Processing math: 100%

Ni/GO0.2-PAC0.8粒子电极的制备及其降解Cu-EDTA络合物效能

胡鑫鑫, 杨帅, 尤欣雨, 刘雨, 张文文, 梁文艳. Ni/GO0.2-PAC0.8粒子电极的制备及其降解Cu-EDTA络合物效能[J]. 环境工程学报, 2021, 15(9): 2923-2933. doi: 10.12030/j.cjee.202105164
引用本文: 胡鑫鑫, 杨帅, 尤欣雨, 刘雨, 张文文, 梁文艳. Ni/GO0.2-PAC0.8粒子电极的制备及其降解Cu-EDTA络合物效能[J]. 环境工程学报, 2021, 15(9): 2923-2933. doi: 10.12030/j.cjee.202105164
HU Xinxin, YANG Shuai, YOU Xinyu, LIU Yu, ZHANG Wenwen, LIANG Wenyan. Preparation of Ni/GO0.2-PAC0.8 particle electrode and its degradation performance of Cu-EDTA complex[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2923-2933. doi: 10.12030/j.cjee.202105164
Citation: HU Xinxin, YANG Shuai, YOU Xinyu, LIU Yu, ZHANG Wenwen, LIANG Wenyan. Preparation of Ni/GO0.2-PAC0.8 particle electrode and its degradation performance of Cu-EDTA complex[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2923-2933. doi: 10.12030/j.cjee.202105164

Ni/GO0.2-PAC0.8粒子电极的制备及其降解Cu-EDTA络合物效能

    作者简介: 胡鑫鑫(1996—),女,硕士研究生。研究方向:环境功能材料的研发与应用。E-mail:huxinxin0304@hotmail.com
    通讯作者: 梁文艳(1969—),女,博士,教授。研究方向:水资源保护与水污染控制。E-mail:lwy@bjfu.edu.cn
  • 基金项目:
    国家自然科学基金资助项目(51672028)
  • 中图分类号: X703.1

Preparation of Ni/GO0.2-PAC0.8 particle electrode and its degradation performance of Cu-EDTA complex

    Corresponding author: LIANG Wenyan, lwy@bjfu.edu.cn
  • 摘要: Cu-EDTA在水中具有很强的稳定性,且难以用常规化学沉淀法去除。以粉末活性炭(PAC)和氧化石墨烯(GO)为载体、Ni为催化剂,采用浸渍焙烧法制备了粒子电极,用于Cu-EDTA的电催化降解。采用XRD和SEM-EDS对电极表面的组成和形态进行了表征;探讨了Cu-EDTA解络和铜回收的效能及机制。结果表明,粒子电极最佳制备条件为:焙烧温度为600 ℃、焙烧时间为4 h、PAC与GO质量比为8: 2。粒子电极上的镍主要以Ni0存在,并含有少量NiO。Cu-EDTA和总络合态铜(TCCu)的解络率分别为99.6%和99.4%,总铜(TCu)的回收率为93.7%,解络和铜回收均符合拟一级动力学规律。自由基淬灭和循环伏安扫描实验结果表明,Cu-EDTA的解络是通过电还原完成的,Cu-EDTA中的Cu2+先还原为Cu+,再还原为Cu0并沉积在粒子电极表面。
  • 石油开采、运输、炼制及含油污水处理过程中会产生大量的含油固废。根据国务院发布的《全国土壤污染状况调查公报》[1],在已调查的13个采油区的494个土壤点位中,超标点位占23.6%,主要污染物为石油烃和多环芳烃。据统计,我国每年新增含油污泥约5×106 t,但含油污泥的实际处置率却不到20%;同时,存量含油污泥规模已超1.59×108 t [2]。大量的含油固体废物未能及时处理而随意堆放或掩埋,不仅会占用大量土地资源,而且会对周围的土壤、水体和空气都造成污染。因此,对含油固废进行无害化处置十分必要和迫切。

    传统的含油固废处理技术主要包括溶剂萃取法、调质分离法、热洗涤法、焚烧法、热脱附法以及生物处理法等[3-7]。其中,溶剂萃取法萃取剂用量大,处理成本高,存在溶剂损耗问题;调质分离法占地面积大、处理效果受含油固废来源影响大;热洗涤法主要适用于砂石为主的含油固废处理,且污水、污泥量大;焚烧法、热脱附法能耗高、设备投资高;而生物处理法处理周期长、菌种难以培养,对石油烃重度污染土壤/油泥适用性差,实际应用较少。以上技术中,处理后油泥只能用于油田井场内铺路等用途,普遍无法将污染介质处置到第一类建设用地标准。因此,迫切需要一种绿色节能、处理效果彻底的石油烃重度污染土壤/油泥处置技术。

    阴燃是自然界中广泛存在的缓慢无焰自持燃烧现象。爱丁堡大学的学者于2005年最先提出将其工程化应用于有机污染介质的治理[8];其技术原理是,利用热值较高的有机污染物为能源,通过向污染物料中注入空气,在低能状态下点燃引起污染物的自持燃烧,然后利用污染物自身的燃烧热能引发周边污染区域的持续燃烧,从而实现污染物的去除。与传统的含油固废处理技术相比,工程化阴燃技术具有处理能耗低、应用范围广、安全高效、处理灵活、可模块化设计等优点。

    根据处置场所的不同,工程化阴燃技术可分为原位和异位应用。目前,国外在实验室研究[9-14]的基础上已就原位和异位[15-17]阴燃分别开展了中试甚至大规模污染场地修复实验;而国内对工程化阴燃技术的研究大多还处于对技术可行性、影响因素及燃烧过程探究的实验室研究阶段[18-22],鲜有中试规模的实验研究报道。本研究采用异位阴燃设备分别对石油烃重度污染土壤和含油污泥进行了中试实验,以研究该技术应用于含油固废处理领域的适用性;同时,探索该技术用于大规模修复工程的运行效果和运行参数。

    中试实验1在代号为T1的基础油和润滑油调配厂进行,该厂自2015年起已停止运营。实验对象为场地内3处不同区域的石油烃污染土壤,具体特性见表1

    表 1  中试实验1石油烃污染土壤特性
    Table 1.  Characteristics of petroleum hydrocarbon-contaminated soil of pilot study 1
    污染土壤来源土壤质地污染土壤与地下水位埋深情况石油烃质量分数/( mg·kg−1)污染的石油类型
    基础油厂区粉砂污染土壤位于地表以下5.5~6.0 m(地下水位以下)6 880~12 844Ⅰ类基础油
    油罐区砾砂地面堆土2 759成品润滑油
    润滑油调配厂区粉土污染土壤位于地表以下3.0~3.5 m(地下水位于地表以下3.4 m)4 146基础油及成品润滑油
     | Show Table
    DownLoad: CSV

    中试实验2在代号为T2的油田油泥处置场进行。实验对象为场地内4处不同区域的油泥,油泥特性如表2所示。实验中加入介质对油泥进行掺混预处理,介质特性见表3

    表 2  中试实验2油泥特性
    Table 2.  Characteristics of oil sludge of pilot study 2
    供试物料含水率/%石油烃质量分数/(mg·kg−1)
    #1罐底泥20.9159 660
    #2罐底泥21.0123 583
    #1池底泥35.0138 500
    #2池底泥32.880 340
     | Show Table
    DownLoad: CSV
    表 3  中试实验2掺混介质特性
    Table 3.  Characteristics of blending medium of pilot study 2
    供试介质性状含水率/%石油烃质量分数/(mg·kg−1)
    石英砂 0.8~2 mm颗粒 0 0
    粉土 粉状 20~50 0
    修复土 粉状 0~0.2 7~99
     | Show Table
    DownLoad: CSV

