-
含高浓度磷酸盐的废水排放到地表水中,可造成各种水体污染问题,如水体富营养化[1]。水中磷酸盐、硝酸盐等无机阴离子刺激蓝藻过度生长,破坏生物多样性[2]。如果大量含氮、磷的废水排入湖泊、河口、水库等缓流水体,这些营养物质会使藻类等水生生物过量繁殖,进而导致水体透明度下降、水质恶化等一系列问题[3]。水体富营养化给人们的生产生活带已成为迫切需要解决的问题[4]。为了控制水体富营养化、进一步减少排入水体中的磷,自从上个世纪年代开始,研发人员对水体中磷的去除技术进行了大量的探索[5]。
吸附法作为一种成本低、操作简便、效率高的方法受到了不同研究者的广泛关注[6]。层状双金属氢氧化物(layered double hydroxides, LDHs)是一种层状材料,俗称水滑石,属于阴离子型层状化合物,由带正电荷的金属氢氧化物层和带负电荷的层间阴离子以及水分子构成[7-8],基于LDHs的无机吸附剂可以从水中去除氧化阴离子,如砷酸盐、铬酸盐和磷酸盐[9]。由于其特殊的层状结构和高比表面积,LDHs比大多数常见的氧阴离子吸附剂具有更强的吸附能力[10]。与其他吸附剂相比,LDHs的合成工艺相对简单,成本较低。但一般的二元LDHs材料的吸附能力相对较低,作为除磷吸附剂仍存在元素组成需进一步优化、吸附速率和吸附选择性需进一步提高等问题[11],而三元、四元LDHs材料与二元LDHs材料有类似的结构,却有更优越的物化性质和吸附能力,对于作为吸附法除磷的除磷剂有很大的应用前景[12]。JIAN等[13]用氧化共沉淀法制备了Fe、Al、Mn摩尔比为3∶3∶1的纳米铁铝锰三元金属氧化物吸附剂,该吸附剂对磷酸盐的最大吸附容量约为48.3 mg·g−1,高于文献报道的单组分氧化物铁铝锰三金属氧化物。
本研究对三元(Mg-Al-Zn)LDHs和四元(Mg-Al-Zn-Fe)LDHs吸附剂进行了制备,考察了LDHs基吸附剂对磷酸盐的吸附性能,探讨了吸附机理,利用响应曲面法(RSM)数学模型优化了吸附过程的相关参数。
MgZnAl-LDHs和MgZnAlFe-LDHs对磷酸盐的吸附
Adsorption of phosphate by MgZnAl-LDHs and MgZnAlFe-LDHs
-
摘要: 为研究多元层状氢氧化物(LDHs)对磷酸盐的吸附性能及其机理,本实验用水热法制备三元LDHs(MgZnAl-LDHs)及四元LDHs(MgZnAlFe-LDHs)吸附剂,利用扫描电子显微镜(SEM)和X射线衍射分析(XRD)对多元水滑石进行了表征;通过吸附等温模型和吸附动力学模型拟合MgZnAl-LDHs和MgZnAlFe-LDHs对磷酸盐的吸附行为,分析其吸附机理,并通过Box-Behnken响应面分析法(BBD)建立pH、温度和初始质量浓度影响磷酸盐平衡吸附量的模型,对吸附条件进行优化。结果表明,MgZnAlFe-LDHs吸附磷酸盐效果优于MgZnAl-LDHs,MgZnAl-LDHs、MgZnAlFe-LDHs对磷酸盐的吸附均符合Sips等温吸附模型和准二级动力学、Elovich动力学。响应面分析结果显示,通过Box-Behnken响应面分析法建立的回归模型显著(P<0.05),失拟项不明显,99.62%以上的响应值可以用模型解释,最佳吸附条件下平衡吸附量为104.18 mg·g−1,与预测值105.23 mg·g−1基本一致,回归模型可以较好地预测平衡吸附量。本研究可为多元LDHs应用于去除磷酸盐提供参考。Abstract: In this study, ternary LDHs (MgZnAl-LDHs) and quaternary LDHs(MgZnAlFe-LDHs) adsorbents were prepared by hydrothermal method in order to study the adsorption performance and mechanism of phosphate on multi-layered hydroxides(LDHs). The polyhydrotalcite was characterized by scanning electron microscopy(SEM) and X-ray diffraction(XRD) analysis. The adsorption behavior of MgZnAl-LDHs and MgZnAlFe-LDHs on phosphate was fitted by adsorption isotherm model and adsorption kinetics model, and the adsorption mechanism was also analyzed. Box-Behnken response surface analysis(BBD) was used to establish a model of the effects of pH, temperature and initial mass concentration on the phosphate equilibrium adsorption capacity, then the adsorption conditions were optimized. The results show that the adsorption effect of MgZnAlFe-LDHs towards phosphate was better than that of MgZnAl-LDHs. The adsorption of MgZnAl-LDHs and MgZnAlFe-LDHs on phosphate accorded with the Sips isothermal adsorption model, the quasi-second-order kinetics and Elovich kinetics. The response surface results showed that the regression model established by Box-Behnken response surface analysis method was significant(P<0.05), and the loss of fit term was not obvious. The response value of higher than 99.62% could be explained by the model. Under the optimal adsorption conditions, the equilibrium adsorption capacity was 104.18 mg·g−1, which was basically consistent with the predicted value of 105.23 mg·g−1. The regression model could predict the equilibrium adsorption capacity well. This study provides a reference for the application of multiple LDHs in phosphate removal.
