUN J X, WANG X P, et al. Study on performance of sewage biological denitrification at low temperature adding redox mediator [J]. Environmental Science & Technology, 2016, 39(11): 90-94(in Chinese).
[36] GUO J B, KANG L, YANG J L, et al. Study on a novel non-dissolved redox mediator catalyzing biological denitrification (RMBDN) technology [J]. Bioresource Technology, 2010, 101(11): 4238-4241. doi: 10.1016/j.biortech.2010.01.029
[37] 杜海峰, 赵丽君, 郭延凯, 等. 醋酸纤维素包埋非水溶性介体催化强化生物反硝化特性 [J]. 环境工程学报, 2014, 8(6): 2417-2422. DU H F, ZHAO L J, GUO Y K, et al. Accelerating characteristic of non-dissolved redox mediators immobilized by cellulose acetate(CA) on denitrification [J]. Acta Scientiae Circumstantiae, 2014, 8(6): 2417-2422(in Chinese).
[38] XU Q, GUO J B, NIU C M, et al. The denitrification characteristics of novel functional biocarriers immobilised by non-dissolved redox mediators [J]. Biochemical Engineering Journal, 2015, 95: 98-103. doi: 10.1016/j.bej.2014.12.004
[39] 郭延凯. 聚吡咯固定化介体制备及其调控生物反硝化特性研究[D]. 石家庄: 河北科技大学, 2012. GUO Y K. Study on the denitrification regulation characteristic by a functional electropolymerization biocarrier modified by redox mediators[D]. Shijiazhuang: Hebei University of Science and Technology, 2012(in Chinese).
[40] WU Z S, XU F, YANG C, et al. Highly efficient nitrate removal in a heterotrophic denitrification system amended with redox-active biochar: a molecular and electrochemical mechanism [J]. Bioresource Technology, 2019, 288: 297-306.
[41] CENH G H, ZHANG Z R, ZHANG Z Y, et al. Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures [J]. Science of the Total Environment, 2018, 615: 1547-1556. doi: 10.1016/j.scitotenv.2017.09.125
[42] LI J Z, PENG Z Z, HU R Y, et al. Micro-graphite particles accelerate denitrification in biological treatment systems [J]. Bioresource Technology, 2020, 308: 122935. doi: 10.1016/j.biortech.2020.122935
[43] 李丽, 檀文炳, 王国安, 等. 腐殖质电子传递机制及其环境效应研究进展 [J]. 环境化学, 2016, 35(2): 254-266. doi: 10.7524/j.issn.0254-6108.2016.02.2015071002 LI L, TAN W B, WANG G A, et al. Electron transfer mechanisms of humic substances and their environmental implications: A review [J]. Environmental Chemistry, 2016, 35(2): 254-266(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.02.2015071002
[44] MARTINEZ C M, ALVAREZ L H, CELIS L B, et al. Humus-reducing microorganisms and their valuable contribution in environmental processes [J]. Applied Microbiology and Biotechnology, 2013, 97(24): 10293-10308. doi: 10.1007/s00253-013-5350-7
[45] FUITON J R, MCKNIGHT D M, FOREMAN C M, et al. Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake [J]. Springer Nature Journal, 2004, 66(1): 27-46.
[46] VAN DER ZEE F P, CERVANTES F J. Impact and application of electron shuttles on the redox (bio) transformation of contaminants: A review [J]. Biotechnology Advances, 2009, 27(3): 256-277. doi: 10.1016/j.biotechadv.2009.01.004
[47] 赵丽君, 马志远, 郭延凯, 等. 氧化还原介体调控亚硝酸盐反硝化特性研究 [J]. 环境科学, 2013, 34(9): 3520-3525. ZHAO L J, MA Z Y, GUO Y K, et al. Nitrite denitrification characteristics with redox mediator [J]. Environmental Science, 2013, 34(9): 3520-3525(in Chinese).
[48] SAQUING J M, YU Y H, CHIU P C. Wood-derived black Carbon (biochar) as a microbial electron donor and acceptor [J]. Environmental science & Technology Letters, 2016, 3(2): 62-66.
[49] 黄硕, 于德爽, 陈光辉, 等. 氧化石墨烯强化厌氧氨氧化菌的脱氮性能 [J]. 中国环境科学, 2019, 39(5): 1945-1953. doi: 10.3969/j.issn.1000-6923.2019.05.018 HUANG S, YU D S, CHEN G H, et al. Improvement of the activity of anammox bacteria using graphene oxide [J]. China Environmental Science, 2019, 39(5): 1945-1953(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.05.018
[50] TANG M Z, JIANG J, LV Q L, et al. Denitrification performance of Pseudomonas fluorescens Z03 immobilized by graphene oxide-modified polyvinyl-alcohol and sodium alginate gel beads at low temperature [J]. Royal Society Open Science, 2020, 7(3): 191542. doi: 10.1098/rsos.191542
[51] 王丹. 紫外可见光照下细胞色素C氧化还原反应研究[D]. 长春: 吉林大学, 2016. WANG D. Research on oxidation-reduction of cytochrome c irradiated by the UV-Vis light[D]. Changchun: Jilin University, 2016(in Chinese).
[52] 马金莲, 马晨, 汤佳, 等. 电子穿梭体介导的微生物胞外电子传递: 机制及应用 [J]. 化学进展, 2015, 27(12): 1833-1840. doi: 10.7536/PC150533 MA J L, MA C, TANG J, et al. Mechanisms and applications of electron shuttle-mediated extracellular electron transfer [J]. Progress in Chemistry, 2015, 27(12): 1833-1840(in Chinese). doi: 10.7536/PC150533