    阴燃中试装置由预处理系统、阴燃反应器、空气注入系统、尾气处理系统以及电气控制系统5部分组成(图1图2)。阴燃反应在阴燃反应器中进行,反应器共2台,每台长1.6 m、宽1.6 m、高1.4 m。反应器主要由底部的气室、气室与堆料室之间的支撑格栅、中部的堆料室和顶部的集气罩构成。气室中部设有DN50空气注入管,其两侧分别均布3支U型电加热管。鼓风机连接空气注入管同时给2台反应器供气,同时,2台反应器的集气罩都与气液分离器、活性炭(GAC)罐、引风机、排气筒组成的尾气处理系统相连,以便当其中1套设备装卸料时,另1套设备仍能运行。

    图 1  阴燃中试工艺流程图
    Figure 1.  Process diagram of smoldering pilot study
    图 2  阴燃中试设备图
    Figure 2.  Pilot smoldering equipment

    鼓风机和集气罩出气管路上均设置在线流量计、压力表,用于监测每个反应器的进、出气风量和压力。活性炭罐前后设取样口,用于尾气中CO、VOCs、H2S体积分数和尾气成分的检测。阴燃反应前后分别对实验物料采样,送第三方实验室检测石油烃质量分数。

    阴燃实验前,先对原料进行预处理,将原料与掺混介质按设计比例在搅拌机中搅拌至目测均匀后,从反应器上部投加到堆料室中,至物料堆高达40 cm,再在上面覆盖20 cm干净土壤用于抑制表面明火。加料完成后,在距离反应器四角30 cm×30 cm的4点及反应器正中点位(编号A、B、C、D、E)各安装1支集束热电偶(每支对自下而上0、5、15、30、50 cm料层处点位进行测温),将信号接入温场采集器。盖上集气罩,启动鼓、引风机并调节风量,开启电加热器;当数据显示阴燃启动后,关闭电加热器,保持空气持续输入以维持阴燃继续进行,反应过程产生的尾气经尾气处理系统处理后排放;反应结束并冷却后打开集气罩进行卸料。

    中试实验1以T1场地内石油烃污染土壤为对象,研究不同来源石油烃污染土壤、达西空气通量对阴燃启动、燃烧锋面推进,以及污染土壤中石油烃去除率的的影响。针对部分未能实现自持阴燃的污染土壤添加辅助燃料-芥花油(化学成分主要为不饱和脂肪酸),以研究添加植物油对于此类物料维持阴燃反应的可行性。具体实验方案见表4

    表 4  中试实验1实验方案
    Table 4.  Experimental plan of pilot study 1
    编号污染土来源土壤质地污染土添加量/m3芥花油添加量/L预热阶段达西空气通量*/(cm·s−1)阴燃阶段达西空气通量/(cm·s−1)
    T1-1基础油厂区粉砂1.0200.87~1.090.98~1.09
    T1-2基础油厂区粉砂1.0200.18~0.220.43~1.09
    T1-3基础油厂区粉砂1.02200.18~0.220.33~0.65
    T1-4油罐区砾砂1.0200.18~0.220.38~0.43
    T1-5润滑油调配厂区粉土1.0200.18~0.370.18~0.65
      注:*达西空气通量是指垂直于气流方向的单位横截面积上的空气量,cm·s−1
     | Show Table
    DownLoad: CSV

    中试实验2以T2场地内不同来源油泥为对象,研究不同掺混介质(石英砂、粉土、修复土)、掺混比,以及达西空气通量对阴燃启动、燃烧锋面推进速度,以及油泥中石油烃去除率的影响。具体实验方案见表5

    表 5  中试实验2实验方案
    Table 5.  Experimental plan of pilot study 2
    编号油泥来源掺混介质油泥∶掺混介质(体积比)预热阶段达西空气通量/(cm·s−1)阴燃阶段达西空气通量*/(cm·s−1)
    T2−1#1池底泥石英砂1∶130.18~0.540.54~0.98
    T2−2#1池底泥粉土1∶130.18~0.330.65
    T2−3#1池底泥修复土**1∶60.18~0.270.22~0.43
    T2−4#1罐底泥修复土1∶80.180.49~0.81
    T2−5#2池底泥修复土1∶40.180.22~1.09
    T2−6#2罐底泥修复土3∶40.18~0.330.43~1.30
    T2−7#2池底泥修复土1∶20.18~0.380.45~1.30
      注∶*达西空气通量是指垂直于气流方向的单位横截面积上的空气量(单位∶cm·s−1);**修复土是指阴燃治理后的实验物料(掺混石英砂批次的除外),用于后一批次阴燃反应掺料。
     | Show Table
    DownLoad: CSV

    1)尾气分析。CO体积分数监测采用便携式CO检测仪(DX80,南京百世安安全设备有限公司);VOCs体积分数监测采用Mini RAE3000 VOC检测仪(PGM-7320,南京凯辉荣电子科技有限公司);H2S体积分数监测采用便携式四合一气体检测仪(PGM-2400,南京硕控自动化科技有限公司)。

    2)含油固废中石油烃质量分数分析。中试实验1依据《土壤中总石油烃碳氢化合物检测方法-气相层析仪/火焰离子化侦测器法》(NIEA S703.62B)[23];中试实验2依据《城市污水处理厂污泥检验方法》(CJ/T 221-2005)[24]

    3)阴燃推进速度表征。阴燃推进速度的快慢采用燃烧锋面自持蔓延速率表征,计算方法见式(1);含油固废中石油烃去除率计算方法见式(2)。

    燃烧锋面自持蔓延速率(md1)=相邻热电偶间距相邻热电偶到达燃烧封面所用时间差 (1)
    石油烃去除率(%)=(阴燃处理前物料石油烃质量分数-阴燃处理后物料石油烃质量分数)阴燃处理前石油烃质量分数×100% (2)

    以处理含油污泥的中试2第1批次实验T2−1为例,对阴燃启动的界定及燃烧锋面自持推进过程进行了分析。阴燃启动与否可结合料层温升及尾气浓度两方面综合判断,而判断燃烧锋面是否自持推进,则应观察外部供能停止后,沿阴燃推进方向的后续料层的温度是否相继出现相近的峰值。由实验T2−1阴燃温度曲线(图3)可看出,当电加热300 min时,热电偶数据显示,0 cm 料层越过峰值温度,5 cm料层温度快速上升至400 ℃[25]。结合尾气中CO、CO2浓度增加,判断阴燃已启动,此时关闭电加热器。在继续通入空气情况下,观察到3、4层阴燃峰值温度相继出现,反应最高温度达520 ℃,证明此时阴燃反应已实现自持推进。经计算,T2−1的燃烧锋面自持蔓延速率为2.67 m·d−1

    图 3  T2−1实验阴燃温度曲线图
    Figure 3.  Temperature profile of T2−1

    为直观体现燃烧锋面的推进过程,对实验T2−1阴燃过程中集束热电偶A、B、C、D、E的温度场分别进行了表征。由图4可看出,各热电偶自0 cm推进至最高料层的过程中均经历了预热升温、阴燃反应和降温3个阶段,但各点位的阴燃时长和燃烧锋面自持蔓延速率不一。这主要应与各热电偶处的污染物种类、浓度、空气流量和压力以及渗透性等因素有关[10,12]。此外,可观察到,阴燃反应主要发生在0~40 cm料层,50 cm料层并未发生阴燃(<400 ℃)。这是因为,50 cm料层为覆盖净土,无有机污染物,当燃烧锋面从40 cm扩散至50 cm时,阴燃反应逐渐终止。50 cm料层温升主要是由下部料层阴燃放热通过热传导、热辐射和热对流作用导致的。

    图 4  T2-1实验各热电偶温场分布图
    Figure 4.  Temperature distribution of thermometers of T2−1

    表6为中试实验2的阴燃结果。7次实验均成功启动及自持推进。其中,阴燃启动用时最短为3 h,峰值温度最高达990 ℃,石英砂预处理组阴燃自持蔓延速率最高,为2.67 m·d−1,掺料为土的其余各批次阴燃平均自持蔓延速率为0.60 m·d−1

