-
随着我国城镇化进程的加快,以市政污泥为代表的有机固废排放量迅猛增长。2019年,我国污泥年产量已突破6 000×104 t[1]。市政污泥富含有机碳、氮、磷以及钙、铁、锌等植物生长所需的营养物质,具有良好的土地利用潜力[2-4]。但是,市政污泥中含有的重金属是制约其土地安全利用的最大风险因素[4-6]。通过高温热解可将市政污泥转化为性质稳定的生物炭。由于该技术具有可以减少残留体积、分解病原微生物及部分有机污染物、促进碳固定、钝化重金属等优点[6-9],而成为市政污泥资源化处理、降低其环境风险的推荐方法[6]。市政污泥热解产物污泥炭,作为一种典型的生物炭,可以增加土壤阳离子交换量、提高作物生物量及产量、减少温室气体排放等,其土地利用前景在近年来受到广泛关注[2, 5, 10]。然而,高温热解处理虽然降低了污泥炭中重金属有效态含量,但是重金属总浓度相对于原污泥通常显著富集[5, 9, 11]。目前,关于污泥炭进入土壤环境后其被钝化重金属的生物有效性和环境风险还缺乏了解,特别是关于污泥炭中被钝化重金属的生物有效性和植物暴露风险能否降低至可以忽略的水平尚不明确[12-15],限制了对其土地施用等资源化利用安全性的认识。
中药渣富含纤维素、木质素等有机成分,是一类未被充分利用的生物质资源。与市政污泥类似,安全、合理处置排放量逐年递增的中药渣已成为中药制药行业面临的迫切需求。中药渣经热解后产生丰富的含碳官能团,可以吸附、络合重金属,钝化其有效态组分[16-17]。因此,污泥炭配施中药渣炭有望进一步降低污泥炭中重金属环境风险[9, 13, 18]。截至目前,关于中药渣炭对污泥炭中重金属在受纳土壤中生物有效性的影响研究尚未见报道。
本研究选取市政污泥和中药渣等有机固废制备生物炭,通过盆栽植物吸收实验,系统开展2种有机固废生物炭进入土壤后其被钝化重金属生物有效性及其联合施用效应研究,重点探明施用有机固废生物炭影响下重金属化学有效性与植物吸收、传输重金属之间的响应关系、作用规律。通过该研究,将加深对市政污泥、中药渣等有机固废生物炭中重金属环境行为和风险的认识,为有机固废无害化处置、资源化利用提供参考。
施用典型有机固废生物炭对土壤重金属生物有效性的影响
Effects of application of typical organic solid wastes-derived biochar on bioavailability of heavy metals in soil
-
摘要: 将有机固废经热解转化为生物炭,具有改良土壤、促进碳固定、钝化重金属等优点,但有机固废生物炭中被钝化重金属进入土壤后生物有效性尚不明确。采用盆栽方法评估了施用市政污泥、中药渣等典型有机固废生物炭对受纳土壤中重金属有效性及植物吸收、传输重金属的影响。结果表明,施用污泥炭、中药渣炭显著增加了土壤中As、Zn的化学提取有效态含量,从而降低了Cr、Pb有效态含量(P < 0.05),对Cd、Cu、Ni有效态含量也有不同程度的降低趋势;同时,抑制了除Zn以外As、Cd、Cr、Cu、Ni、Pb等6种重金属从土壤向植物的传输、累积,降幅最高达30%。中药渣炭联合污泥炭施用可进一步抑制7种重金属在植物地上部分以及除As、Cr外其他重金属在根中的吸收、累积。本研究结果可为评估有机固废生物炭土地利用的环境风险提供参考。Abstract: Converting organic solid wastes (OSW) into biochar through pyrolysis has been receiving increasing attention due to the merits including ameliorating soil properties, facilitating carbon sequestration, and immobilizing heavy metals. However, the bioavailability of the immobilized heavy metals in soil remains unclear. The effects of two typical OSW- (i.e., municipal sludge- and medicinal herb residue-) derived biochars on the availability of heavy metals in the receiving soil and the uptake and transport of the heavy metals by plants were investigated using pot experiments. The results indicated that the two biochars significantly increased the chemical availability of As and Zn whereas decreased the available contents of Cr and Pb (P < 0.05) in the soil. The available contents of Cd, Cu, and Ni were also decreased to a certain extent by the biochar introduction. Meanwhile, these two biochars significantly decreased, with a maximum decreasing rate of 30%, the uptake of six heavy metals (i.e., As, Cd, Cr, Cu, Ni, and Pb) except for Zn in both the aerial and root parts of maize. The combined application of medicinal herb residue-derived biochar with municipal sludge-derived biochar further decreased the uptake of heavy metals in the plant from soil except for the increased uptake of As and Cr in the root compared to application of municipal sludge-derived biochar alone. This study provides vital basis for assessing the environmental risks of OSW-derived biochar when applied to land.