-
Key words:
- multi-LDHs /
- phosphate /
- adsorption /
- response surface method
-
表 1 吸附等温模型拟合参数
Table 1. Fitting parameters of adsorption isothermal model
多元LDHs Langmuir Freundlich Sips qm /(mg·g−1) KL /(L·mg−1) R2 1/n KF R2 qm /(mg·g−1) Ks /(L·mg−1)ms ms R2 MgZnAl-LDHs 123.012 0.314 0.887 0.150 59.259 0.971 171.995 0.411 0.377 0.996 MgZnAlFe-LDHs 127.569 0.332 0.863 0.153 60.977 0.954 189.623 0.388 0.350 0.988 表 2 动力学拟合参数
Table 2. Kinetic fitting parameters
多元LDHs qe(exp)/(mg·g−1) 准一级动力学 准二级动力学 Elovich qe(cal)/(mg·g−1) k1/(min−1) R2 qe(cal)/(mg·g−1) k2 /(g·(mg·min)−1) R2 α β R2 MgZnAl-LDHs 87.890 80.073 0.225 0.928 83.395 0.004 0.964 4.290 0.138 0.995 MgZnAlFe-LDHs 90.230 82.713 0.266 0.938 85.614 0.006 0.967 24.892 0.156 0.993 表 3 响应面分析方案及实验结果
Table 3. Experimental design and results of RSM
序号 pH 温度/℃ 初始质量浓度/
(mg·L−1)吸附量/
(mg·g−1)1 2 25 100 89.26 2 3 25 120 95.59 3 3 30 100 85.13 4 3 30 100 86.73 5 4 35 100 76.51 6 3 30 100 85.59 7 3 35 120 89.33 8 2 30 120 104.18 9 4 30 120 86.21 10 3 30 100 85.93 11 2 35 100 90.82 12 4 25 100 78.55 13 4 30 80 76.95 14 3 30 100 84.91 15 3 25 80 72.60 16 2 30 80 76.48 17 3 35 80 74.50 表 4 MgZnAlFe-LDHs响应面二次模型的方差分析
Table 4. ANOVA of MgZnAlFe-LDHs for response surface quadratic model
来源 平方和 自由度 均方 F值 P值 模型 1 058.55 9 117.62 74.07 <0.000 1 X1 225.99 1 225.99 142.33 <0.000 1 X2 2.93 1 2.93 1.84 0.216 6 X3 699.01 1 699.01 440.23 <0.000 1 X1X2 3.24 1 3.24 2.04 0.196 2 X1X3 85.01 1 85.01 53.54 0.000 2 X2X3 16.65 1 16.65 10.48 0.014 3 ${\rm{X}}_1^2$ 1.22 1 1.22 0.77 0.410 4 ${\rm{X}}_2^2$ 24.51 1 24.51 15.43 0.005 7 ${\rm{X}}_3^2$ 0.25 1 0.25 0.16 0.704 7 残差 11.11 7 1.59 失拟项 9.04 3 3.01 5.82 0.060 9 注:P<0.05 表示显著,P>0.05 表示不显著。 -
[1] 朱颖, 马骏, 陈睿哲. 富营养化的湖泊[J]. 生态经济, 2018, 34(12): 6-9. [2] PERUMAL K, SANKARAN M. Enhanced removal of phosphate and nitrate ions by a novel ZnFe LDHs-activated carbon composite[J]. Sustainable Materials and Technologies, 2020, 25: 2-7. [3] 赵华, 张先智, 肖娴. 氮磷营养盐控制与湖泊蓝藻水华治理研究进展[J]. 环境科学导刊, 2021, 40(3): 12-15. [4] KOILRAJ P, ANTONYRAJ C A, GUPTA V, et al. Novel approach for selective phosphate removal using colloidal layered double hydroxide nanosheets and use of residue as fertilizer[J]. Applied Clay Science, 2013, 86: 111-118. doi: 10.1016/j.clay.2013.07.004 [5] YONG M L, WEI C, DUN H L, et al. Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi Drinking Water Crisis in Lake Taihu, China[J]. Journal of Environmental Sciences, 2011, 23(4): 575-581. doi: 10.1016/S1001-0742(10)60450-0 [6] BACELO H, PINTOR A M A, SANTOS S C R, et al. Performance and prospects of different adsorbents for phosphorus uptake and recovery from water[J]. Chemical Engineering Journal, 2020, 381: 122566. doi: 10.1016/j.cej.2019.122566 [7] 胡锋平, 罗文栋, 彭小明, 等. 层状双金属氢氧化物去除水中污染物研究进展[J]. 水处理技术, 2019, 45(1): 17-22. [8] 韩芸, 胡玉洁, 连洁, 等. 铝污泥酸化提取液改性沸石的除磷特性及机制[J]. 环境科学, 2019, 40(8): 3660-3667. [9] 何天旭. 铁改性镁铝水滑石吸附剂制备及其对水中磷的吸附研究[D]. 