    表 6  中试实验2阴燃结果
    Table 6.  Smoldering results of pilot study 2
    编号油泥掺混介质油泥∶掺混介质(体积比)阴燃前(混合后)石油烃质量分数/(mg·kg−1)阴燃残渣中石油烃质量分数/(mg·kg−1)启动/自持时长/h峰值温度/℃燃烧锋面自持蔓延速率/(m·d−1)
    T2−1 #1池底泥 石英砂 1∶13 3 360 7 5/21 520 2.67
    T2−2 #1池底泥 粉土 1∶13 7 830 7 7/26 549 0.99
    T2−3 #1池底泥 修复土 1∶6 13 000 32 7/72 814 0.51
    T2−4 #1罐底泥 修复土 1∶8 5 510 22 11/43 520 0.68
    T2−5 #2池底泥 修复土 1∶4 16 800 11 3/61 726 0.24
    T2−6 #2罐底泥 修复土 3∶4 30 600 93 4/86 858 0.6
    T2−7 #2池底泥 修复土 1∶2 25 300 99 6/60 900 0.64
      注∶为排除电加热及上部干净土层传热影响,燃烧锋面自持蔓延速率按5~30 cm料层温度数据计算。
     | Show Table
    DownLoad: CSV

    在中试1中,T1−1实验比对了不同达西空气通量对石油烃污染土壤阴燃反应的影响。如图5(a)所示,当初始达西空气通量维持在0.87~1.09 cm·s−1时,阴燃一直未启动;而将达西空气通量降低至0.25 cm·s−1后,反应温度短时快速上升达到峰值温度,阴燃迅速启动。由此可见,在阴燃启动阶段,空气通量不宜过高,否则会导致污染物燃烧所产生的热量被迅速带走,阴燃反应所释放的热量与热损失传热之间难以实现能量平衡[26-27]。在T1−1实验基础上,中试实验1后续批次及中试实验2各批次实验将初始达西空气通量维持在0.18 cm·s−1,适用的石油烃土壤及油泥均成功启动阴燃。与文献[16, 26]中提出的阴燃所需最低达西空气通量0.5 cm·s−1相比,本实验验证在更低的初始达西空气通量(0.18 cm·s−1)条件下也可成功启动阴燃。

    图 5  达西空气流量与阴燃反应温度曲线图
    Figure 5.  Temperature profile under different Darcy air flux

    T2−1实验中,当阴燃成功启动后,提高达西空气通量至0.97 cm·s−1,15、30 cm料层温升速率陡增,快速达到阴燃峰值温度(图5(b))。这说明,在一定污染物浓度下,阴燃启动后的燃烧锋面自持蔓延速率随达西空气通量的增大而增大。在该阶段,氧气的传输速率成为反应的决速步骤,增大达西空气通量将使氧含量增加,继而加快氧化反应,提升阴燃锋面的推进速率[26]。因此,通过调节空气通量可对反应进程进行有效控制。

    1)掺混介质物性对阴燃处理油泥的影响。中试2的T2−1、T2−2实验以#1池底泥为原料,在油泥与介质的体积比为1∶13、初始达西空气通量0.18 cm·s−1的条件下,分别对比了石英砂、粉土为掺混介质的阴燃处理效果。根据表6中所列T2−1、T2−2实验结果,采用石英砂作为掺混介质比采用粉土作为掺混介质阴燃启动用时更短(5 h<7 h),燃烧锋面自持蔓延速率更快(2.67 m·d−1>0.99 m·d−1)。这可能与石英砂2个方面的性质有关∶1)石英砂的导热性能更好(石英砂导热率10 W·m−1K−1>粉土导热率 1.67 W·m−1K−1),有利于在阴燃自持蔓延方向混合物料的传热;2)石英砂的加入有利于分散油泥,改善混合物料的渗透性,有利于阴燃反应所需氧气与油泥的更好接触。此外,添加的粉土具有一定含水率,预热阶段粉土中的水分蒸发,可带走阴燃反应部分能量,导致掺混粉土的T2−2实验温升较慢,达到阴燃启动所需温度用时更长,阴燃速率更慢[28]

    值得注意的是,T2−1实验物料的石油烃质量分数和阴燃峰值温度均较T2−2实验低,但仍能实现阴燃更快启动和推进。在对阴燃启动和推进的影响上,掺混介质本身的导热性及对物料渗透性的改善作用似乎比石油烃质量分数更重要。

    2)介质掺混比例对阴燃处理油泥的影响。中试2的T2−5、T2−7实验分别以#2池底泥为实验对象,以修复土为掺混介质,考察了油泥与介质不同掺混比下的阴燃处理效果。根据表6,实验T2−7(油泥与介质的体积比为1∶2)比T2−5(油泥与介质的体积比为1∶4)阴燃自持蔓延速率更快(0.64 m·d−1 >0.24 m·d−1)。这是因为,对于修复土这类自身渗透性一般的掺混介质,随着掺混比例的提高,混合物料中石油烃质量分数下降,阴燃自持蔓延速率也随之降低。

    以石英砂为掺混介质的阴燃启动和燃烧锋面自持蔓延速率最快,但石英砂成本相对较高。综合上述各实验结果,从降低运行成本和提高阴燃处理效率的角度考虑,1∶2的油泥与修复土体积比更适于工程化应用。

    采用石油烃去除率对含油固废的阴燃处理效果进行了表征。由表7可看出,中试实验1中成功阴燃的各批次实验(含添加芥花油批次),阴燃前污染土壤石油烃质量分数在2 759~8 301 mg·kg−1,阴燃后残渣石油烃质量分数均未检出;以检出限32.7 mg·kg−1计算,阴燃处理后石油烃去除率大于99.6%。由图6 (石油烃质量分数以对数形式表示)可看出,中试实验2中,不同污染来源、反应前石油烃质量分数在3 360~30 600 mg·kg−1的油泥,阴燃后石油烃去除率均在99.5%以上。阴燃残渣的石油烃质量分数最低达7 mg·kg−1,远低于《含油污泥处理利用控制限值》(DB61/T 1025-2016)[29]中的利用控制限值(≤10 000 mg·kg−1)及《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)[30]中第一类用地筛选值(826 mg·kg−1)。图7是T1−3实验阴燃处理前后物料图,可看出,阴燃处理后实验物料明显比实验前干燥和分散。

    表 7  中试实验1阴燃结果
    Table 7.  Smoldering results of pilot study 1
    编号污染土来源污染土壤与地下水位埋深情况芥花油添加量/L阴燃前石油烃质量分数(掺混后)/( mg·kg−1)阴燃残渣中石油烃质量分数/( mg·kg−1)启动/自持时长/h峰值温度/℃自持阴燃
    T1−1基础油厂区污染土壤位于地表以下5.5~6.0 m(地下水位以下)012 84456.8/0
    T1−2基础油厂区污染土壤位于地表以下5.5~6.0 m(地下水位以下)09 62125.2/0
    T1−3基础油厂区污染土壤位于地表以下5.5~6.0 m(地下水位以下)208 301ND*22.5/10.7665
    T1−4油罐区地面堆土02 759ND7.9/23.5528
    T1−5润滑油调配厂区污染土壤位于地表以下3.0~3.5 m(地下水位于地表以下3.4 m)04 146ND15.8/10.7551
      注:*ND表示未检出。
     | Show Table
    DownLoad: CSV
    图 6  中试2阴燃前后物料石油烃质量分数及去除率图
    Figure 6.  Petroleum hydrocarbon concentration and removal rate of pilot study 2 before and after smoldering
    图 7  T1−3实验阴燃反应前(左)、后(右)物料图
    Figure 7.  Material of T1−3 before and after smoldering