-
Key words:
- municipal sludge /
- medicinal herb residue /
- biochar /
- heavy metal bioavailability /
- organic solid wastes
-
图 3 有机固废生物炭影响下玉米地上部及根组织对重金属吸收量与其土壤有效态组分之间的关系(P=0.05时r临界值为0.631,n=10)
Figure 3. Correlation of heavy metal uptake by maize aerial and root parts with their available contents in soils following different organic solid waste-derived biochar treatments (critical value of r is 0.631 when P = 0.05, n=10)
表 1 盆栽实验设置
Table 1. Pot experimental design
处理组 污泥炭 中药渣炭 空白土壤 0 0 + MRB1% 0 1% + MSB0.5% 0.5% 0 + MSB1% 1% 0 + MSB2% 2% 0 + MSB5% 5% 0 + MSB1%+ MSB0.1% 1% 0.1% + MSB1%+ MSB0.25% 1% 0.25% + MSB 1%+ MSB0.5% 1% 0.5% + MSB5%+ MSB0.25% 5% 0.25% 注:表中百分数字为有机固废生物炭施用量与土壤质量比。 表 2 供试土壤、有机固废生物炭的基本理化性质及重金属总量分布
Table 2. Basic physical and chemical properties and total distribution of heavy metals of soil and organic solid waste-derived biochars
样品或相关标准 pH 有机碳/% 全磷/
(g·kg−1)全氮/
(g·kg−1)重金属/(mg·kg−1) As Cd Cr Cu Hg Ni Pb Zn 供试原始土壤 8.13 1.5 1.2 0.6 5.39 0.1 54.5 19.2 0.03 23.3 15.6 32 污泥炭 8.49 14.9 37.5 30.8 8.36 1.14 196.8 122.6 0.06 84 37.2 1 926 中药渣炭 9.91 35.2 24.8 16.1 8.44 0.38 139.3 80.3 0.04 73.2 24.3 1 129 NY/T 3618-2020 — — — — 15 3 150 — 2 — 50 — GB 4284-2018 A级限值 — — — — 30 3 500 500 3 100 300 1 200 表 3 施用有机固废生物炭对土壤重金属、磷有效态含量分布影响
Table 3. Effects of organic solid wastes-derived biochars on available heavy metals and phosphorus in soil
处理组 有效态重金属/(μg·kg−1) 有效磷/(mg·kg−1) As Cd Cr Cu Ni Pb Zn 污泥炭 283±18 56.0±0.8 17.9±0.2 761±25 377±3 581±5 99 882±686 359±29 中药渣炭 403±14 25.6±2.0 16.8±0.1 981±32 345±15 566±25 68 882±1 250 244±19 空白土壤 366±7a 12.3±0.7c 6.7±0.1f 827±24b 126±4c 983±43d 447±29a 55±1a +MRB1% 406±11b 10.0±0.4a 6.1±0.0e 809±12b 119±1b 904±36c 1 198±62b 65±3b +MSB0.5% 443±10c 11.6±0.1c 5.1±0.0b 805±1b 118±2b 870±8c 1 219±117bc 73±6c +MSB1% 454±18c 10.8±0.2b 4.9±0.1a 783±9a 119±2b 798±2b 1 410±112c 75±4c +MSB2% 406±7b 10.9±0.6ab 5.2±0.1bc 759±53ab 114±9ab 732±52a 2 210±172d 84±1d +MSB5% 404±22b 10.4±0.9ab 5.3±0.2bc 751±15a 121±3c 756±24a 5 542±120f 107±5e +MSB1%+MRB0.1% 414±16b 10.7±0.1b 5.4±0.0c 771±5a 117±2b 802±9b 1 343±71c 75±1c +MSB1%+MRB0.25% 424±18bc 10.6±0.0b 5.9±0.1d 786±13ab 116±2b 756±10a 1 240±24b 73±3c +MSB1%+MRB0.5% 435±13bc 10.4±0.4ab 5.2±0.1bc 773±17a 109±4a 744±20a 1 275±93bc 76±1c +MSB5%+MRB0.25% 417±10b 9.9±0.6a 5.3±0.0c 747±37a 107±7a 724±28a 3 622±165e 110±9e 注:同列数据后不同字母表示处理间差异显著(P <0.05)。 表 4 有机固废生物炭影响下玉米植株地上部对重金属吸收量