武汉: 华中科技大学, 2019 [10] GOH K H, LIM T T, DONG Z. Application of layered double hydroxides for removal of oxyanions: A review[J]. Water Research, 2008, 42(6/7): 1343-1356. [11] FEI H L, JIE J, ZI Y S, et a1. Removal and recovery of phosphate and fluoride from water with reusable mesoporous Fe3O4@mSiO2@mLDH composites as sorbents[J]. Journal of Hazardous Materials, 2020, 388: 121734. doi: 10.1016/j.jhazmat.2019.121734 [12] FREDERICK L T, GODWIN A A, RAY L F. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-a review[J]. Applied Surface Science, 2016, 383: 200-213. doi: 10.1016/j.apsusc.2016.04.150 [13] JIAN B L, HUI J L, RUI P L. Adsorptive removal of phosphate by a nanostructured Fe-Al-Mn trimetal oxide adsorbent[J]. Powder Technology:An International Journal on the Science and Technology of Wet and Dry Particulate Systems, 2013, 233: 146-154. [14] YANG Y, PAUL C J. Key factors for optimum performance in phosphate removal from contaminated water by a Fe-Mg-La trimetal composite sorbent[J]. Journal of Colloid and Interface Science, 2015, 445: 303-311. doi: 10.1016/j.jcis.2014.12.056 [15] ASHEKUZZAMAN S M, JIA Q J. Strategic phosphate removal/recovery by a reusable Mg-Fe-Cl layered double hydroxide[J]. Process Safety and Environmental Protection, 2017, 107: 454-462. doi: 10.1016/j.psep.2017.03.009 [16] WEI C Q, HAN B, TIAN H T, et al. Recovery and utilization of phosphorus in wastewater by magnetic Fe3O4/Zn-Al-Fe-La layered double hydroxides(LDHs)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 577: 118-128. [17] 马培根, 张海涛, 丁文明. 颗粒改性活性氧化铝吸附除氟动力学和热力学的研究[J]. 北京化工大学学报: 自然科学版, 2019, 46(3): 1-6. [18] 何剑伟, 王蒙, 王婷婷, 等. 酸预活化对负载膨润土吸附磷酸盐的影响及响应优化研究[J]. 环境科学与技术, 2020, 43(9): 40-46. [19] 张倩. 层状双金属氢氧化物除磷材料及氨基酸插层改性性能研究[D]. 重庆: 重庆大学, 2018 [20] WU F C, TSENG R L, JUANG R S. Characteristics of elovich equation used for the analysis of adsorption kinetics in dyechitosan systems[J]. Chemical Engineering Journal, 2009, 150(2/3): 366-373. [21] KYUNG W J, TAE U J, MIN J H, et al. Phosphate adsorption ability of biochar/Mg–Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl2 as electrolyte[J]. Bioresource Technology, 2015, 198: 603-610. doi: 10.1016/j.biortech.2015.09.068 [22] ZHI Q J, SHUANG H, XIAO Y L. Exfoliated Mg-Al-Fe layered double hydroxides/polyether sulfone mixed matrix membranes for adsorption of phosphate and fluoride from aqueous solutions[J]. Journal of Environmental Sciences, 2018, 70(8): 63-73. [23] 刘晨, 张美一, 潘纲. 超薄水滑石纳米片除磷效果与机理[J]. 环境工程学报, 2018, 12(9): 2446-2456. doi: 10.12030/j.cjee.201803195 [24] 马宏林, 贺涛, 洪雷, 等. 响应面分析法优化给水污泥吸附除磷工艺[J]. 环境工程学报, 2015, 9(2): 546-552. doi: 10.12030/j.cjee.20150208 [25] MALEKI S, KARIMI J A. Optimization of Ni(II) adsorption onto cloisite Na+ clay using response surface methodology[J]. Chemosphere, 2020, 246: 125710. doi: 10.1016/j.chemosphere.2019.125710 [26] 黄雪琴, 李天勇, 郭诗, 等. 油菜秸秆对多元离子水体系中pb(Ⅱ)的吸附作用与机理[J]. 中国环境科学, 2017, 37(9): 3363-3370. doi: 10.3969/j.issn.1000-6923.2017.09.020