    尾气监测及分析结果显示,阴燃尾气中主要存在CO2、H2O等典型氧化反应气体,NOx、VOCs、SO2、H2S等有害气体组分以及CO、CH4等轻烃组分。尾气中CO、VOCs组分浓度随阴燃反应进程存在较大波动性,但总体表现出随阴燃反应温度升高而浓度增大的特性。由图8可看出,在前期料层接近阴燃峰值温度时,CO、VOCs组分浓度也达到最大值,CO组分甚至会短时超出《危险废物焚烧污染控制标准》(GB 18484-2020)[31]排放限值。这是因为,在阴燃启动初期,物料整体渗透性较低,且进风量较小,导致局部燃烧不完全[28],生成这类气体。尽管如此,峰值温度时CO/CO2比值普遍在0.10~0.35,这表明阴燃仍然以燃烧更为彻底的氧化反应为主。

    图 8  T2−3实验中CO、VOCs浓度与达西空气通量、反应温度对照图
    Figure 8.  CO &VOCs concentrations versus air flux & reaction temperature of T2−3

    对比活性炭(GAC)罐吸附前后的CO、VOCs体积分数可知,GAC对CO无明显处理效果,对VOCs的处理效果则不尽相同,中试实验1中VOCs经吸附处理后体积分数降低,但中试实验2中VOCs经吸附后体积分数降幅不明显。这应与尾气中的VOCs组分差异及GAC的吸附特性有关。一般来说,分子量较大的非极性或低极性分子能更容易被GAC吸附。因此,基于阴燃尾气特性,尾气处理措施还有待完善。

    中试1 研究了阴燃技术对于T1场地内3类不同来源(基础油厂区、油罐区、润滑油调配厂区)石油烃污染土壤的适用性。由表7可看出,T1−1、T1−2实验均以基础油厂区石油烃污染土壤实验对象,物料石油烃质量分数较高,分别为12 844、9 621 mg·kg−1,但阴燃均未自持进行;而T1−4和T1−5 实验分别以油罐区、润滑油调配厂区污染土壤为实验对象,物料石油烃质量分数较低,分别为2 759、4 146 mg·kg−1,却均成功自持阴燃,峰值温度分别达528、551 ℃,平均燃烧锋面自持蔓延速率分别为0.98、1.07 m·d−1。这是因为,基础油厂区污染土壤位于地下水位以下,含水率较高,因此,在阴燃最初的点火预热阶段水分蒸发用时较长,污染物I类基础油的蒸发损失大,在燃烧锋面到达之前挥发比例高[26],最终导致无法支持阴燃启动和/或自持蔓延。而油罐区污染土壤为地面堆土,润滑油调配厂区污染土壤大部分位于地下水位之上,两者含水率均不高,且污染组分主要为成品润滑油,挥发性较低,因此,阴燃能够启动及自持。

    对于未能阴燃自持的基础油区厂区污染土壤,T1−3实验添加辅助燃料-芥花油对阴燃过程进行了重新考察。加入20 L芥花油后,石油烃质量分数为8 301 mg·kg−1,低于未添加芥花油的T1−1、T1−2实验,但阴燃却得以自持,自持蔓延速率为1.07 m·d−1。这是因为,加入芥花油后,芥花油燃烧产热成为主要热源,可支持阴燃反应的自持推进[26]。使用辅助燃料的目的就是使工程化阴燃技术也可以应用到自身无法自持阴燃的固废物料上,使物料中的目标污染物得到协同去除。有研究者指出,自持阴燃反应适用于如煤焦油、木馏油等低挥发性污染物的处理[32];对于汽油类有机物和氯代溶剂类挥发性污染物,也有加入植物油成功维持阴燃的报道[33]。这些与本实验观测到的现象都是一致的。

    1)含油固废的含水率及挥发性可影响阴燃启动及自持推进。高含水率、挥发性高的含油固废难以启动及维持自持阴燃修复,但通过添加辅助燃料可实现工程化阴燃技术的成功应用。阴燃启动阶段宜采用较低空气通量,启动后增大达西空气通量有助于提升燃烧锋面推进速度。

    2)工程化阴燃技术治理含油固废,石油烃去除率可达99.5%以上,含油量最低为7 mg·kg−1或未检出,远低于第一类建设用地标准。

    3)不同的掺混介质及掺混比例对阴燃反应的启动用时和阴燃自持蔓延速率有较大影响。以石英砂为掺料,阴燃启动用时最短,阴燃蔓延速率最快;1∶2的油泥/修复土掺比更利于工程化应用需求。

  • 图 1  电催化Cu-EDTA解络反应装置图

    Figure 1.  Schematic diagram for electrocatalytic decomplexation of Cu-EDTA

    图 2  焙烧温度对Cu-EDTA解络率、能耗和粒子电极使用前后晶体结构的影响

    Figure 2.  Effect of calcination temperature on Cu-EDTA decomplexation efficiency, energy consumption, crystal structure of particle electrode before and after use

    图 3  焙烧时间对Cu-EDTA解络率、能耗和粒子电极使用前后晶体结构的影响

    Figure 3.  Effect of calcination time on Cu-EDTA decomplexation efficiency, energy consumption, crystal structure of particle electrode before and after use

    图 4  PAC与GO质量比对Cu-EDTA解络率和能耗的影响

    Figure 4.  Effect of mass ratio of PAC to GO on Cu-EDTA decomplexation efficiency and energy consumption

    图 5  Ni/GO0.2-PAC0.8使用前后的SEM图

    Figure 5.  SEM images of Ni/GO0.2-PAC0.8 before and after use

    图 6  Ni/GO0.2-PAC0.8 系统中的Cu-EDTA、TCCu解络率和TCu回收率以及相应的反应动力学

    Figure 6.  Decomplexation efficiency of Cu-EDTA, TCCu and recovery efficiency of TCu, and corresponding reaction kinetics in Ni/GO0.2-PAC0.8 system

    图 7  Ni/GO0.2-PAC0.8系统中DMPO-OH的ESR谱图和淬灭剂对TCCu解络率的影响

    Figure 7.  ESR spectra of DMPO-OH and effect of quencher on the decomplexation efficiency of TCCu in Ni/GO0.2-PAC0.8 system

    图 8  Ni/GO0.2-PAC0.8在Cu-EDTA、EDTA和CuSO4溶液中的循环伏安曲线

    Figure 8.  Cyclic voltammetry curves of Ni/GO0.2-PAC0.8 in Cu-EDTA, EDTA and CuSO4 solutions

    表 1  Ni/GO0.2-PAC0.8使用前后的EDS分析

    Table 1.  EDS analysis of Ni/GO0.2-PAC0.8 before and after use

    元素使用前使用后
    质量分数/%原子分数/%质量分数/%原子分数/%
    C74.0584.4667.0077.59
    O15.2113.0317.1017.06
    Ni10.742.519.001.53
    Cu2.330.54
    S6.573.28
    元素使用前使用后
    质量分数/%原子分数/%质量分数/%原子分数/%
    C74.0584.4667.0077.59
    O15.2113.0317.1017.06
    Ni10.742.519.001.53
    Cu2.330.54
    S6.573.28
    下载: 导出CSV