Table 4. Heavy metal uptake by maize aerial part as affected by organic solid wastes-derived biochars
处理组 重金属吸收量/(μg·kg−1) As Cd Cr Cu Ni Pb Zn 空白土壤 256±13e 49.4±2.6e 1 580±80c 8 750±50e 586±15b 592±26d 29 325±265a +MRB1% 141±11a 22.3±1.8a 1 355±75b 7 960±25b 502±31a 495±17ab 33 825±625b +MSB0.5% 223±8d 45.3±1.8ef 1 260±90a 8 425±25d 535±12a 522±3c 39 260±850c +MSB1% 208±10cd 45.0±0.5ef 1 215±85a 8 190±176c 542±18a 509±7b 43 525±615f +MSB2% 201±11c 44.0±0.5e 1 193±43a 8 075±25bc 556±15ab 486±2a 48 025±925g +MSB5% 217±22cd 46.2±0.3f 1 465±86c 7 975±72b 551±37ab 485±22a 51 800±820h +MSB1%+MRB0.1% 215±18cd 44.6±2.0ef 1 193±91a 8 175±115c 542±19a 527±8c 39 100±200c +MSB1%+MRB0.25% 201±15cd 40.4±1.4d 1 205±60a 8 075±75bc 540±17a 520±15bc 40 325±567d +MSB1%+MRB0.5% 188±7c 36.0±1.2c 1 175±56a 7 865±135b 527±12a 515±25bc 42 425±425e +MSB5%+MRB0.25% 168±13b 32.6±0.3b 1 385±45b 6 950±85a 509±28a 473±15a 47 925±725g 注:同列数据后不同字母表示处理间差异显著(P <0.05)。 表 5 有机固废生物炭影响下玉米植株根组织对重金属吸收量
Table 5. Heavy metal uptake by maize root as affected by organic solid waste-derived biochars
处理组 重金属吸收量/(μg·kg−1) As Cd Cr Cu Ni Pb Zn 空白土壤 2 913±97c 202±6d 17 485±615d 19 300±240f 12 100±195e 3 471±59f 68 160±960b +MRB1% 4 127±117ef 123±16a 20 700±833e 17 020±193d 10 533±367c 2 717±90cd 65 633±630a +MSB 0.5% 2 668±78ab 192±16cd 14 795±605bc 17 800±315e 11 281±435d 2 813±8d 71 850±950c +MSB1% 2 682±107ab 197±12cd 14 650±300b 17 190±279d 10 475±375c 2 837±58de 83 750±750f +MSB2% 2 625±65a 198±5cd 12 150±550a 16 650±350cd 9 975±175c 2 815±80de 88 675±975h +MSB5% 2 748±58b 189±7c 11 850±230a 14 650±161b 9 275±325b 2 907±72e 91 575±875i +MSB1%+MRB0.1% 3 025±52c 169±12b 15 807±407c 16 653±647cd 10 287±253c 2 243±97b 75 687±504d +MSB1%+MRB0.25% 3 973±98e 160±6b 15 425±275c 16 075±492cd 10 095±310c 2 145±75a 78 500±767e +MSB1%+MRB0.5% 4 173±40f 158±11b 15 633±500c 15 737±667c 9 967±333c 2 035±93a 82 330±825f +MSB5%+MRB0.25% 3 795±85d 108±7a 14 605±290b 13 450±376a 8 450±315a 2 567±167c 85 005±795g 注:同列数据后不同字母表示处理间差异显著(P <0.05)。 -
[1] 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34. [2] 吴继阳, 郑凯琪, 杨婷婷, 等. 污泥生物炭对土壤中Pb和Cd的生物有效性的影响[J]. 环境工程学报, 2017, 11(10): 5757-5763. doi: 10.12030/j.cjee.201612044 [3] 王丽霞, 杜子文, 封莉, 等. 连续施用城市污泥后林地土壤中重金属的含量变化及生态风险[J]. 