    表 2  Cu-EDTA、TCCu解络和TCu回收反应动力学拟合参数

    Table 2.  Kinetics parameters of Cu-EDTA, TCCu decomplexation and TCu recovery

    污染物拟合方程kobs/(min−1)R2
    Cu-EDTA−ln(C/C0)=0.018t−0.7920.0180.947
    TCCu−ln(C/C0)=0.018t−0.9460.0180.916
    TCu−ln(C/C0)=0.008t−0.4280.0080.940
    污染物拟合方程kobs/(min−1)R2
    Cu-EDTA−ln(C/C0)=0.018t−0.7920.0180.947
    TCCu−ln(C/C0)=0.018t−0.9460.0180.916
    TCu−ln(C/C0)=0.008t−0.4280.0080.940
    下载: 导出CSV
  • [1] BARBANO E P, DE OLIVEIRA G M, DE CARVALHO M F, et al. Copper–tin electrodeposition from an acid solution containing EDTA added[J]. Surface & Coatings Technology, 2014, 240: 14-22.
    [2] 别旭峰. 微电解和高级氧化工艺处理Cu-EDTA的效能及机理[D]. 哈尔滨: 哈尔滨工业大学, 2017.
    [3] 程帅龙, 林亲铁, 肖荣波, 等. 铜基生物炭活化过硫酸钠处理废水中EDTA-Cu[J]. 环境工程学报, 2020, 14(12): 3298-3307. doi: 10.12030/j.cjee.202001152
    [4] ZENG H B, LIU S S, CHAI B Y, et al. Enhanced photoelectrocatalytic decomplexation of Cu-EDTA and Cu recovery by persulfate activated by UV and cathodic reduction[J]. Environmental Science & Technology, 2016, 50(12): 6459-6466.
    [5] HUANG X F, XU Y, SHAN C, et al. Coupled Cu(II)-EDTA degradation and Cu(II) removal from acidic wastewater by ozonation: Performance, products and pathways[J]. Chemical Engineering Journal, 2016, 299: 23-29. doi: 10.1016/j.cej.2016.04.044
    [6] LI L H, HUANG Z P, FAN X X, et al. Preparation and characterization of a Pd modified Ti/SnO2-Sb anode and its electrochemical degradation of Ni-EDTA[J]. Electrochimica Acta, 2017, 231: 354-362. doi: 10.1016/j.electacta.2017.02.072
    [7] 杨世迎, 薛艺超, 王满倩. 络合态重金属废水处理: 基于高级氧化技术的解络合机制[J]. 化学进展, 2019, 31(8): 1187-1198.
    [8] HUANG X F, WANG Y, LI X C, et al. Autocatalytic decomplexation of Cu(II)-EDTA and simultaneous removal of aqueous Cu(II) by UV chlorine[J]. Environmental Science & Technology, 2019, 53: 2036-2044.
    [9] ZHANG C, JIANG Y H, LI Y L, et al. Three-dimensional electrochemical process for wastewater treatment: A general review[J]. Chemical Engineering Journal, 2013, 228: 455-467. doi: 10.1016/j.cej.2013.05.033
    [10] SUN Y J, LI P, ZHENG H L, et al. Electrochemical treatment of chloramphenicol using Ti-Sn/γ-Al2O3 particle electrodes with a three-dimensional reactor[J]. Chemical Engineering Journal, 2017, 308: 1233-1242. doi: 10.1016/j.cej.2016.10.072
    [11] 王兵, 舒帮云, 任宏洋, 等. 填充粒子对三维电极处理MDEA污水的影响[J]. 环境工程学报, 2017, 11(1): 205-210. doi: 10.12030/j.cjee.201601141
    [12] LI Y Z, JIANG Y P, WANG T J, et al. Performance of fluoride electrosorption using micropore-dominant activated carbon as an electrode[J]. Separation and Purification Technology, 2017, 172: 415-421. doi: 10.1016/j.seppur.2016.08.043
    [13] ZHANG T T, LIU Y J, YANG L, et al. Ti–Sn–Ce/bamboo biochar particle electrodes for enhanced electrocatalytic treatment of coking wastewater in a three-dimensional electrochemical reaction system[J]. Journal of Cleaner Production, 2020, 258: 120273. doi: 10.1016/j.jclepro.2020.120273
    [14] ZHAN J H, LI Z X, YU G, et al. Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes[J]. Separation and Purification Technology, 2019, 208: 12-18. doi: 10.1016/j.seppur.2018.06.030
    [15] SONG X Z, HUANG D, ZHANG L, et al. Electrochemical degradation of the antibiotic chloramphenicol via the combined reduction-oxidation process with Cu-Ni/graphene cathode[J]. Electrochimica Acta, 2020, 330: 135187. doi: 10.1016/j.electacta.2019.135187
    [16] XU D D, SONG X Z, QI W Z, et al. Degradation mechanism, kinetics, and toxicity investigation of 4-bromophenol by electrochemical reduction and oxidation with Pd–Fe/graphene catalytic cathodes[J]. Chemical Engineering Journal, 2018, 333: 477-485. doi: 10.1016/j.cej.2017.09.173
    [17] MA X J, LI M, LIU X, et al. A graphene oxide nanosheet-modified Ti nanocomposite electrode with enhanced electrochemical property and stability for nitrate reduction[J]. Chemical Engineering Journal, 2018, 348: 171-179. doi: 10.1016/j.cej.2018.04.168
    [18] YE W J, ZHANG W W, HU X X, et al. Efficient electrochemical-catalytic reduction of nitrate using Co/AC0.9-AB0.1 particle electrode[J]. Science of the Total Environment, 2020, 732: 139245. doi: 10.1016/j.scitotenv.2020.139245
    [19] WANG P, ZHANG X, WEI Y, et al. Ni/NiO nanoparticles embedded inporous graphite nanofibers towards enhanced electrocatalytic performance[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19792-19804. doi: 10.1016/j.ijhydene.2019.05.121
    [20] JIA Y, ZHANG L Z, GAO G P, et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting[J]. Advanced Materials, 2017, 29(17): 1700017. doi: 10.1002/adma.201700017
    [21] ZHANG B G, HOU Y P, YU Z B, et al. Three-dimensional electro-Fenton degradation of Rhodamine B with efficient Fe-Cu/kaolin particle electrodes: Electrodes optimization, kinetics, influencing factors and mechanism[J]. Separation and Purification Technology, 2019, 210: 60-68. doi: 10.1016/j.seppur.2018.07.084
    [22] SUN W Q, SUN Y J, SHAN K J, et al. Electrochemical degradation of oxytetracycline by Ti-Sn-Sb/gamma-Al2O3 three-dimensional electrodes[J]. Journal of Environmental Management, 2019, 241: 22-31.
    [23] LIU W, AI Z H, ZHANG L Z. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment[J]. Journal of Hazardous Materials, 2012, 243: 257-264. doi: 10.1016/j.jhazmat.2012.10.024
    [24] ANDRES GARCIA E, AGULLO BARCELO M, BOND P, et al. Hybrid electrochemical-granular activated carbon system for the treatment of greywater[J]. Chemical Engineering Journal, 2018, 352: 405-411. doi: 10.1016/j.cej.2018.07.042
    [25] LI X, ZHANG W W, XIE D, et al. Electrochemical treatment of humic acid using particle electrodes ensembled by ordered mesoporous carbon[J]. Environmental Science and Pollution Research, 2018, 25(20): 20071-20083. doi: 10.1007/s11356-018-2193-x
    [26] MAO R, ZHAO X, LAN H C, et al. Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor[J]. Water Research, 2015, 77: 1-12. doi: 10.1016/j.watres.2015.03.002
    [27] LI Y M, TANG L H, LI J H. Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites[J]. Electrochemistry Communications, 2009, 11(4): 846-849. doi: 10.1016/j.elecom.2009.02.009
    [28] FAN X B, ZHANG G L, ZHANG F B. Multiple roles of graphene in heterogeneous catalysis[J]. Chemical Society Reviews, 2015, 44(10): 3023-3035. doi: 10.1039/C5CS00094G
    [29] ZHANG W W, HE Y C, LI C, et al. Persulfate activation using Co/AC particle electrodes and synergistic effects on humic acid degradation[J]. Applied Catalysis B: Environmental, 2021, 285: 119848. doi: 10.1016/j.apcatb.2020.119848
    [30] CHEN M, WANG C, WANG Y C, et al. Kinetic, mechanism and mass transfer impact on electrochemical oxidation of MIT using Ti-enhanced nanotube arrays/SnO2-Sb anode[J]. Electrochimica Acta, 2019, 323: 134779. doi: 10.1016/j.electacta.2019.134779
    [31] 胡俊生, 苏博, 吴帅, 等. 活性炭粒子电极改性及其电催化性能[J]. 环境工程, 2020, 38(8): 136-141.
    [32] 何万萍, 孟勇. 陶瓷-碳复合粒子电极的制备条件对三维电催化处理有机废水的影响[J]. 精细化工中间体, 2017, 47(3): 39-42.
    [33] 周玉莲, 于永波, 黄湾, 等. 氧化石墨烯电催化高效降解有机染料RBk5[J]. 中国环境科学, 2019, 39(11): 4653-4659. doi: 10.3969/j.issn.1000-6923.2019.11.021
    [34] 袁小亚. 石墨烯的制备研究进展[J]. 无机材料学报, 2011, 26(6): 561-570.
    [35] ZHAO X, GUO L B, ZHANG B F, et al. Photoelectrocatalytic oxidation of Cu(II)-EDTA at the TiO2 electrode and simultaneous recovery of Cu(II) by electrodeposition[J]. Environmental Science & Technology, 2013, 47(9): 4480-4488.
    [36] ZHAO X, GUO L B, QU J H. Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor[J]. Chemical Engineering Journal, 2014, 239: 53-59. doi: 10.1016/j.cej.2013.10.088
    [37] ZHAO X, GUO L B, ZHANG B F, et al. Photoelectrocatalytic oxidation of metal-EDTA and recovery of metals by electrodeposition with a rotating cathode[J]. Environmental Science & Technology, 2013, 47(9): 4480-4488.
    [38] CAO Y, QIAN X C, ZHANG Y X, et al. Decomplexation of EDTA-chelated copper and removal of copper ions by non-thermal plasma oxidation/alkaline precipitation[J]. Chemical Engineering Journal, 2019, 362: 487-496. doi: 10.1016/j.cej.2019.01.061
  • 加载中
图( 8) 表( 2)
计量
  • 文章访问数:  6154
  • HTML全文浏览数:  6154
  • PDF下载数:  77
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-05-29
  • 录用日期:  2021-07-09
  • 刊出日期:  2021-09-10
胡鑫鑫, 杨帅, 尤欣雨, 刘雨, 张文文, 梁文艳. Ni/GO0.2-PAC0.8粒子电极的制备及其降解Cu-EDTA络合物效能[J]. 环境工程学报, 2021, 15(9): 2923-2933. doi: 10.12030/j.cjee.202105164
引用本文: 胡鑫鑫, 杨帅, 尤欣雨, 刘雨, 张文文, 梁文艳. Ni/GO0.2-PAC0.8粒子电极的制备及其降解Cu-EDTA络合物效能[J]. 环境工程学报, 2021, 15(9): 2923-2933. doi: 10.12030/j.cjee.202105164
HU Xinxin, YANG Shuai, YOU Xinyu, LIU Yu, ZHANG Wenwen, LIANG Wenyan. Preparation of Ni/GO0.2-PAC0.8 particle electrode and its degradation performance of Cu-EDTA complex[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2923-2933. doi: 10.12030/j.cjee.202105164
Citation: HU Xinxin, YANG Shuai, YOU Xinyu, LIU Yu, ZHANG Wenwen, LIANG Wenyan. Preparation of Ni/GO0.2-PAC0.8 particle electrode and its degradation performance of Cu-EDTA complex[J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2923-2933. doi: 10.12030/j.cjee.202105164

Ni/GO0.2-PAC0.8粒子电极的制备及其降解Cu-EDTA络合物效能

    通讯作者: 梁文艳(1969—),女,博士,教授。研究方向:水资源保护与水污染控制。E-mail:lwy@bjfu.edu.cn
    作者简介: 胡鑫鑫(1996—),女,硕士研究生。研究方向:环境功能材料的研发与应用。E-mail:huxinxin0304@hotmail.com
  • 北京林业大学环境科学与工程学院,北京 100083
基金项目:
国家自然科学基金资助项目(51672028)

摘要: Cu-EDTA在水中具有很强的稳定性,且难以用常规化学沉淀法去除。以粉末活性炭(PAC)和氧化石墨烯(GO)为载体、Ni为催化剂,采用浸渍焙烧法制备了粒子电极,用于Cu-EDTA的电催化降解。采用XRD和SEM-EDS对电极表面的组成和形态进行了表征;探讨了Cu-EDTA解络和铜回收的效能及机制。结果表明,粒子电极最佳制备条件为:焙烧温度为600 ℃、焙烧时间为4 h、PAC与GO质量比为8: 2。粒子电极上的镍主要以Ni0存在,并含有少量NiO。Cu-EDTA和总络合态铜(TCCu)的解络率分别为99.6%和99.4%,总铜(TCu)的回收率为93.7%,解络和铜回收均符合拟一级动力学规律。自由基淬灭和循环伏安扫描实验结果表明,Cu-EDTA的解络是通过电还原完成的,Cu-EDTA中的Cu2+先还原为Cu+,再还原为Cu0并沉积在粒子电极表面。

English Abstract

  • 为了增强镀液的分散能力和达到良好的镀层效果,电镀工艺常向镀液中投加大量络合剂,这些络合剂与重金属离子配位结合形成络合重金属[1]。电镀过程中,仅有一小部分金属被有效镀在物件上,其他的均以废水的形式排出[2]。络合重金属具有生物难降解性和高毒性,由于络合重金属具有很高的水溶性,且可在广泛的pH范围内稳定存在,故常规的化学沉淀法难于将其从水中去除[3]

    高级氧化技术广泛用于络合重金属的处理,如芬顿氧化[4]、臭氧氧化[5]和电催化氧化[6],解络后游离的重金属离子一般是通过加碱沉淀予以去除。但在电催化处理中,由于可以通过电还原的方式使重金属离子在阴极表面沉积,因此,电催化技术在络合重金属解络的同时还可以实现重金属离子的回收,使出水中的重金属离子浓度极大地降低,从而减少碱的投加和污泥的产生[7]。目前,电催化技术大多基于电催化氧化原理,利用氧化性活性物种(·OH、Cl·和SO4)攻击配体结构,使其逐步降解并失去络合性,将重金属离子游离出来[4-8]。但是,在电镀行业中,电镀的原理是利用金属络合物直接在阴极还原,从而使金属电镀在基底材料上[1]。这意味着通过电还原的方式可以破坏金属络合物的络合结构。然而目前采用电还原法处理金属络合物的相关研究鲜有报道。

    粒子电极是近些年研究比较多的电极材料,通过填充在阴阳极板间构成电极床而实现污染物质的降解去除[9]。在电场的驱动下,粒子可以形成微小的复极性电极,粒子的一端为阳极端,另一端为阴极端,因此在粒子电极的表面既可以发生氧化反应又可以发生还原反应[10]。由于粒子电极大大地增加了污染物与电极之间的有效接触面积,是传统板状电极面积的几十到几百倍,而且每2个相邻的粒子电极之间距离很小,因此,粒子电极的填充缩短了污染物迁移距离和传质距离,提高了传质速率。因而,仅需较低的电流密度即可获得较高的电流强度,并实现较高的电流利用效率[11]。粒子电极床广泛运用在印染废水[12]、焦化废水[13]和制药废水[14]等的废水处理中。粒子电极通常由催化剂和载体组成。常用于电还原的金属催化剂包括Pd、Pt、Fe、Cu、Co和Ni[15-18]。贵金属催化剂具有高催化活性,然而,他们的稀有性和高昂的价格阻碍了其大规模应用。Ni是一种过渡金属,具有高电流密度和低过电位的特点,并且资源丰富、价格低廉和稳定性高。Ni具有出色的还原性能,法拉第效率接近100%,因此,被广泛用作电还原催化剂[19-20]。粒子电极的载体材料有高岭土[21]、γ-Al2O3[22]、泡沫镍[23]、活性炭[24]和介孔碳[25]等,活性炭由于价格低廉、比表面积巨大和化学性质稳定等优点而被广泛用作粒子电极的载体,但其导电性和电子传递效率较差[26]。石墨烯是一种二维碳材料,可以为离子和电子的传输提供较短的有效长度,从而可以增强传质和电荷传输[27-28],在活性炭载体材料中掺杂石墨烯可以增强粒子电极的传质效率和导电性。因此,本文以Ni为催化剂,活性炭(PAC)和氧化石墨烯(GO)为载体制备了催化粒子电极。由于乙二胺四乙酸(EDTA)是一种非常重要的络合剂,广泛应用于镀铜工艺,故本文选择Cu-EDTA作为目标污染物,考察了粒子电极焙烧温度、焙烧时间和PAC与GO比例对Cu-EDTA解络效能的影响,探讨了最佳制备条件下的粒子电极对Cu-EDTA解络和铜回收率的影响及相关机制。