环境工程学报, 2021, 15(3): 1092-1102. doi: 10.12030/j.cjee.202001001 [4] ZHENG G, WANG X K, CHEN T B, et al. Passivation of lead and cadmium and increase of the nutrient content during sewage sludge composting by phosphate amendments[J]. Environmental Research, 2020, 185: 109431. doi: 10.1016/j.envres.2020.109431 [5] BARRY D, BARBIERO C, BRIENS C, et al. Pyrolysis as an economical and ecological treatment option for municipal sewage sludge[J]. Biomass and Bioenergy, 2019, 122: 472-480. doi: 10.1016/j.biombioe.2019.01.041 [6] DOU X M, CHEN D Z, HU Y Y, et al. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal[J]. Journal of Hazardous Materials, 2017, 321: 132-145. doi: 10.1016/j.jhazmat.2016.09.010 [7] LEE J W, HAWKINS B, DAY D M, et al. Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration[J]. Energy & Environmental Science, 2010, 3: 1695-1705. [8] HUANG R X, ZHANG B, SAAD E M, et al. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges[J]. Water Research, 2018, 132: 260-269. doi: 10.1016/j.watres.2018.01.009 [9] WANG Z P, XIE L K, LIU K, et al. Co-pyrolysis of sewage sludge and cotton stalks[J]. Waste Management, 2019, 89: 430-438. doi: 10.1016/j.wasman.2019.04.033 [10] KHAN S, CHAO G, WAQAS M, et al. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil[J]. Environmental Science & Technology, 2013, 47: 8624-8632. [11] JIN J W, LI Y N, ZHANG J Y, et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge[J]. Journal of Hazardous Materials, 2016, 320: 417-426. doi: 10.1016/j.jhazmat.2016.08.050 [12] CHENG Y, LUO L, LV J T, et al. Copper speciation evolution in swine manure induced by pyrolysis[J]. Environmental Science & Technology, 2020, 54(14): 9008-9014. [13] LI S H, ZOU D S, LI L C, et al. Evolution of heavy metals during thermal treatment of manure: A critical review and outlooks[J]. Chemosphere, 2020, 247: 125962. doi: 10.1016/j.chemosphere.2020.125962 [14] CHEN Z E, LUO L, XIAO D Y, et al. Selected dark sides of biomass-derived biochars as environmental amendments[J]. Journal of Environmental Sciences, 2017, 54: 13-20. doi: 10.1016/j.jes.2016.06.004 [15] 李智伟, 王兴栋, 林景江, 等. 污泥生物炭制备过程中氮磷钾及重金属的迁移行为[J]. 环境工程学报, 2016, 10(3): 1392-1399. [16] LIAN F, SUN B B, SONG Z G, et al. Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole[J]. Chemical Engineering Journal, 2014, 248: 128-134. doi: 10.1016/j.cej.2014.03.021 [17] HE E K, YANG Y X, XU Z B, et al. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars[J]. Science of the Total Environment, 2019, 673: 245-253. doi: 10.1016/j.scitotenv.2019.04.037 [18] XU Y G, QI F J, BAI T X, et al. A further inquiry into co-pyrolysis of straws with manures for heavy metal immobilization in manure-derived biochars[J]. Journal of Hazardous Materials, 2019, 380: 120870. doi: 10.1016/j.jhazmat.2019.120870 [19] 环境保护部. 