  • 1)主要试剂和材料:活性炭(PAC)购于北京科诚光华公司,氧化石墨烯(GO)购于深圳图灵公司;阴极板Ti(6 cm×2.5 cm)和阳极板Ti/RuO2(6 cm×2.5 cm)购于北京恒力钛公司;五水合硫酸铜、乙二胺四乙酸二钠、六水合硝酸镍、硫酸钠、聚乙烯醇、叔丁醇、苯酚均为分析纯,磷酸铵为优级纯,购于国药公司;5,5-二甲基-1-氧化吡咯啉(DMPO)购于梯希爱化成公司;乙腈为色谱纯,购于赛默飞世尔科技公司。

    2)主要仪器:高效液相色谱仪(Agilent 1260,安捷伦科技有限公司),原子吸收分光光度计(AA7000,日本岛津有限公司),扫描电子显微镜(SU8220,日立高新技术公司),X射线衍射分析仪(XRD-7000s,日本岛津有限公司),电子顺磁共振仪(EMX plus,Bruker),电化学工作站(CHI660E,上海辰华公司)。

  • 称取CuSO4·5H2O和Na2EDTA溶解于去离子水中,配制10 mmol·L−1 Cu-EDTA储备液,Cu2+与EDTA摩尔比为1∶1。实验前,使用去离子水稀释至1 mmol·L−1,并加入10 mmol·L−1 Na2SO4作为电解质。

  • 1)粒子电极的制备。将Ni(NO3)2·6H2O 溶于去离子水中配得0.5 mol·L−1溶液,将PAC与GO充分混合并浸渍于硝酸镍溶液中,恒温振荡8 h后,离心取出并烘干。向混合粉末中加入质量分数为5%的聚乙烯醇,造粒后在马弗炉中焙烧。为了解焙烧温度和时间的影响,焙烧温度设置为200、300、450、600和800 ℃,焙烧时间4 h;焙烧时间设置2、4、6和8 h,焙烧温度为800 ℃。在最佳焙烧温度和时间下,分别制备PAC、Ni/PAC、Ni/GOx-PACy粒子电极,其中xy的质量比为0.5∶9.5、1∶9和2∶8。

    2)粒子电极的表征。采用扫描电子显微镜观察粒子电极使用前后的表面形貌,并采用能谱仪(EDS)对样品表面元素的分布情况进行分析。使用X射线衍射分析仪对晶体结构和物相组成进行分析。

  • 实验装置如图1所示。有机玻璃反应器的长×宽×高为3 cm×3.5 cm×2 cm,粒子电极填充量为5 g,1.00 L的Cu-EDTA模拟废水以循环方式处理,处理时间为360 min,每间隔30 min取样。一部分样品直接用于总铜(TCu)浓度的测定;另一部分样品用1 mol·L−1 NaOH调节pH至11.0,静置过夜以沉淀游离铜离子,上清液用于Cu-EDTA和总络合态铜(TCCu)的测定。TCCu指所有络合态铜物种,包括Cu-EDTA和中间态络合铜,TCu指所有铜物种,包括TCCu和游离的铜离子。

  • 使用DMPO为捕获剂,采用电子顺磁共振仪(ESR)技术测定系统中自由基的产生情况。自由基淬灭实验采用叔丁醇和苯酚作为淬灭剂,叔丁醇浓度为3.0 mol·L−1,苯酚浓度为0.7 mol·L−1

  • 在-0.87~2.00 V电势窗口下,采用三电极体系测试催化粒子电极在CuSO4、EDTA和Cu-EDTA中的循环伏安曲线,三者浓度均为50 mmol·L−1,扫速为50 mV·s−1。铂丝为对电极,Ag/AgCl电极为参比电极,覆有粒子电极材料的玻碳电极为工作电极。工作电极制备中,取10 mg粒子电极材料,加入质量分数为5% Nafion溶液50 μL和1 mL乙醇,混匀充分;取10 μL混合液滴于玻碳电极表面。测试前向待测溶液中充15 min氮气以除去氧气。使用能斯特方程将测试电位EAg/AgCl转换为可逆氢电极电位ERHE[29],转换关系如式(1)所示。

  • 采用高效液相色谱法测定Cu-EDTA浓度,色谱柱为Agilent TC-C18柱(4.6 mm×250 mm,5 μm),流动相为75%磷酸铵(20 mmol·L−1,pH为3.0)和25%乙腈,流速为1 mL·min−1,检测波长为254 nm。TCCu、TCu和镍离子的浓度采用原子吸收分光光度法测定。

    电催化解络的单位电能消耗量的计算见式(2)[30]

    式中:EEO为Cu-EDTA降解一个能级所需的电能,kWh·m−3U为施加的电压,V;j为电流密度,mA·cm−2S为电极表面积,cm2t为反应时间,h;V为反应溶液的总体积,cm3C0C分别是在开始和在时间t时的Cu-EDTA浓度,mmol·L−1

  • 1)焙烧温度对Cu-EDTA解络效能的影响。在PAC:GO质量比为9:1和焙烧时间4 h条件下,制备了不同焙烧温度下的粒子电极。如图2(a)所示,随着温度的升高,Cu-EDTA的解络率先增加后降低,焙烧温度为600 ℃时的解络率达到最高,为77.6%;此时能耗也为最低,仅为0.25 kWh·m−3(图2(b))。由图2(c)中的XRD结果可以看出,Ni在200 ℃和300 ℃下未形成明显的催化剂晶体结构;在450~800 ℃焙烧温度下,观测到2θ为44.51°、51.85°和76.37°的3个特征峰,分别对应零价态的镍(Ni0,JCPDS 04-0850)的(111)、(200)和(220)晶面。还观测到37.25°、43.28°和62.88°处的3个微弱的特征峰,分别对应着NiO(JCPDS 44-1159)的(101)、(012)和(110)晶面。较低的焙烧温度不能使镍催化剂完全活化,因此,在催化剂上不能形成良好的晶体结构,导致粒子电极的电催化活性较低[31]。而当焙烧温度增加到800 ℃时,由于催化剂在过高的焙烧温度下容易烧结而导致粒子电极失去电催化活性[32]。正因为金属性Ni0具有一定导电性,使600 ℃下粒子电极的导电性增强,从而降低了单位电能消耗量。Ni/GO0.1-PAC0.9用于降解Cu-EDTA后,Ni的晶体结构没有发生明显变化(图2(d)),且在处理360 min后,溶液中未检测到镍离子,说明所负载的催化剂不易受到电催化过程的影响。

    2)焙烧时间对Cu-EDTA解络效能的影响。如图3(a)所示,当PAC:GO质量为9:1、焙烧温度为600 ℃时,焙烧时间4 h的解络效果最好,Cu-EDTA的解络率为77.6%,比焙烧时间2 h的提高了30.9%,能耗也由0.59 kWh·m−3降低为0.25 kWh·m−3。随着焙烧时间继续延长,粒子电极的电催化活性略有降低,6 h和8 h下的解络率下降至72.2%和71.6%,能耗分别增加至0.26 kWh·m−3和0.32 kWh·m−3。焙烧时间的延长可以增加催化剂和载体之间结合的强度,能够充分地活化催化剂,但过长的焙烧时间会破坏催化剂原有的催化活性和粒子电极原有的空隙结构,从而影响粒子电极的电催化性能[31]。由XRD图谱(图3(c)~(d))可以看出,不同焙烧时间下所形成的催化剂仍以Ni0为主,含有少量的NiO,焙烧时间对于Ni0衍射峰的强弱有一定影响,焙烧4 h时衍射峰最强。但无论焙烧时间为多长,在处理Cu-EDTA后,粒子电极的晶体结构均没有发生明显变化。

    3) PAC与GO质量比对Cu-EDTA解络效能的影响。在焙烧温度为600 ℃和焙烧时间为4 h条件下,制备了PAC与GO不同质量比的粒子电极。如图4(a)所示,当PAC不负载Ni时,Cu-EDTA的解络率只有36.1%,电耗EEO值高达1.33 kWh·m−3(图4(b))。当仅使用PAC作为载体,负载Ni催化剂后,Cu-EDTA的解络率升高到了59.6%,可见Ni的负载明显提升了粒子电极的催化性能。不仅如此,负载Ni后,PAC的EEO值下降至0.47 kWh·m−3。这是因为PAC本身导电性较差,Ni0的负载可以增强粒子电极的导电性。当粒子电极材料中分别掺杂5%、10%和20%的GO后,Cu-EDTA的解络率再进一步提升到63.4%、76.6%和85.4%,可见GO的掺入进一步使粒子电极的催化性能得到提升。这是因为GO表面的含氧官能团为GO提供了丰富的缺陷位点,并且良好的电子传递性能,可以促进电极表面的电荷转移,使得GO具有一定的电催化性能[33]。当在粒子电极材料中掺杂GO后,粒子电极的催化性也得到增强。不仅如此,随着GO掺杂比例的增加,EEO值明显下降,当GO的掺杂比为20%时,EEO值仅为0.17 kWh·m−3,说明GO确实增加了粒子电极的导电性能,降低了能耗。在惰性气氛中,经高温焙烧后,GO表面的含氧官能团在高温作用下被分解,能很大程度恢复石墨烯的共轭结构,从而提高导电性[34]。结合以上解络率和耗能结果,确定焙烧温度600 ℃、焙烧时间4 h和PAC∶GO为8∶2作为后续粒子电极的最佳制备条件,制得电极为Ni/GO0.2-PAC0.8

  • 对Ni/GO0.2-PAC0.8粒子电极使用前后的表面形貌进行了表征,结果如图5所示。可以看出,不管是使用前还是使用后,PAC载体表面都比较粗糙,这有利于催化剂的负载。此外,还观察到有白色细小的晶体颗粒物附着在PAC表面,这是Ni元素所形成的催化晶粒。能谱分析结果显示(表1),使用前电极表面存在C、O和Ni三种元素,Ni的质量分数为10.74%。使用后电极表面Ni的质量分数为下降至9.00%。除了C、O和Ni外,还检测到Cu和S元素。Cu的质量分数为2.33%,表明电催化解络过程中粒子电极表面沉积有大量的铜元素。由于使用了Na2SO4作为电解质,因此,也观测到6.57%的S元素。

  • 使用Ni/GO0.2-PAC0.8粒子电极,在电流密度为1.6 mA·cm−2下,对Cu-EDTA解络和铜回收的效能进行了研究。结果表明(图6(a)),Cu-EDTA的解络率达到99.6%,而其他电催化方法对于Cu-EDTA的解络率仅为15%~60%[35-36]。TCCu的解络率为99.4%,仅比Cu-EDTA低0.2%。通常EDTA降解过程中会形成乙二胺三乙酸、乙二胺二乙酸和乙二胺单乙酸等中间产物,这些产物也具有一定的络合性[8]。0.2%的解络率差别说明铜以其他络合形态存在的量非常低,Ni/GO0.2-PAC0.8粒子电极对Cu的所有络合态都具有解络效果。实验结果还显示,TCu的回收率达到93.7%,溶液中仅含有5.9%的铜未去除。在以不锈钢为阴极、TiO2/Ti为阳极的电氧化解络过程中,总铜的回收率仅为18%~40%[36-37]。可以看出,总铜的高回收率说明粒子电极具有良好的还原性能。

    图6(b)所示,Cu-EDTA、TCCu和TCu的-ln(C/C0)与处理时间之间均呈良好的线性关系,拟合系数R2均在0.9以上(表2),说明Cu-EDTA、TCCu的解络和TCu的回收符合拟一级反应动力学规律。Cu-EDTA和TCCu的反应速率常数均为0.018 min−1,而TCu的反应速率常数为0.008 min−1。与臭氧氧化过程中Cu-EDTA反应速率常数0.450 min−1相比[5],本实验中的反应速率常数偏低,这是因为施加电流密度较低,反应速率较慢,也可能是铜不断在粒子电极上沉积而导致反应速率偏慢。

  • 采用电子顺磁共振谱法测定了反应体系中的自由基,结果如图7(a)所示。可见,系统中出现了峰高为1∶2∶2∶1的四重峰,超精细耦合常数为a(N)=a(H)=14.9 G,这是DMPO-OH加成物的特征峰,表明Ni/GO0.2-PAC0.8系统中产生了·OH自由基,在粒子电极的阳极H2O会发生电解产生·OH[25]。当使用叔丁醇和苯酚作为·OH的淬灭剂时,淬灭剂的加入没有抑制TCCu的降解(图7(b)),TCCu的解络率仍达到97%以上,·OH对Cu-EDTA的解络没有影响。在UV/氯[8]、非热等离子体[38]氧化解络体系中,是通过破坏EDTA结构来使Cu-EDTA解络,当O21O2、·OH和Cl·等氧化活性物种被淬灭后,EDTA的氧化降解受到抑制,导致Cu-EDTA解络效果明显下降。这说明粒子电极降解Cu-EDTA不是基于EDTA结构被氧化而实现,而是基于Cu-EDTA中Cu2+的还原而实现。

    为进一步了解Cu-EDTA在粒子电极上的电化学行为,对Ni/GO0.2-PAC0.8在EDTA、Cu-EDTA和CuSO4溶液中的循环伏安特征进行了分析。如图8所示,在EDTA溶液中,除1.55 V处出现一个较弱的氧化峰外,在-0.87~1.2 V内都没有氧化还原峰的出现。这说明EDTA很难在Ni/GO0.2-PAC0.8粒子电极表面发生直接氧化或还原反应。而对于CuSO4溶液,在0.22 V和0.48 V处出现一对还原峰和氧化峰,这是由于Cu2+在电极上还原和氧化引起的。当使用Cu-EDTA溶液时,在0.09 V和0.31 V处出现2个还原峰,在0.49 V和0.55 V处出现2个氧化峰。这说明Cu-EDTA在Ni/GO0.2-PAC0.8粒子电极上发生了直接还原和氧化反应。0.09 V和0.31 V的2个还原峰来自Cu+还原为Cu0和Cu2+还原为Cu+;而在0.49 V和0.55 V处的2个氧化峰分别对应于Cu0氧化为Cu+和Cu+氧化为Cu2+的过程。结合自由基淬灭实验的结果,可以看出Ni/GO0.2-PAC0.8粒子电极电催化Cu-EDTA解络是通过Cu(Ⅱ)的逐步还原完成,Cu-EDTA中的Cu2+先还原为Cu+,再还原为Cu0。由于Cu2+的还原,从而导致Cu-EDTA的络合结构受到破坏。

  • 1)通过Cu-EDTA的解络率和耗能结果确定粒子电极的最佳焙烧温度为600 ℃,焙烧时间为4 h,PAC与GO的最佳质量比为8:2。

    2)粒子电极上的镍主要以Ni0存在,含有少量NiO;Ni0的负载增强了粒子电极的电催化性能和导电性,粒子电极在处理Cu-EDTA后,其形貌和催化剂结构没有受到影响。

    3) Cu-EDTA、TCCu的解络率和TCu的回收率分别为99.8%、99.6%和93.7%,解络和回收均符合拟一级反应动力学。

    4) Cu-EDTA在Ni/GO0.2-PAC0.8粒子电极体系中的解络是通过电还原完成,Cu-EDTA中的Cu2+先还原为Cu+,再还原为Cu0并沉积在粒子电极表面上。

参考文献 (38)

返回顶部

目录

/

返回文章
返回