土壤和沉积物金属元素总量的消解 微波消解法: HJ 832-2017[S]. 北京: 中国环境科学出版社, 2017. [20] 环境保护部. 土壤8种有效态元素的测定 二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法: HJ 804-2016[S]. 北京: 中国环境科学出版社, 2016. [21] WOOLSON E A, AXLEY J H, KEARNEY P C. Correlation between available soil arsenic, estimated by six methods, and response of corn (Zea mays L.)[J]. Soil Science Society of America Journal, 1971, 35(1): 101-105. doi: 10.2136/sssaj1971.03615995003500010030x [22] LUO L, MA Y B, SANDERS R L, et al. Speciation and transformation of phosphorus in three long-term fertilized Chinese soils using chemical fractionation and P K-edge XANES spectroscopy[J]. Nutrient Cycling in Agroecosystems, 2017, 107: 215-226. doi: 10.1007/s10705-017-9830-5 [23] 环境保护部. 土壤阳离子交换量的测定三氯化六氨合钴浸提-分光光度法: HJ 889-2017[S]. 北京: 中国环境科学出版社, 2017. [24] BOIM A G F, MELO L C A, MORENO F N, et al. Bioconcentration factors and the risk concentrations of potentially toxic elements in garden soils[J]. Journal of Environmental Management, 2016, 170: 21-27. [25] 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018[S]. 北京: 中国环境科学出版社, 2018. [26] 农业农村部. 生物炭基有机肥料: NY/T 3618-2020[S]. 北京: 中国农业出版社, 2020. [27] 国家市场监督管理总局, 中国国家标准化管理委员会. 农用污泥污染物控制标准: GB 4284-2018[S]. 北京: 中国标准出版社, 2018. [28] LOCK K, JANSSEN C R. Influence of aging on metal availability in soils[J]. Reviews of Environmental Contamination and Toxicology, 2003, 178: 1-21. [29] XIAO Z H, YUAN X Z, LI H, et al. Chemical speciation, mobility and phytoaccessibility of heavy metals in fly ash and slag from combustion of pelletized municipal sewage sludge[J]. Science of the Total Environment, 2015, 536: 774-783. doi: 10.1016/j.scitotenv.2015.07.126 [30] ANAWAR H M, RENGEL Z, DAMON P, et al. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants[J]. Environmental Pollution, 2018, 233: 1003-1012. doi: 10.1016/j.envpol.2017.09.098 [31] TANG X Y, LIM M P, McBRIDE M B. Arsenic uptake by arugula (Eruca vesicaria, L.) cultivars as affected by phosphate availability[J]. Chemosphere, 2018, 195: 559-566. doi: 10.1016/j.chemosphere.2017.12.110 [32] SHAHID M, SHAMSHAD S, RAFIQ M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review[J]. Chemosphere, 2017, 178: 513-533. doi: 10.1016/j.chemosphere.2017.03.074 [33] 郑凯琪, 王俊超, 刘姝彤, 等. 不同热解温度污泥生物炭对Pb2+、Cd2+的吸附特性[J]. 环境工程学报, 2016, 10(12): 7277-7282. doi: 10.12030/j.cjee.201507083